

OCAML FROM THE VERY BEGINNING

In OCaml from the Very Beginning John Whitington takes a no-prerequisites approach to teaching a modern general-purpose programming language. Each small, self-contained chapter introduces a new topic, building until the reader can write quite substantial programs. There are plenty of questions and, crucially, worked answers and hints.

OCaml from the Very Beginning will appeal both to new programmers, and experienced programmers eager to explore functional languages such as OCaml. It is suitable both for formal use within an undergraduate or graduate curriculum, and for the interested amateur.

JOHN WHITINGTON founded a software company which uses OCaml extensively. He teaches functional programming to students of Computer Science at the University of Cambridge.

OCAML

from the very beginning

John Whitington
C O H E R E N T P R E S S

C O H E R E N T P R E S S

Cambridge

Published in the United Kingdom by Coherent Press, Cambridge

Ⓒ Coherent Press 2013

This publication is in copyright. Subject to statutory

exception no reproduction of any part may take place

without the written permission of Coherent Press.

First published June 2013

Reprinted with corrections October 2013

A catalogue record for this book is available from the British Library

Contents

Getting Ready

1 Starting Off

2 Names and Functions

Note on Notation

3 Case by Case

4 Making Lists

Two Different Ways of Thinking

5 Sorting Things

Loading a Program from a File

6 Functions upon Functions upon Functions

7 When Things Go Wrong

8 Looking Things Up

9 More with Functions

10 New Kinds of Data

11 Growing Trees

12 In and Out

13 Putting Things in Boxes

14 The Other Numbers

15 The OCaml Standard Library

16 Building Bigger Programs

Answers to Questions

Hints for Questions

Coping with Errors

Index

Preface
This book is based on the Author’s experience of teaching programming to students in the University of
Cambridge supervisions system. In particular, working with students for the first-year undergraduate course
“Foundations of Computer Science”, based on Standard ML and lectured for many years by Lawrence C.
Paulson.

An interesting aspect of supervising students from a wide range of backgrounds (some with no previous
experience at all taking Computer Science as an additional subject within the Cambridge Natural Sciences
curriculum, and some with a great deal of programming experience already) is the level playing field which the
ML family of languages (like OCaml) provide. Sometimes, those students with least prior programming
experience perform the best.

I have tried to write a book which has no prerequisites – and with which any intelligent undergraduate
ought to be able to cope, whilst trying to be concise enough that someone coming from another language
might not be too annoyed by the tone.

Special note to those who have already written programs
When I was a boy, our class was using a word processor for the first time. I wanted a title for my
story, so I typed it on the first line and then, placing the cursor at the beginning, held down the
space bar until the title was roughly in the middle. My friend taught me how to use the centring
function, but it seemed more complicated to me, and I stuck with the familiar way – after all, it
worked. Later on, of course, when I had more confidence and experience, I realized he had been
right.

When starting a language which is fundamentally different from those you have seen before, it can be
difficult to see the advantages, and to try to think of every concept in terms of the old language. I would urge
you to consider the possibility that, at the moment, you might be the boy holding down the space
bar.

Acknowledgments
Inevitably, the approach here owes a debt to that taken by Lawrence C. Paulson, both in his lecture notes and
in his book “ML for the Working Programmer” (Cambridge University Press, 1996). Question 3 in Chapter 11
is inspired by an examination question of his. I was taught Standard ML by Professor Paulson and Andrei
Serjantov in Autumn 2000. Mark Shinwell has been a constant source of helpful discussion. Robin Walker and
latterly Andrew Rice have arranged the supervisions system at Queens’ College within which I have taught
since 2004. I am grateful to the developers of OCaml who have provided such a pleasant environment in which
to write programs. Helpful comments on an earlier draft were provided by Martin DeMello, Damien
Doligez, Arthur Guillon, Zhi Han, Robert Jakob, Xavier Leroy, Florent Monnier, and Benjamin
Pierce. And, of course, I thank all my students, some of whom are now working with OCaml for a
living.

Getting Ready
This book is about teaching the computer to do new things by writing computer programs.
Just as there are
different languages for humans to speak to one another, there are different
programming languages for humans
to speak to computers.

We are going to be using a programming language called
OCaml. It might already be on your computer,
or you may have to find it on the internet and install it yourself. You will know that you have OCaml working
when you see something like this:

 OCaml

#

OCaml is waiting for us to type something. Try typing

followed by
the Enter key. You should see this:

 OCaml

1 + 2;;
- : int = 3

OCaml is telling us the result of the calculation. To leave OCaml, give the exit 0 command, again ending
with ;;
to tell OCaml we have finished typing:

 OCaml

exit 0;;

You should find yourself back where you were before. If you make a mistake when typing, you can
press
(hold down the
key and tap the
key). This will allow you to start
again:

 OCaml

1 + 3^CInterrupted
1 + 2;;
- : int = 3

We are ready to begin.

Chapter 1
Starting Off
We will cover a fair amount of material in this chapter and its questions, since we
will need a solid base on which to build. You should read this with a computer running OCaml in front of
you.

Consider first the mathematical
expression 1 + 2 × 3. What is the result? How did you work it out? We might
show the process like this:

How did we know to multiply 2 by 3 first, instead of adding 1 and 2? How did we know when to stop? Let us
underline the part of the expression which is dealt with at each step:

We chose which part of the expression to deal with each time using a familiar mathematical rule –
multiplication is done before addition. We stopped when the expression could not be processed any
further.

Computer programs in OCaml are just like these expressions. In order to give you an answer, the computer
needs to know all the rules you know about how to process the expression correctly. In fact, 1 + 2 × 3 is a valid
OCaml expression as well as a valid mathematical one, but we must write *
instead of ×, since there is no ×
key on the keyboard:

 OCaml

1 + 2 * 3;;
- : int = 7

Here, #
is OCaml prompting us to write an expression, and 1 + 2 * 3;; is what we typed (the
semicolons followed by the Enter key tell OCaml we have finished our expression). OCaml responds
with the answer 7. OCaml also prints
int, which tells us that the answer is a whole number, or
integer.

Let us look at our example expression some more. There are two
operators: + and ×. There are three
operands: 1, 2, and 3. When we wrote it down, and when we typed it into OCaml, we put spaces between the
operators and operands for readability. How does OCaml process it? Firstly, the text we wrote must be split
up into its basic parts: 1, +, 2, *, and 3. OCaml then looks at the order and kind of the operators and
operands, and decides how to parenthesize the expression: (1 + (2 × 3)). Now,
evaluating the expression just
requires dealing with each parenthesized section, starting with the innermost, and stopping when there are no
parentheses left:

OCaml knows that × is to be done before +, and parenthesizes the expression appropriately. We say the ×
operator has
higher precedence than the + operator.

An expression is any valid OCaml program. To produce an answer, OCaml evaluates the expression,
yielding a special kind of expression, a value. In our previous example, 1 + 2 × 3, 1 + 6, and 7 were all
expressions, but only 7 was a value.

