
Programming Languages and Translators

Stephen A. Edwards

Columbia University

Fall 2014

Pieter Bruegel, The Tower of Babel, 1563

Instructor and Schedule

Prof. Stephen A. Edwards

sedwards@cs.columbia.edu

http://www.cs.columbia.edu/~sedwards/

462 Computer Science Building

Lectures: Mondays and Wednesdays, 4:10 – 5:25 PM

September 3 – December 8

Midterm: Wednesday, October 29

Final: Monday, December 8

Presentations: December 15 – 17

Final project reports: December 17

Objectives

Theory

Ï Principles of modern programming languages
Ï Fundamentals of compilers: parsing, type checking,

code generation
Ï Models of computation

Practice: Semester-long Team Project

Ï Design and implement your own language and
compiler

Ï Code it in the OCaml functional language
Ï Manage the project and your teammates; communicate

Quasi-required Text

Alfred V. Aho, Monica S. Lam, Ravi
Sethi, and Jeffrey D. Ullman.

Compilers: Principles, Techniques,
and Tools.

Addison-Wesley, 2006. Second
Edition.

Bug Al about all bugs.

You can get away with the first
edition.

Assignments and Grading

40% Programming Project

20% Midterm

30% Final

10% Individual homework

Project is most important, but most students do well on it.
Grades for tests often vary more.

Prerequisites

COMS W3157 Advanced Programming

Ï How to work on a large software system in a team
Ï Makefiles, version control, test suites
Ï Testing will be as important as development

COMS W3261 Computer Science Theory

Ï Regular languages and expressions
Ï Context-free grammars
Ï Finite automata (NFAs and DFAs)

Collaboration

Collaborate with your team on the project.

Do your homework by yourself.

Tests: Will be closed book with a one-page “cheat sheet” of
your own devising.

Don’t cheat on assignments (e.g., copy from each other):
If you’re dumb enough to cheat,

I’m smart enough to catch you.

Every term I’ve caught people cheating and sent them to
the dean. Please try to break my streak.

Part I

The Project

The Project

Design and implement your own little language.

Five deliverables:

1. A proposal describing your language

2. A language reference manual defining it formally

3. A compiler for it, running sample programs

4. A final project report

5. A final project presentation

Teams

Immediately start forming four-person teams

Each team will develop its own language

Assign each team member a specific role

Role Responsibilities

Manager Timely completion of deliverables

Language Guru Language design

System Architect Compiler architecture, environ.

Verification & Validation Test plan, test suites

First Three Tasks

1. Decide who you will work with
You’ll be stuck with them for the term; choose wisely.

2. Assign a role to each member
Languages come out better from dictatorships, not
democracies.

3. Select a weekly meeting time
Harder than you might think.

Project Proposal

Describe the language that you plan to implement.

Explain what sorts of programs are meant to be written in
your language

Explain the parts of your language and what they do

Include the source code for an interesting program in your
language

2–4 pages

Language Reference Manual

A careful definition of the syntax and semantics of your
language.

Follow the style of the C language reference manual
(Appendix A of Kernighan and Ritchie, The C Programming
Langauge; see the class website).

Final Report Sections

Section Author

Introduction Team

Tutorial Team

Reference Manual Team

Project Plan Manager

Language Evolution Language Guru

Translator Architecture System Architect

Test plan and scripts Tester

Conclusions Team

Full Code Listing Team

Due Dates

Proposal September 24 soon

Reference Manual October 27

Final Report December 17

Design a language?

A small, domain-specific language: awk or PHP, not Java or
C++.

Examples from earlier terms:

Geometric figure drawing language

Matlab-like array manipulation language

Quantum computing language

Screenplay animation language

Escher-like pattern generator

Music manipulation language (harmony)

Mathematical function manipulator

Simple scripting language (à lá Tcl)

Three Common Mistakes to Avoid
Configuration File Syndrome

Ï Must be able to express algorithms, not just data
Ï E.g., a program like “a bird and a turtle and a pond and

grass and a rock,” is just data, not an algorithm

Standard Library Syndrome

Ï Good languages express lots by a combining few things
Ï Write a standard library in your language
Ï Aim for Legos, not Microsoft Word

Java-to-Java Translator Syndrome

Ï A compiler mostly adds implementation details to code
Ï Your compiler’s output should not look like its input
Ï Try your best not to re-invent Java

What I’m Looking For

Your language must be able to express different algorithms

Ï Avoid Configuration File Syndrome. Most languages
should be able to express, e.g., the GCD algorithm.

Your language should consist of pieces that can mix freely

Ï Avoid Standard Library Syndrome. For anything you
provide in the language, ask yourself whether you can
express it using other primitives in your language.

Your compiler must lower the level of abstraction

Ï Don’t write a Java-to-Java translator. Make sure your
compiler adds details to the output such as registers,
evaluation order of expressions, stack management
instructions, etc.

