
finl

Manager
System Architect
Language Güru
Tester

Lauren O’Connor, leo2118
Robert Cornacchia, rlc2160
Josh Fram, jpf2141
Paddy Quinn, pmq2101

1. Describe the language that you plan to implement
 1.1 Motivation
 As Wall Street investment firms have increasingly turned to
advanced quantitative and algorithmic strategies to enhance
returns, the general retail investor has largely been left behind in
their ability to access these technologies. At the same time, there
are a massive number of data services available to retail investors,
including Yahoo Finance, Google Finance, and data provided by
brokerage firms. But integrating these extensive data offerings into
a program is a challenge, and many of the existing options cost
money. To take advantage of the growing world of quantitative
investing, retail investors need a language that allows for free and
easy access to stock market data. We believe our language can
provide a platform that enables writing these programs with ease.
 1.2 Language Description
 finl (pronounced “final”) is a simple yet powerful language that
exploits the power of the Yahoo Finance API and Yahoo’s web
query language, YQL. While other languages can certainly send
httpRequests to the API, our language will serve to abstract away
the complications that come with sending the requests and
receiving the response. A built in “stock” data type will allow the
user to build an object, and easily and intuitively populate it with
any fundamental data that is available on the Yahoo Finance API. A
built in “order” data type will facilitate testing of trading strategies.
And a built in “account” data type will allow users to keep track of
this performance, and integration with .csv import and export
functions can allow users to track performance over multiple
sessions.

2. Explain what sorts of programs are meant to be written in

your language
There are a multitude of applications that can be developed in this
programming language. An example of a simple program is a
program that prints out the earnings announcement date of every
stock listed in the user’s “account.” This would allow the user to
easily see which of their holdings have earnings announcements
approaching. Another use of the program could be to implement
and test a trading strategy. The user would request information on
a universe of stocks, compare them based on criteria of their
choice, and then place orders based on which stocks they deem
attractive. The investment performance is tracked using each of the
“stock,” “order,” and “account” data types. Also, a user could
analyze a large universe of stocks by sorting them based on one or
more fundamental data points, easily identifying stocks that best fit
a set of criteria the user is looking for.

3. Explain the parts of your language and what they do
#Loops
 for 1 to 10 by 2 {
 …
 }
 #while loop
 x=2 and y=0~{
 …
 }

#Conditional

x = 2? {
 …
 } x = 3?? {

…
 } x = 4?? {

…
} ! {

…
}

#Operators
 and, or, not, =

#Data Types:
 int
 double
 string
 array

 stock:

• initialize a variable equal to
all of the properties of
publicly traded stocks.

• ford.price = (current price of
the stock) * 1000 shares

• ford.pe = (current pe of ford)
• for a list of all properties see

end of document.

 order:

• specify stock and how much
they would want to buy/sell

• order.value

 + - / * mod
 +<< -<< *<< /<<
 > >= < <=

#Declarations and
Assignment

int x<<3;
double y<<2.2;
string
name<<“john”;
stock f << $F;
func x returns
void(arguments)

#Functions

func x returns
int(arguments)

max(), min(),
avg()
asort(), dsort()
buy(stock, int),
sell(stock, int)
#int represents
amount
export(string
f),print(string s)

#Comments
 # I am a comment

• order.datePlaced
• order.yield (returns the

difference of the order
between now and before)

• order.yieldPercentage
(returns the percent change
between datePlaced and now)

 account:

• accounts contain specific
pieces of information
regarding a user’s account

• account value, data opened,
performance since open

• account.graph(date opened,
present)

4. Include the source code for an interesting program in your
language

func basicStrategy returns int(){

 # Check if the 50-day moving average crosses the
200-day moving average

stock tesla = $TSLA
tesla.get50sma()
tesla.get200sma()

 #check if moving averages crossed

tesla.FiftydayMovingAverage >
tesla.TwoHundreddayMovingAverage? {
 order risky_order = buy($TSLA, 1000)

A buy order for 1,000 shares of Tesla
 }

 tesla.FiftydayMovingAverage >
tesla.TwoHundreddayMovingAverage? {
 order revenue = sell($TSLA, 1000)
 }

 revenue.value > risky_order.value? {
 print(“Some risks are worth taking.”)
 }

 risky_order.value < revenue.value? {
 print(“Back to the drawing board.”)
 }

 int profit = risky_order.value - revenue.value
 return profit
}

func main returns int(string input) {
 basicStrategy();
 return 0;
}

#When the file loads the main input needs to be able
to handle a .csv file as #input. If no input is
specified, a .csv file is created with the same name
as #the .finl. All data, such as orders placed,
buy/sell orders executed, etc., #will be exported to
the .csv file.

Stock Data Type Properties (From Yahoo Finance API):

{ "query": {
 "count": 1,
 "created": "2015-09-30T01:23:25Z",
 "lang": "en-US",
 "results": {
 "quote": {
 "symbol":
 "Ask":
 "AverageDailyVolume":
 "Bid":
 "AskRealtime":
 "BidRealtime":
 "BookValue":
 "Change_PercentChange":
 "Change":
 "Commission":
 "Currency":
 "ChangeRealtime":
 "AfterHoursChangeRealtime":
 "DividendShare":
 "LastTradeDate":
 "TradeDate":
 "EarningsShare":
 ErrorIndicationreturnedforsymbolch
angedinvalid":
 "EPSEstimateCurrentYear":
 "EPSEstimateNextYear":
 "EPSEstimateNextQuarter":
 "DaysLow":
 "DaysHigh":
 "YearLow":
 "YearHigh":
 "HoldingsGainPercent":
 "AnnualizedGain":
 "HoldingsGain":
"HoldingsGainPercentRealtime":
 "HoldingsGainRealtime":
 "MoreInfo":
 "OrderBookRealtime":
 "MarketCapitalization":
 "MarketCapRealtime":
 "EBITDA":
 "ChangeFromYearLow":
 "PercentChangeFromYearLow":
 "LastTradeRealtimeWithTime":
 "ChangePercentRealtime":

 "ChangeFromYearHigh":
 "PercentChangeFromYearHigh":
 "LastTradeWithTime":
"LastTradePriceOnly":
 "HighLimit":
 "LowLimit":
 "DaysRange":
 "DaysRangeRealtime":
 "FiftydayMovingAverage":
 "TwoHundreddayMovingAverage":
 "ChangeFromTwoHundreddayMoving
Average":
"PercentChangeFromTwoHundreddayM
ovingAverage":
 "ChangeFromFiftydayMovingAverage"
:
 "PercentChangeFromFiftydayMovingA
verage":
 "Name":
 "Notes":
 "Open":
 "PreviousClose":
 "PricePaid":
 "ChangeinPercent":
 "PriceSales":
 "PriceBook":
 "ExDividendDate":
 "PERatio":
 "DividendPayDate":
 "PERatioRealtime":
 "PEGRatio":
 "PriceEPSEstimateCurrentYear":
 "PriceEPSEstimateNextYear":
 "Symbol":
 "SharesOwned":
 "ShortRatio":
 "LastTradeTime":
 "TickerTrend":
 "OneyrTargetPrice":
 "Volume":
 "HoldingsValue":
 "HoldingsValueRealtime":
 "YearRange":
 "DaysValueChange":
 "DaysValueChangeRealtime":
 "StockExchange":

 "DividendYield":
 "PercentChange":
 }
 }

	