Each expression (and so each value) has a
type. The type of 7 is int (it is an integer). The types of the
expressions 1 + 6 and 1 + 2 × 3 are also int, since they will evaluate to a value of type int. The type of any
expression may be worked out by considering the types of its
sub-expressions, and how they are combined to
form the expression. For example, 1 + 6 has type int because 1 is an int, 6 is an int, and the + operator
takes two integers and gives another one (their sum). Here are the mathematical operators on
integers:

The mod, *, and / operators have higher precedence than the + and - operators. For any operator ⊕ above, the
expression a ⊕ b ⊕ c is equivalent to (a ⊕ b) ⊕ c rather than a ⊕ (b ⊕ c) (we say the operators are
left
associative). We sometimes write down the type of an expression after a colon when working on paper, to keep
it in mind:

5 * -2 : int

(negative numbers are written with - before them). Of course, there are many more types than just int.
Sometimes, instead of numbers, we would like to talk about truth: either something is true or it
is not. For this we use the type
bool which represents
boolean values, named after the English
mathematician George Boole (1815–1864) who pioneered their use. There are just two things of type
bool:

 true
 false

How can we use these? One way is to use one of the
comparison operators, which are used for comparing values
to one another. For example:

 OCaml

99 > 100;;
- : bool = false
4 + 3 + 2 + 1 = 10;;
- : bool = true

Here are all the comparison operators:

Notice that if we try to use operators with types for which they are not intended, OCaml will not accept the
program at all, showing us where our mistake is by underlining it:

 OCaml

1 + true;;
Error: This expression has type bool but an expression was expected of type
 int

You can find more information about error messages in OCaml in the appendix “Coping with Errors” at the
back of this book.

There are two operators for combining boolean values (for instance, those resulting from using the
comparison operators). The expression a && b evaluates to true only if a and b both evaluate to true. The
expression
a || b evaluates to true only if a evaluates to true, b evaluates to true, or both do. The
&&
operator (pronounced “and”) is of higher precedence than the || operator (pronounced “or”), so a && b || c is
the same as (a && b) || c.

A third type we shall be using is
char which holds a single character, such as ‘a’ or ‘?’. We write these in
single quotation marks:

 OCaml

'c';;
- : char = 'c'

So far we have looked only at operators like +, mod, and = which look like familiar mathematical ones. But
many constructs in programming languages look a little different. For example, to choose a course of
evaluation based on some test, we use the
if … then … else construct:

 OCaml

if 100 > 99 then 0 else 1;;
- : int = 0

The expression between if and then (in our example 100 > 99) must have type bool – it evaluates to either
true or false. The types of the expression to choose if true and the expression to choose if false must be the
same as one another – here they are both of type int. The whole expression evaluates to the same type – int –
because either the then part or the else part is chosen to be the result of evaluating the whole
expression:

We have covered a lot in this chapter, but we need all these basic tools before we can write interesting
programs. Make sure you work through the questions on paper, on the computer, or both, before moving on.
Hints and answers are at the back of the book.

Questions

	What are the types of the following expressions and what do they evaluate to, and why?
 17

 1 + 2 * 3 + 4

 800 / 80 / 8

 400 > 200

 1 <> 1

 true || false

 true && false

 if true then false else true

 '%'

 'a' + 'b'

	Consider the evaluations of the expressions 1 + 2 mod 3, (1 + 2) mod 3, and 1 + (2 mod 3). What
can you conclude about the + and mod operators?

	A programmer writes 1+2 * 3+4. What does this evaluate to? What advice would you give him?

	The range of numbers available is limited. There are two special numbers:
min_int and max_int.
What are their values on your computer? What happens when you evaluate the expressions
max_int + 1 and min_int - 1?

	What happens when you try to evaluate the expression 1 / 0? Why?

	Can you discover what the mod operator does when one or both of the operands are negative?
What about if the first operand is zero? What if the second is zero?

	Why not just use, for example, the integer 0 to represent false and the integer 1 for true? Why
have a separate bool type at all?

	What is the effect of the comparison operators like < and > on alphabetic values of type char?
For example, what does 'p' < 'q' evaluate to? What is the effect of the comparison operators
on the booleans, true and false?

So Far

1

Integers min_int … -3 -2 -1 0 1 2 3 … max_int of type int. Booleans true and false of type bool. Characters of
type char like 'X' and '!'. Mathematical operators + - * / mod which take two integers and give another. Operators = <
<= > >= <> which compare two values and evaluate to either true or false. The conditional if expression1 then
expression2 else expression3, where expresssion1 has type bool and expression2 and expression3 have the
same type as one another. The boolean operators && and || which allow us to build compound boolean
expressions.

Chapter 2
Names and Functions
So far we have built only tiny toy programs. To build bigger ones, we need to be able to
name things so as to
refer to them later. We also need to write expressions whose result depends upon one or more other
things.

Before, if we wished to use a sub-expression twice or more in a single expression, we had to type it multiple
times:

 OCaml

200 * 200 * 200;;
- : int = 8000000

Instead, we can define our own name to stand for the result of evaluating an expression, and then use the name
as we please:

 OCaml

let x = 200;;
val x : int = 200
x * x * x;;
- : int = 8000000

To write this all in a single expression, we can use the
let … = … in construct:

 OCaml

let x = 200 in x * x * x;;
- : int = 8000000
let a = 500 in (let b = a * a in a + b);;
- : int = 250500

We can also make a
function, whose value depends upon some input (we call this input an
argument – we will
be using the word “input” later in the book to mean something different):

 OCaml

let cube x = x * x * x;;
val cube : int -> int = <fun>
cube 200;;
- : int = 8000000

We chose cube for the name of the function and x for the name of its argument. When we typed the function
in, OCaml replied by telling us that its type is
int → int. This means it is a function which takes an integer as
its argument, and, when given that argument, evaluates to an integer. To use the function, we just write its
name followed by a suitable argument. In our example, we calculated 2003
by giving the cube function 200 as
its argument.

The cube function has type int → int, we gave it an integer 200, and so the result is another integer.
Thus, the type of the expression cube 200 is int – remember that the type of any expression is the
type of the thing it will evaluate to, and cube 200 evaluates to 8000000, an integer. In diagram
form:

If we try an argument of the wrong type, the program will be rejected:

 OCaml

let cube x = x * x * x;;
val cube : int -> int = <fun>
cube false;;
Error: This expression has type bool
but an expression was expected of type
 int

Here is a function which determines if an integer is negative:

 OCaml

let neg x = if x < 0 then true
else false;;
val neg : int -> bool = <fun>
neg (-30);; [we add parentheses to distinguish from “neg -
30”]
- : bool = true

But, of course, this is equivalent to just writing

 OCaml

let neg x = x < 0;;
val neg : int -> bool = <fun>
neg (-30);;
- : bool = true

because x < 0 will evaluate to the appropriate boolean value on its own – true if
x
< 0 and false otherwise.
Here is another function, this time of type char → bool. It determines if a given character is a vowel or
not:

 OCaml

let isvowel c =
 c = 'a' || c = 'e' || c = 'i' || c = 'o' || c = 'u';;
val isvowel : char -> bool = <fun>
isvowel ’x’;;
- : bool = false

Notice that we typed the function over two lines. This can be done by pressing the Enter key in between lines.
OCaml knows that we are finished when we type ;; followed by Enter as usual. Notice also that we
pressed space a few times so that the second line appeared a little to the right of the first. This
is known as
indentation and does not affect the meaning of the program at all – it is just for
readability.