Part II

What’s in a Language?

Components of a language: Syntax

How characters combine to form words, sentences,
paragraphs.

The quick brown fox jumps over the lazy dog.

is syntactically correct English, but isn’t a Java program.

class Foo {
public int j;
public int foo(int k) { return j + k; }

}

is syntactically correct Java, but isn’t C.

Specifying Syntax

Usually done with a context-free grammar.

Typical syntax for algebraic expressions:

expr → expr+expr
| expr − expr
| expr ∗ expr
| expr / expr
| digit
| (expr)

Components of a language: Semantics
What a well-formed program “means.”

The semantics of C says this computes the nth Fibonacci
number.

int fib(int n)
{
int a = 0, b = 1;
int i;
for (i = 1 ; i < n ; i++) {
int c = a + b;
a = b;
b = c;

}
return b;

}

‘When I use a
word,’ Humpty
Dumpty said
in rather a
scornful tone, ‘it
means just what
I choose it to
mean—neither
more nor less.’

Source: Lewis Carroll, Through the Looking Glass, 1872.

Semantics

Something may be syntactically correct but semantically
nonsensical

The rock jumped through the hairy planet.

Or ambiguous

The chickens are ready to eat.

Semantics

Nonsensical in Java:

class Foo {
int bar(int x) { return Foo; }

}

Ambiguous in Java:

class Bar {
public float foo() { return 0; }
public int foo() { return 0; }

}

Part III

Great Moments in Evolution

Assembly Language

Before: numbers
55
89E5
8B4508
8B550C
39D0
740D
39D0
7E08
29D0
39D0
75F6
C9
C3
29C2
EBF6

After: Symbols
gcd: pushl %ebp

movl %esp, %ebp
movl 8(%ebp), %eax
movl 12(%ebp), %edx
cmpl %edx, %eax
je .L9

.L7: cmpl %edx, %eax
jle .L5
subl %edx, %eax

.L2: cmpl %edx, %eax
jne .L7

.L9: leave
ret

.L5: subl %eax, %edx
jmp .L2

FORTRAN

Before
gcd: pushl %ebp

movl %esp, %ebp
movl 8(%ebp), %eax
movl 12(%ebp), %edx
cmpl %edx, %eax
je .L9

.L7: cmpl %edx, %eax
jle .L5
subl %edx, %eax

.L2: cmpl %edx, %eax
jne .L7

.L9: leave
ret

.L5: subl %eax, %edx
jmp .L2

After: Expressions, control-
flow
10 if (a .EQ. b) goto 20

if (a .LT. b) then
a = a - b

else
b = b - a

endif
goto 10

20 end

COBOL
Added type declarations, record types, file manipulation

data division.
file section.
* describe the input file
fd employee-file-in

label records standard
block contains 5 records
record contains 31 characters
data record is employee-record-in.

01 employee-record-in.
02 employee-name-in pic x(20).
02 employee-rate-in pic 9(3)v99.
02 employee-hours-in pic 9(3)v99.
02 line-feed-in pic x(1).

From cafepress.com

LISP, Scheme, Common LISP

Functional, high-level languages

(defun gnome-doc-insert ()
"Add a documentation header to the current function.

Only C/C++ function types are properly supported currently."
(interactive)
(let (c-insert-here (point))
(save-excursion

(beginning-of-defun)
(let (c-arglist

c-funcname
(c-point (point))
c-comment-point
c-isvoid
c-doinsert)

(search-backward "(")
(forward-line -2)
(while (or (looking-at "^$")

(looking-at "^ *}")
(looking-at "^ *")
(looking-at "^#"))

(forward-line 1))

APL
Powerful operators, interactive language, custom character
set

“Emoticons for Mathematicians”
Source: Jim Weigang, http://www.chilton.com/~jimw/gsrand.html

At right: Datamedia APL Keyboard

Algol, Pascal, Clu, Modula, Ada
Imperative, block-structured language, formal syntax
definition, structured programming

PROC insert = (INT e, REF TREE t)VOID:
NB inserts in t as a side effect
IF TREE(t) IS NIL THEN

t := HEAP NODE := (e, TREE(NIL), TREE(NIL))
ELIF e < e OF t THEN insert(e, l OF t)
ELIF e > e OF t THEN insert(e, r OF t)
FI;

PROC trav = (INT switch, TREE t, SCANNER continue,
alternative)VOID:

traverse the root node and right sub-tree of t only.
IF t IS NIL THEN continue(switch, alternative)
ELIF e OF t <= switch THEN

print(e OF t);
traverse(switch, r OF t, continue, alternative)

ELSE # e OF t > switch #
PROC defer = (INT sw, SCANNER alt)VOID:

trav(sw, t, continue, alt);
alternative(e OF t, defer)