There can be more than one argument to a function. For example, here is a function which checks if two
numbers add up to ten:

 OCaml

let addtoten a b =
 a + b = 10;;
val addtoten : int -> int -> bool
= <fun>
addtoten 6 4;;
- : bool = true

The type is int → int → bool because the arguments are both integers, and the result is a boolean. We use
the function in the same way as before, but writing two integers this time, one for each argument the function
expects.

A
recursive function is one which uses itself. Consider calculating the
factorial of a given number – the
factorial of 4 (written 4! in mathematics), for example, is 4 × 3 × 2 × 1. Here is a recursive function to calculate
the factorial. Note that it uses itself in its own definition.

 OCaml

let rec factorial a =
 if a = 1 then 1 else
 a * factorial (a - 1);;
val factorial : int -> int = <fun>
factorial 4;;
- : int = 24

We used
let rec instead of let to indicate a recursive function. How does the evaluation of factorial 4
proceed?

For the first three steps, the else part of the conditional expression is chosen, because the argument a is
greater than one. When the argument is equal to one, we do not use factorial again, but just evaluate to one.
The expression built up of all the multiplications is then evaluated until a value is reached: this is the result of
the whole evaluation. It is sometimes possible for a recursive function never to finish – what if we try to
evaluate factorial (-1)?

The expression keeps expanding, and the recursion keeps going. Helpfully, OCaml tells us what is going
on:

 OCaml

let rec factorial a =
 if a = 1 then 1 else
 a * factorial (a - 1);;
val factorial : int -> int = <fun>
factorial (-1);;
Stack overflow during evaluation
(looping recursion?).

This is an example of an error OCaml cannot find by merely looking at the program – it can only be detected
during evaluation. Later in the book, we will see how to prevent people who are using our functions from
making such mistakes.

One of the oldest methods for solving a problem (called
algorithms) still in common use is
Euclid’s
algorithm for calculating the greatest common divisor of two numbers (that is, given two positive integers a
and b, finding the biggest positive integer c such that neither a∕c nor b∕c have a remainder). Euclid was a
Greek mathematician who lived about three centuries before Christ. Euclid’s algorithm is simple to write as a
function with two arguments:

 OCaml

let rec gcd a b =
 if b = 0 then a else gcd b (a mod b);;
val gcd : int -> int -> int = <fun>
gcd 64000 3456;;
- : int = 128

Here is the evaluation:

Finally, here is a simple function on boolean values. In the previous chapter, we looked at the && and ||
operators which are built in to OCaml. The other important boolean operator is the
not function, which
returns the boolean complement (opposite) of its argument – true if the argument is false, and vice
versa. This is also built in, but it is easy enough to define ourselves, as a function of type bool →
bool.

 OCaml

let not x =
 if x then false else true;;
val not : bool -> bool = <fun>
not true;;
- : bool = false

Almost every program we write will involve functions such as these, and many larger ones too. In fact,
languages like OCaml are often called
functional languages.

Questions

	Write a function which multiplies a given number by ten. What is its type?

	Write a function which returns true if both of its arguments are non-zero, and false otherwise.
What is the type of your function?

	Write a recursive function which, given a number n, calculates the sum 1 + 2 + 3 +
…
+ n. What
is its type?

	Write a function power x n which raises x to the power n. Give its type.

	Write a function isconsonant which, given a lower-case character in the range 'a'…'z',
determines if it is a consonant.

	What is the result of the expression let x = 1 in let x = 2 in x + x ?

	Can you suggest a way of preventing the non-termination of the factorial function in the case
of a zero or negative argument?

So Far

1

Integers min_int … -3 -2 -1 0 1 2 3 … max_int of type int. Booleans true and false of type bool. Characters of
type char like 'X' and '!'. Mathematical operators + - * / mod which take two integers and give another. Operators = <
<= > >= <> which compare two values and evaluate to either true or false. The conditional if expression1 then
expression2 else expression3, where expresssion1 has type bool and expression2 and expression3 have the
same type as one another. The boolean operators && and || which allow us to build compound boolean
expressions.

2

Assigning a name to the result of evaluating an expression using the let name = expression construct. Building
compound expressions using let name1 = expression1 in let name2 = expression2 in … Functions, introduced by
let name argument1 argument2 … = expression. These have type α → β, α → β → γ etc. for some types
α, β, γ etc. Recursive functions, which are introduced in the same way, but using let rec instead of
let.

Note on Notation

From now on, instead of showing the actual OCaml session…

 OCaml

let rec factorial a =
 if a = 1 then 1 else
 a * factorial (a - 1);;
val factorial : int -> int = <fun>

…we will usually just show the program in a box, together with its type:

If you prefer to compose your programs in a text editing program, and copy-and-paste them into OCaml, you
can do that too. Just make sure you end with ;; to let OCaml know you have finished entering the
program.

Later on, when we write larger programs, we will see how to use OCaml to load our programs from
external files.

Chapter 3
Case by Case
In the previous chapter, we used the
conditional expression if … then … else
to define functions whose results depend on their arguments. For some of them we had to nest the conditional
expressions one inside another. Programs like this are not terribly easy to read, and expand quickly in size and
complexity as the number of cases increases.

OCaml has a nicer way of expressing choices –
pattern matching. For example, recall our factorial
function:

We can rewrite this using pattern matching:

We can read this as “See if a matches the pattern 1. If it does, just return 1. If not, see if it matches the
pattern _. If it does, the result is a * factorial (a - 1).” The pattern _ is special – it matches anything.
Remember our isvowel function from the previous chapter?

Here is how to write it using pattern matching:

If we miss out one or more cases, OCaml will warn us:

 OCaml

let isvowel c =
 match c with
 'a' -> true
 | 'e' -> true
 | 'i' -> true
 | 'o' -> true
 | 'u' -> true;;
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
’b’
val isvowel : char -> bool

OCaml does not reject the program, because there may be legitimate reasons to miss cases out, but for now we
will make sure all our pattern matches are complete. Notice that we had to repeat true five times. This would
be awkward if the expression to be calculated was more complicated. We can combine patterns like
this:

Finally, let us rewrite Euclid’s Algorithm from the previous chapter:

Now in pattern matching style:

The type of a whole match … with … expression is determined by the types of the expressions on the right
hand side of each -> arrow, all of which must be alike:

We use pattern matching whenever it is easier to read and understand than if … then … else
expressions.

Questions

	Rewrite the not function from the previous chapter in pattern matching style.

	Use pattern matching to write a recursive function which, given a positive integer n, returns the
sum of all the integers from 1 to n.

	Use pattern matching to write a function which, given two numbers x and n, computes xn.

	For each of the previous three questions, comment on whether you think it is easier to read the
function with or without pattern matching. How might you expect this to change if the functions
were much larger?

	What does match 1 + 1 with 2 -> match 2 + 2 with 3 -> 4 | 4 -> 5 evaluate to?

	There is a special pattern x..y to denote continuous ranges of characters, for example 'a'..'z'
will match all lowercase letters. Write functions islower and isupper, each of type char → bool,
to decide on the case of a given letter.

So Far

1

Integers min_int … -3 -2 -1 0 1 2 3 … max_int of type int. Booleans true and false of type bool. Characters of
type char like 'X' and '!'. Mathematical operators + - * / mod which take two integers and give another. Operators = <
<= > >= <> which compare two values and evaluate to either true or false. The conditional if expression1 then
expression2 else expression3, where expresssion1 has type bool and expression2 and expression3 have the
same type as one another. The boolean operators && and || which allow us to build compound boolean
expressions.

2

Assigning a name to the result of evaluating an expression using the let name = expression construct. Building
compound expressions using let name1 = expression1 in let name2 = expression2 in … Functions, introduced by
let name argument1 argument2 … = expression. These have type α → β, α → β → γ etc. for some types
α, β, γ etc. Recursive functions, which are introduced in the same way, but using let rec instead of
let.

3

Matching patterns using match expression1 with pattern1 | … -> expression2 | pattern2 | … -> expression3 |… The
expressions expression2, expression3 etc. must have the same type as one another, and this is the type of the whole
match … with expression.

Chapter 4
Making Lists
A
list is a collection of
elements. Here is a list of three integers:

[1; 2; 3]

We write a list between square brackets [and], separating the elements with semicolons. The list above has
type int list, because it is a list of integers. All elements of the list must have the same type.
The elements in the list are ordered (in other words, [1; 2; 3] and [2; 3; 1] are not the same
list).

The first element is called the
head, and the rest are collectively called the
tail. In our example, the head is
the integer 1
and the tail is the list [2; 3]. So you can see that the tail has the same type as the whole list.
Here is a list with no elements (called “the empty list” or sometimes “nil”):

[]

It has neither a head nor a tail. Here is a list with just a single element:

[5]

Its head is the integer 5 and its tail is the empty list []. So every non-empty list has both a head and a tail.
Lists may contain elements of any type: integers, booleans, functions, even other lists. For example, here is a
list containing elements of type bool:

[false; true; false] : bool list

OCaml defines two operators for lists. The
:: operator (pronounced “cons”) is used to add a single element to
the front of an existing list:

The cons operation is completed in a constant amount of time, regardless of the length of the list. The
@
operator (pronounced “append”) is used to combine two lists together:

This takes
time proportional to the length of the list on the left hand side of the @ operator (that is, a list of
length 100 will take roughly twice as long as one of length 50). We will see why soon.

Now, how do we write functions using lists? We can use pattern matching as usual, with some new types of
pattern. For example, here’s a function which tells us if a list is empty:

The argument has type α list (which OCaml prints on the screen as ’a list) because this function does
not inspect the individual elements of the list, it just checks if the list is empty. And so, this
function can operate over any type of list. The greek letters α, β, γ etc. stand for any type. If two
types are represented by the same greek letter they must have the same type. If they are not,
they may have the same type, but do not have to. Functions like this are known as
polymorphic.
We can also use :: in our patterns, this time using it to deconstruct rather than construct the
list:

Here is how the evaluation proceeds:

This works by
recursion over the list, then addition of all the resultant 1s. It takes time proportional to the
length of the list. Can you see why? It also takes space proportional to the length of the list, because of
the intermediate expression 1 + (1 + (1 + … which is built up before any of the + operations are
evaluated – this expression must be stored somewhere whilst it is being processed. Since h is not
used in the expression 1 + length t, this function is also polymorphic. Indeed we can replace h in
the pattern with _ since there is no use giving a name to something we are not going to refer
to:

A very similar function can be used to add a list of integers:

However, since we are actually using the individual list elements (by adding them up), this function is not
polymorphic – it operates over lists of type int list only. If we accidentally miss out a
case, OCaml will alert
us, and give an example pattern which is not matched:

There is a way to deal with the excessive space usage from the building up of a large intermediate expression 1
+ 1 + 1 + … in our length function, at the cost of readability. We can “accumulate” the 1s as we go along in an
extra argument. At each recursive step, the

accumulating argument is increased by one. When we have
finished, the total is returned:

We wrapped it up in another function to make sure we do not call it with a bad initial value for the
accumulating argument. Here is an example evaluation:

Now, the space taken by the calculation does not relate in any way to the length of the list argument.
Recursive functions which do not build up a growing intermediate expression are known as
tail recursive.
Functions can, of course, return lists too. Here is a function to return the list consisting of the first, third, fifth
and so on elements in a list:

Consider the evaluation of odd_elements [2; 4; 2; 4; 2]:

You might notice that the first two cases in the pattern match return exactly their argument. By reversing the
order, we can reduce this function to just two cases:

We have seen how to use the @ (append) operator to concatenate two lists:

How might we implement list append ourselves, if it was not provided? Consider a function append a b. If the
list a is the empty list, the answer is simply b. But what if a is not empty? Then it has a head h and a
tail t. So we can start our result list with the head, and the rest of the result is just append t
b.

Consider the evaluation of append [1; 2; 3] [4; 5; 6]:

This takes time proportional to the length of the first list – the second list need not be processed at all. What
about
reversing a list? For example, we want rev [1; 2; 3; 4] to evaluate to [4; 3; 2; 1]. One simple
way is to reverse the tail of the list, and append the list just containing the head to the end of
it:

Here’s how the evaluation proceeds:

This is a simple definition, but not very efficient – can you see why?

Two more useful functions for processing lists are take and drop which, given a number and a list, either
take or
drop that many elements from the list:

For example, here’s the evaluation for take 2 [2; 4; 6; 8; 10]:

And for drop 2 [2; 4; 6; 8; 10]:

Note that these functions contain incomplete pattern matches – OCaml tells us so when we type them in. The
function fails if the arguments are not sensible – that is, when we are asked to take or drop more elements than
are in the argument list. Later on, we will see how to deal with that problem. Note also that for any sensible
value of n, including zero, take n l and drop n l split the list into two parts with no gap. So drop and take
often appear in pairs.

Lists can contain anything, so long as all elements are of the same type. So, of course, a list can contain
lists. Here’s a list of lists of integers:

[[1]; [2; 3]; [4; 5; 6]] : (int list) list

(We can also just write int list list). Each element of this list is of type int list. Within values of this type, it
is important to distinguish the list of lists containing no elements

[] : α list list

from the
list of lists containing one element which is the empty list

[[]] : α list list

Questions

	Write a function evens which does the opposite to odds, returning the even numbered elements
in a list. For example, evens [2; 4; 2; 4; 2] should return [4; 4]. What is the type of your
function?

	Write a function count_true which counts the number of true elements in a list. For example,
count_true [true; false; true] should return 2. What is the type of your function? Can you
write a tail recursive version?

	Write a function which, given a list, builds a palindrome from it. A palindrome is a list which
equals its own reverse. You can assume the existence of rev and @. Write another function which
determines if a list is a palindrome.

	Write a function drop_last which returns all but the last element of a list. If the list is empty, it
should return the empty list. So, for example, drop_last [1; 2; 4; 8] should return [1; 2; 4].
What about a tail recursive version?

	Write a function member of type α → α list → bool which returns true if an element exists in
a list, or false if not. For example, member 2 [1; 2; 3] should evaluate to true, but member 3
[1; 2] should evaluate to false.

	Use your member function to write a function make_set which, given a list, returns a list which
contains all the elements of the original list, but has no duplicate elements. For example, make_set
[1; 2; 3; 3; 1] might return [2; 3; 1]. What is the type of your function?

	Can you explain why the rev function we defined is inefficient? How does the time it takes to run
relate to the size of its argument? Can you write a more efficient version using an accumulating
argument? What is its efficiency in terms of time taken and space used?