FI;

Algol-68, source http://www.csse.monash.edu.au/~lloyd/tildeProgLang/Algol68/treemerge.a68

SNOBOL, Icon
String-processing languages

LETTER = ’ABCDEFGHIJKLMNOPQRSTUVWXYZ$#@’
SP.CH = "+-,=.*()’/& "
SCOTA = SP.CH
SCOTA ’&’ =
Q = "’"
QLIT = Q FENCE BREAK(Q) Q
ELEM = QLIT | ’L’ Q | ANY(SCOTA) | BREAK(SCOTA) | REM
F3 = ARBNO(ELEM FENCE)
B = (SPAN(’ ’) | RPOS(0)) FENCE
F1 = BREAK(’ ’) | REM
F2 = F1
CAOP = (’LCL’ | ’SET’) ANY(’ABC’) |

+ ’AIF’ | ’AGO’ | ’ACTR’ | ’ANOP’
ATTR = ANY(’TLSIKN’)
ELEMC = ’(’ FENCE *F3C ’)’ | ATTR Q | ELEM
F3C = ARBNO(ELEMC FENCE)
ASM360 = F1 . NAME B

+ (CAOP . OPERATION B F3C . OPERAND |
+ F2 . OPERATION B F3 . OPERAND)
+ B REM . COMMENT

SNOBOL: Parse IBM 360 assembly. From Gimpel’s book, http://www.snobol4.org/

BASIC

Programming for the masses

10 PRINT "GUESS A NUMBER BETWEEN ONE AND TEN"
20 INPUT A$
30 IF A$ <> "5" THEN GOTO 60
40 PRINT "GOOD JOB, YOU GUESSED IT"
50 GOTO 100
60 PRINT "YOU ARE WRONG. TRY AGAIN"
70 GOTO 10
100 END

Started the whole Bill Gates/
Microsoft thing. BASIC was
invented by Dartmouth
researchers John George Kemeny
and Thomas Eugene Kurtz.

Simula, Smalltalk, C++, Java, C#

The object-oriented philosophy

class Shape(x, y); integer x; integer y;
virtual: procedure draw;
begin

comment - get the x & y coordinates -;
integer procedure getX;

getX := x;
integer procedure getY;

getY := y;

comment - set the x & y coordinates -;
integer procedure setX(newx); integer newx;

x := newx;
integer procedure setY(newy); integer newy;

y := newy;
end Shape;

C

Efficiency for systems programming

int gcd(int a, int b)
{
while (a != b) {
if (a > b) a -= b;
else b -= a;

}
return a;

}

ML, Miranda, Haskell

Functional languages with types and syntax

structure RevStack = struct
type ’a stack = ’a list
exception Empty
val empty = []
fun isEmpty (s:’a stack):bool =
(case s

of [] => true
| _ => false)

fun top (s:’a stack): =
(case s

of [] => raise Empty
| x::xs => x)

fun pop (s:’a stack):’a stack =
(case s

of [] => raise Empty
| x::xs => xs)

fun push (s:’a stack,x: ’a):’a stack = x::s
fun rev (s:’a stack):’a stack = rev (s)

end

sh, awk, perl, tcl, python, php

Scripting languages: glue for binding the universe together

class() {
classname=‘echo "$1" | sed -n ’1 s/ *:.*$//p’‘
parent=‘echo "$1" | sed -n ’1 s/^.*: *//p’‘
hppbody=‘echo "$1" | sed -n ’2,$p’‘

forwarddefs="$forwarddefs
class $classname;"

if (echo $hppbody | grep -q "$classname()"); then
defaultconstructor=

else
defaultconstructor="$classname() {}"

fi
}

VisiCalc, Lotus 1-2-3, Excel

The spreadsheet style of programming

Visicalc on the Apple II, c. 1979

SQL

Database queries

CREATE TABLE shirt (
id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
style ENUM(’t-shirt’, ’polo’, ’dress’) NOT NULL,
color ENUM(’red’, ’blue’, ’white’, ’black’) NOT NULL,
owner SMALLINT UNSIGNED NOT NULL

REFERENCES person(id),
PRIMARY KEY (id)

);

INSERT INTO shirt VALUES
(NULL, ’polo’, ’blue’, LAST_INSERT_ID()),
(NULL, ’dress’, ’white’, LAST_INSERT_ID()),
(NULL, ’t-shirt’, ’blue’, LAST_INSERT_ID());

From thinkgeek.com

Prolog

Logic Language

witch(X) <= burns(X) and female(X).
burns(X) <= wooden(X).
wooden(X) <= floats(X).
floats(X) <= sameweight(duck, X).

female(girl). {by observation}
sameweight(duck,girl). {by experiment }

? witch(girl).

	The Project
	What's in a Language?
	Great Moments in Evolution