So Far

1

Integers min_int … -3 -2 -1 0 1 2 3 … max_int of type int. Booleans true and false of type bool. Characters of
type char like 'X' and '!'. Mathematical operators + - * / mod which take two integers and give another. Operators = <
<= > >= <> which compare two values and evaluate to either true or false. The conditional if expression1 then
expression2 else expression3, where expresssion1 has type bool and expression2 and expression3 have the
same type as one another. The boolean operators && and || which allow us to build compound boolean
expressions.

2

Assigning a name to the result of evaluating an expression using the let name = expression construct. Building
compound expressions using let name1 = expression1 in let name2 = expression2 in … Functions, introduced by
let name argument1 argument2 … = expression. These have type α → β, α → β → γ etc. for some types
α, β, γ etc. Recursive functions, which are introduced in the same way, but using let rec instead of
let.

3

Matching patterns using match expression1 with pattern1 | … -> expression2 | pattern2 | … -> expression3 |… The
expressions expression2, expression3 etc. must have the same type as one another, and this is the type of the whole
match … with expression.

4

Lists, which are ordered collections of zero or more elements of like type. They are written between square brackets, with
elements separated by semicolons e.g. [1; 2; 3; 4; 5]. If a list is non-empty, it has a head, which is its first element, and
a tail, which is the list composed of the rest of the elements. The :: “cons” operator, which adds an element to the
front of a list. The @ “append” operator, which concatenates two lists together. Lists and the :: “cons”
symbol may be used for pattern matching to distinguish lists of length zero, one, etc. and with particular
contents.

Two Different Ways of Thinking

Look again at our list appending function:

There are two ways to think about this computation. One way is to imagine the actions the computer might
take to calculate the result:

Look at the first list. If it is empty, return the second list. Otherwise, pull apart the first
list, looking at its head and tail. Make a recursive call to append the tail to the second list,
and then cons the head onto the result. Return this.
Alternatively, we can consider each match case to be an independent statement of truth, thinking the same
way about the whole function:

The empty list appended to another list is that list. Otherwise, the first list is non-empty,
so it has a head and a tail. Call them h and t. Clearly append (h :: t) b is equal to h
:: append t b. Since this reduces the problem size, progress is made.
It is very useful to be able to think in these two ways about functions you write, and to be able to swap
between them in the mind with ease.

Chapter 5
Sorting Things
Lists often need to be in
sorted order. How might we write a function to sort a
list of integers? Well, a list with zero elements is already sorted. If we do not have an empty list, we must have
a head and a tail. What can we do with those? Well, we can sort the tail by a recursive call to our sort
function. So, now we have the head, and an already sorted list. Now, we just need to write a
function to insert the head in an already sorted list. We have reduced the problem to an easier
one.

Now we just need to write the insert function. This takes an element and an already-sorted list, and returns
the list with the element inserted in the right place:

Consider the evaluation of insert 3 [1; 1; 2; 3; 5; 9]:

Here is the whole evaluation of sort [53; 9; 2; 6; 19]. We have missed out the detail of each insert
operation.

Here’s the full program, known as
insertion sort:

Notice that the type α list → α list rather than int list → int list. This is because OCaml’s comparison
functions like <= (used inside insert) work for types other than int. For example, OCaml knows how to
compare characters in alphabetical order:

How long does our sorting function take to run if the list to be sorted has n elements? Under the assumption
that our argument list is arbitrarily ordered rather than sorted, each insert operation takes time proportional
to n (the element might need to be inserted anywhere). We must run the insert function as many times as
there are elements so, adding these all up, the sort function takes time proportional to n2. You might argue
that the first insert operations only have to work with a very small list, and that this fact should
make the time less that n2. Can you see why that is not true? What happens if the list is sorted
already?

A more efficient algorithm can be found by considering a basic operation a little more complex than
insert, but which still operates in time proportional to the length of the argument list. Such a function is
merge, which takes two already sorted lists, and returns a single sorted list:

When x and y are both the empty list, the first case is picked because l matches the empty list. Here is how
merge proceeds:

So merge can take two sorted lists, and produce a longer, sorted list, containing all the elements from both
lists. So, how can we use this to sort a list from scratch? Well, we can use length, take, and drop from the
previous chapter to split the list into two halves. Now, we must use a recursive call to sort each half, and then
we can merge them. This is known as
merge sort.

The case for the single element is required because, if we split it into two halves, of length one and zero, the
recursion would not end – we would not have reduced the size of the problem.

How does msort work? Consider the evaluation of msort on the list [53; 9; 2; 6; 19]. We will
skip the evaluation of the merge, drop, take, and length functions, concentrating just on msort:

From now on we will not be showing these full evaluations all the time – but when you’re unsure of how or
why a function works, you can always write them out on paper yourself.

How long does it take?
How long does merge sort take to run? We can visualize it with the following diagram, in which we have
chosen a list of length eight (a power of two) for convenience.

[6; 4; 5; 7; 2; 5; 3; 4]
[6; 4; 5; 7][2; 5; 3; 4]
[6; 4][5; 7][2; 5][3; 4]
[6][4][5][7][2][5][3][4]
[4; 6][5; 7][2; 5][3; 4]
[4; 5; 6; 7][2; 3; 4; 5]
[2; 3; 4; 4; 5; 5; 6; 7]

In the top half of the diagram, the lists are being taken apart using take and drop, until they are small enough
to already be sorted. In the bottom half, they are being merged back together.

How long does each row take? For the top half: to split a list into two halves takes time proportional to
the length of the list. On the first line, we do this once on a list of length eight. On the second
line, we do it twice on lists of length four, and so on. So each line takes the same time overall.
For the bottom half, we have another function which takes time proportional to the length of
its argument – merge – so each line in the bottom half takes time proportional to the length
too.

So, how many lines do we have? Well, in the top half we have roughly
log
2n, and the same for the bottom
half. So, the total work done is 2 ×
log
2n × n, which is proportional to n
log
2n.

Questions

	In msort, we calculate the value of the expression length l / 2 twice. Modify msort to remove
this inefficiency.

	We know that take and drop can fail if called with incorrect arguments. Show that this is never
the case in msort.

	Write a version of insertion sort which sorts the argument list into reverse order.

	Write a function to detect if a list is already in sorted order.

	We mentioned that the comparison functions like < work for many OCaml types. Can you
determine, by experimentation, how they work for lists? For example, what is the result of [1;
2] < [2; 3]? What happens when we sort the following list of type char list list? Why?

[['o'; 'n'; 'e']; ['t'; 'w'; 'o']; ['t'; 'h'; 'r'; 'e'; 'e']]

	Combine the sort and insert functions into a single sort function.

So Far

1

Integers min_int … -3 -2 -1 0 1 2 3 … max_int of type int. Booleans true and false of type bool. Characters of
type char like 'X' and '!'. Mathematical operators + - * / mod which take two integers and give another. Operators = <
<= > >= <> which compare two values and evaluate to either true or false. The conditional if expression1 then
expression2 else expression3, where expresssion1 has type bool and expression2 and expression3 have the
same type as one another. The boolean operators && and || which allow us to build compound boolean
expressions.

2

Assigning a name to the result of evaluating an expression using the let name = expression construct. Building
compound expressions using let name1 = expression1 in let name2 = expression2 in … Functions, introduced by
let name argument1 argument2 … = expression. These have type α → β, α → β → γ etc. for some types
α, β, γ etc. Recursive functions, which are introduced in the same way, but using let rec instead of
let.

3

Matching patterns using match expression1 with pattern1 | … -> expression2 | pattern2 | … -> expression3 |… The
expressions expression2, expression3 etc. must have the same type as one another, and this is the type of the whole
match … with expression.

4

Lists, which are ordered collections of zero or more elements of like type. They are written between square brackets, with
elements separated by semicolons e.g. [1; 2; 3; 4; 5]. If a list is non-empty, it has a head, which is its first element, and
a tail, which is the list composed of the rest of the elements. The :: “cons” operator, which adds an element to the
front of a list. The @ “append” operator, which concatenates two lists together. Lists and the :: “cons”
symbol may be used for pattern matching to distinguish lists of length zero, one, etc. and with particular
contents.

5

Matching two or more things at once, using commas to separate as in match a, b with 0, 0 -> expression1 | x, y ->
expression2 | …

Loading a Program from a File

Now that we are building larger functions, we might like to store them between sessions, rather than typing
them in every time. For example, compose a file like this in a text editor:

Save the file in same directory (folder) as you enter OCaml from, under the name lists.ml. We can then tell
OCaml to use the contents of that file like this:

It is exactly the same as typing it in manually – the functions length and append will now be available for use.
Errors and warnings will be reported as usual. Note that the #use command is not part of the OCaml language
for expressions – it is just a command we are giving to OCaml.

Chapter 6
Functions upon Functions upon Functions
Often we need to apply a function to every element
of a list. For example, doubling each of the numbers in a list of integers. We could do this with a simple
recursive function, working over each element of a list:

For example,

The result list does not need to have the same type as the argument list. We can write a function which, given
a list of integers, returns the list containing a boolean for each: true if the number is even, false if it is
odd.

For example,

It would be tedious to write a similar function each time we wanted to apply a different operation to every
element of a list – can we build one which works for any operation? We will add a function as an argument
too:

The
map function takes two arguments: a function which processes a single element, and a list. It
returns a new list. We will discuss the type in a moment. For example, if we have a function
halve:

We can use map like this:

Now, let us look at that type: (α → β) → α list → β list. We can annotate the individual parts:

We have to put the function f in parentheses, otherwise it would look like map had four arguments. It can have
any type α → β. That is to say, it can have any argument and result types, and they do not have to be the
same as each other – though they may be. The argument has type α list because each of its elements must be
an appropriate argument for f. In the same way, the result list has type β list because each of its elements is a
result from f (in our halve example, α and β were both int). We can rewrite our evens function to use
map:

In this use of map, α was int, β was bool. We can make evens still shorter: when we are just using a function
once, we can define it directly, without naming it:

This is called an
anonymous function. It is defined using fun, a named argument, the -> arrow
and the function definition (body) itself. For example, we can write our halving function like
this:

fun x -> x / 2

and, thus, write:

We use anonymous functions when a function is only used in one place and is relatively short, to avoid defining
it separately.

In the preceding chapter we wrote a sorting function and, in one of the questions, you were asked to change
the function to use a different comparison operator so that the function would sort elements into reverse order.
Now, we know how to write a version of the msort function which uses any comparison function we give it. A
comparison function would have type α → α → bool. That is, it takes two elements of the same type, and
returns true if the first is “greater” than the second, for some definition of “greater” – or false
otherwise.

So, let us alter our merge and msort functions to take an extra argument – the comparison function. The
result is shown in Figure 6.1. Now, if we make our own comparison operator:

Figure 6.1: Adding an extra argument to merge sort

we can use it with our new version of the msort function:

In fact, we can ask OCaml to make such a
function from an operator such as <= or + just by enclosing it in
parentheses and spaces:

 OCaml

(<=)
- : 'a -> 'a -> bool = <fun>
(<=) 4 5
- : bool = true

So, for example:

and

The techniques we have seen in this chapter are forms of program reuse, which is fundamental to writing
manageable large programs.

Questions

	Write a simple recursive function calm to replace exclamation marks in a char list with periods.
For example calm ['H'; 'e'; 'l'; 'p'; '!'; ' '; 'F'; 'i'; 'r'; 'e'; '!'] should evaluate
to calm ['H'; 'e'; 'l'; 'p'; '.'; ' '; 'F'; 'i'; 'r'; 'e'; '.']. Now rewrite your function
to use map instead of recursion. What are the types of your functions?

	Write a function clip which, given an integer, clips it to the range 1…10 so that integers bigger
than 10 round down to 10, and those smaller than 1 round up to 1. Write another function
cliplist which uses this first function together with map to apply this clipping to a whole list of
integers.

	Express your function cliplist again, this time using an anonymous function instead of clip.

	Write a function apply which, given another function, a number of times to apply it, and an
initial argument for the function, will return the cumulative effect of repeatedly applying the
function. For instance, apply f 6 4 should return f (f (f (f (f (f 4)))))). What is the type of
your function?

	Modify the insertion sort function from the preceding chapter to take a comparison function, in
the same way that we modified merge sort in this chapter. What is its type?

	Write a function filter which takes a function of type α → bool and an α list and returns a
list of just those elements of the argument list for which the given function returns true.

	Write the function for_all which, given a function of type α → bool and an argument list of
type α list evaluates to true if and only if the function returns true for every element of the list.
Give examples of its use.

	Write a function mapl which maps a function of type α → β over a list of type α list list to
produce a list of type β list list.

So Far

1

Integers min_int … -3 -2 -1 0 1 2 3 … max_int of type int. Booleans true and false of type bool. Characters of
type char like 'X' and '!'. Mathematical operators + - * / mod which take two integers and give another. Operators = <
<= > >= <> which compare two values and evaluate to either true or false. The conditional if expression1 then
expression2 else expression3, where expresssion1 has type bool and expression2 and expression3 have the
same type as one another. The boolean operators && and || which allow us to build compound boolean
expressions.

2

Assigning a name to the result of evaluating an expression using the let name = expression construct. Building
compound expressions using let name1 = expression1 in let name2 = expression2 in … Functions, introduced by
let name argument1 argument2 … = expression. These have type α → β, α → β → γ etc. for some types
α, β, γ etc. Recursive functions, which are introduced in the same way, but using let rec instead of
let.

3

Matching patterns using match expression1 with pattern1 | … -> expression2 | pattern2 | … -> expression3 |… The
expressions expression2, expression3 etc. must have the same type as one another, and this is the type of the whole
match … with expression.

4

Lists, which are ordered collections of zero or more elements of like type. They are written between square brackets, with
elements separated by semicolons e.g. [1; 2; 3; 4; 5]. If a list is non-empty, it has a head, which is its first element, and
a tail, which is the list composed of the rest of the elements. The :: “cons” operator, which adds an element to the
front of a list. The @ “append” operator, which concatenates two lists together. Lists and the :: “cons”
symbol may be used for pattern matching to distinguish lists of length zero, one, etc. and with particular
contents.

5

Matching two or more things at once, using commas to separate as in match a, b with 0, 0 -> expression1 | x, y ->
expression2 | …

6

Anonymous functions fun name -> expression. Making operators into functions as in (<) and (+).

Chapter 7
When Things Go Wrong
Some of the functions we have written so far have had a single, correct answer for each possible argument. For
example, there’s no number we cannot halve. However, when we use more complicated types such as lists,
there are plenty of functions which do not always have an answer – a list might not have a head or a tail, for
example. Our take and drop functions were unsatisfactory in case of invalid arguments. For example, take 3
['a'] would simply return []. This is bad practice – we are hiding errors rather than confronting
them.

OCaml has a mechanism for reporting such
run-time errors (these are quite different from
the type errors OCaml reports when it refuses to accept a program at all). This mechanism is
exceptions.

There are some built-in exceptions in OCaml. For example
Division_by_zero, which is raised when a
program tries to divide a number by zero:

 OCaml

10 / 0;;
Exception: Division_by_zero.

In order to signal bad arguments in functions like take and drop, we can rewrite them using the built-in
exception
Invalid_argument, which also carries a message written between double quotation marks. Typically
we use this to record the name of the function which failed. Figure 7.1
shows take and drop rewritten to use
the Invalid_argument exception using raise. Note that these functions deal with two problems of our
previous versions: a negative argument, and being asked to take or drop more than the number of elements in
the list.

Figure 7.1: Adding exceptions to take and drop

We can
define our own exceptions, using
exception. They can carry information along with them, of a
type we choose:

 OCaml

exception Problem;;
exception Problem
exception NotPrime of int;;
exception NotPrime of int

We have defined two exceptions – Problem, and NotPrime which carries an integer along with it. Exceptions
must start with a capital letter. The
of construct can be used to introduce the type of information which
travels along with an exception. Once they are defined we may use them in our own functions, using
raise:

 OCaml

exception Problem;;
exception Problem
let f x = if x < 0 then raise Problem else 100 / x;;
val f : int -> int = <fun>
f 5
- : int = 20
f (-1);;
Exception: Problem.

Exceptions can be
handled as well as raised. An exception handler deals with an exception raised by an
expression. Exception handlers are written using the
try … with construct:

The safe_divide function tries to divide x by y, but if the expression x / y raises the built-in exception
Division_by_zero, instead we return zero. Thus, our safe_divide function succeeds for every
argument.

How do the types work here? The expression x / y has type int and so the expression we substitute in case
of Division_by_zero must have the same type: int, which indeed it does. And so, our rule that each
expression must have one and only one type is not violated – safe_divide always returns an
int.

Here is another example. The function last returns the last element of a list:

The pattern match is incomplete, so whilst OCaml accepts the program it can fail at run-time. We can tidy up
the situation by raising the built-in exception
Not_found:

The type of a function gives no indication of what exceptions it might raise or handle; it is the responsibility of
the programmer to ensure that exceptions which should be handled always are – this is an area in which the
type system cannot help us. Later in this book, we will see some alternatives to exceptions for occasions when
they are likely to be frequently raised, allowing the type system to make sure we have dealt with each possible
circumstance.

Questions

	Write a function smallest which returns the smallest positive element of a list of integers. If
there is no positive element, it should raise the built-in Not_found exception.

	Write another function smallest_or_zero which uses the smallest function but if Not_found is
raised, returns zero.

	Write an exception definition and a function which calculates the largest integer smaller than or
equal to the square root of a given integer. If the argument is negative, the exception should be
raised.

	Write another function which uses the previous one, but handles the exception, and simply returns
zero when a suitable integer cannot be found.

	Comment on the merits and demerits of exceptions as a method for dealing with exceptional
situations, in contrast to returning a special value to indicate an error (such as -1 for a function
normally returning a positive number).

So Far

1

Integers min_int … -3 -2 -1 0 1 2 3 … max_int of type int. Booleans true and false of type bool. Characters of
type char like 'X' and '!'. Mathematical operators + - * / mod which take two integers and give another. Operators = <
<= > >= <> which compare two values and evaluate to either true or false. The conditional if expression1 then
expression2 else expression3, where expresssion1 has type bool and expression2 and expression3 have the
same type as one another. The boolean operators && and || which allow us to build compound boolean
expressions.

2

Assigning a name to the result of evaluating an expression using the let name = expression construct. Building
compound expressions using let name1 = expression1 in let name2 = expression2 in … Functions, introduced by
let name argument1 argument2 … = expression. These have type α → β, α → β → γ etc. for some types
α, β, γ etc. Recursive functions, which are introduced in the same way, but using let rec instead of
let.

3

Matching patterns using match expression1 with pattern1 | … -> expression2 | pattern2 | … -> expression3 |… The
expressions expression2, expression3 etc. must have the same type as one another, and this is the type of the whole
match … with expression.

4

Lists, which are ordered collections of zero or more elements of like type. They are written between square brackets, with
elements separated by semicolons e.g. [1; 2; 3; 4; 5]. If a list is non-empty, it has a head, which is its first element, and
a tail, which is the list composed of the rest of the elements. The :: “cons” operator, which adds an element to the
front of a list. The @ “append” operator, which concatenates two lists together. Lists and the :: “cons”
symbol may be used for pattern matching to distinguish lists of length zero, one, etc. and with particular
contents.

5

Matching two or more things at once, using commas to separate as in match a, b with 0, 0 -> expression1 | x, y ->
expression2 | …

6

Anonymous functions fun name -> expression. Making operators into functions as in (<) and (+).

7

Defining exceptions with exception name. They can carry extra information by adding of type. Raising exceptions with
raise. Handling exceptions with try … with …

Chapter 8
Looking Things Up
Many programs make use of a structure known as a
dictionary. A real dictionary is used for associating
definitions with words; we use “dictionary” more generally to mean associating some unique
keys (like words)
with
values (like definitions). For example, we might like to store the following information about the number
of people living in each house in a road:

The house number is the key, the number of people living in the house is the value. The order of keys is
unimportant – we just need to be able to associate each key with one (and only one) value. It would be very
inconvenient to store two lists, one of house numbers and one of people. For one thing, we would have way of
guaranteeing the two lists were of equal length. What we would like is a way of representing pairs like (1, 4)
and then having a single list of those.
To make a pair in OCaml, just write it with parentheses and a
comma:

It has the type
int × int, which we pronounce as “int cross int”. When printed on the screen, * is
used instead of × just as with multiplication. The two parts of the pair need not have the same
type:

We can write simple functions to extract the first and second element using pattern matching:

In fact, since pairs can only take one form (unlike lists, which have two forms: empty or consisting of a head
and a tail), OCaml lets us use the pattern directly in place of the argument:

Now, we can store a dictionary as a list of pairs:

Notice the parentheses around int × int in the type. Otherwise, it would be the type of a pair of an integer
and an integer list:

What operations might we want on dictionaries? We certainly need to look up a value given a
key:

For example, lookup 4 census evaluates to 3, whereas lookup 9 census raises Not_found. Another basic
operation is to add an entry (we must replace it if it already exists, to maintain the property that each key
appears at most once in a dictionary).

For example, add 6 2 [(4, 5); (6, 3)] evaluates to [(4, 5); (6, 2)] (the value for key 6 is replaced),
whereas add 6 2 [(4, 5); (3, 6)] evaluates to [(4, 5); (3, 6); (6, 2)] (the new entry for key 6 is added).
Removing an element is easy:

The function always succeeds – even if the key was not found. We can use exception handling together with
our lookup operation to build a function which checks if a key exists within a dictionary:

If lookup k d succeeds, true will be returned. If not, an exception will be raised, which key_exists will handle
itself, and return false. Note that we did not give a name to the result of lookup k l because we always
return true if it succeeds.

Pairs are just a particular instance of a more general construct – the tuple. A tuple may contain two or
more things. For example, (1, false, 'a') has type int × bool × char.

Questions

	Write a function to determine the number of different keys in a dictionary.

	Define a function replace which is like add, but raises Not_found if the key is not already there.

	Write a function to build a dictionary from two equal length lists, one containing keys and another
containing values. Raise the exception Invalid_argument if the lists are not of equal length.

	Now write the inverse function: given a dictionary, return the pair of two lists – the first containing
all the keys, and the second containing all the values.

	Define a function to turn any list of pairs into a dictionary. If duplicate keys are found, the value
associated with the first occurrence of the key should be kept.

	Write the function union a b which forms the union of two dictionaries. The union of two
dictionaries is the dictionary containing all the entries in one or other or both. In the case that
a key is contained in both dictionaries, the value in the first should be preferred.

So Far

1

Integers min_int … -3 -2 -1 0 1 2 3 … max_int of type int. Booleans true and false of type bool. Characters of
type char like 'X' and '!'. Mathematical operators + - * / mod which take two integers and give another. Operators = <
<= > >= <> which compare two values and evaluate to either true or false. The conditional if expression1 then
expression2 else expression3, where expresssion1 has type bool and expression2 and expression3 have the
same type as one another. The boolean operators && and || which allow us to build compound boolean
expressions.

2

Assigning a name to the result of evaluating an expression using the let name = expression construct. Building
compound expressions using let name1 = expression1 in let name2 = expression2 in … Functions, introduced by
let name argument1 argument2 … = expression. These have type α → β, α → β → γ etc. for some types
α, β, γ etc. Recursive functions, which are introduced in the same way, but using let rec instead of
let.

3

Matching patterns using match expression1 with pattern1 | … -> expression2 | pattern2 | … -> expression3 |… The
expressions expression2, expression3 etc. must have the same type as one another, and this is the type of the whole
match … with expression.

4

Lists, which are ordered collections of zero or more elements of like type. They are written between square brackets, with
elements separated by semicolons e.g. [1; 2; 3; 4; 5]. If a list is non-empty, it has a head, which is its first element, and
a tail, which is the list composed of the rest of the elements. The :: “cons” operator, which adds an element to the
front of a list. The @ “append” operator, which concatenates two lists together. Lists and the :: “cons”
symbol may be used for pattern matching to distinguish lists of length zero, one, etc. and with particular
contents.

5

Matching two or more things at once, using commas to separate as in match a, b with 0, 0 -> expression1 | x, y ->
expression2 | …

6

Anonymous functions fun name -> expression. Making operators into functions as in (<) and (+).

7

Defining exceptions with exception name. They can carry extra information by adding of type. Raising exceptions with
raise. Handling exceptions with try … with …

8

Tuples to combine a fixed number of elements (a, b), (a, b, c) etc. with types α × β, α × β × γ
etc.

Chapter 9
More with Functions
Look again at the type of a simple function with more than one argument:

We have been considering functions like this as taking two arguments and returning a result. In fact, the truth
is a little different. The type int → int → int can also be written as int → (int → int). OCaml lets us omit
the parentheses because → is a right-associative operator in the language of types. This gives us a
clue.

In truth, the function add is a function which, when you give it an integer, gives you a
function which, when you give it an integer, gives the sum.
This would be of no particular interest to us, except for one thing: we can give a function with two arguments
just one argument at a time, and it turns out to be rather useful. For example:

 OCaml

let add x y = x + y
val add : int -> int -> int = <fun>
let f = add 6
val f : int -> int = <fun>
f 5
- : int = 11

Here, we have defined a function f by applying just one argument to add. This gives a function of type int →
int which adds six to any number. We then apply 5 to this function, giving 11. When defining f, we used
partial application (we applied only some of the arguments). In fact, even when applying all the arguments at
once, we could equally write (add 6) 5 rather than add 6 5. We can add six to every element in a
list:

map (add 6) [10; 20; 30]

Here, add 6 has the type int → int, which is an appropriate type to be the first argument to map when
mapping over a list of integers. We can use partial application to simplify some examples from earlier
in the book. We mentioned that you can write, for example, (*) to produce a function from
an operator. It has type int → int → int. We may partially apply this function, so instead of
writing

map (fun x -> x * 2) [10; 20; 30]

we may write

map ((*) 2) [10; 20; 30]

Recall the function to map something over a list of lists from the questions to Chapter 6:

With partial application, we can write

Can you see why? The partially applied function map f is of type α list → β list, which is exactly the
right type to pass to map when mapping over lists of lists. In fact, we can go even further and
write:

Here, map (map f) has type α list list → β list list so when an f is supplied to mapl, a function is returned
requiring just the list. This is partial application at work again.

You can see the real structure of multiple-argument functions, by writing add using anonymous
functions:

This makes it more obvious that our two-argument add function is really just composed of one-argument
functions, but let add x y = x + y is much clearer! We can apply one or more arguments at a time, but they
must be applied in order. Everything in this chapter also works for functions with more than two
arguments.

SUMMARY
The function f x y has type α → β → γ which can also be written α → (β → γ). Thus, it takes an argument
of type α and returns a function of type β → γ which, when you give it an argument of type β returns
something of type γ. And so, we can apply just one argument to the function f (which is called partial
application), or apply both at once. When we write let f x y = … this is just shorthand for let f = fun x ->
fun y -> …

Questions

	Rewrite the summary paragraph at the end of this chapter for the three argument function g a
b c.

	Recall the function member x l which determines if an element x is contained in a list l. What is
its type? What is the type of member x? Use partial application to write a function member_all
x ls which determines if an element is a member of all the lists in the list of lists ls.

	Why can we not write a function to halve all the elements of a list like this: map ((/) 2) [10;
20; 30]? Write a suitable division function which can be partially applied in the manner we
require.

	Write a function mapll which maps a function over lists of lists of lists. You must not use the let
rec construct. Is it possible to write a function which works like map, mapl, or mapll depending
upon the list given to it?

	Write a function truncate which takes an integer and a list of lists, and returns a list of lists,
each of which has been truncated to the given length. If a list is shorter than the given length, it
is unchanged. Make use of partial application.

	Write a function which takes a list of lists of integers and returns the list composed of all the
first elements of the lists. If a list is empty, a given number should be used in place of its first
element.

So Far

1

Integers min_int … -3 -2 -1 0 1 2 3 … max_int of type int. Booleans true and false of type bool. Characters of
type char like 'X' and '!'. Mathematical operators + - * / mod which take two integers and give another. Operators = <
<= > >= <> which compare two values and evaluate to either true or false. The conditional if expression1 then
expression2 else expression3, where expresssion1 has type bool and expression2 and expression3 have the
same type as one another. The boolean operators && and || which allow us to build compound boolean
expressions.

2

Assigning a name to the result of evaluating an expression using the let name = expression construct. Building
compound expressions using let name1 = expression1 in let name2 = expression2 in … Functions, introduced by
let name argument1 argument2 … = expression. These have type α → β, α → β → γ etc. for some types
α, β, γ etc. Recursive functions, which are introduced in the same way, but using let rec instead of
let.

3

Matching patterns using match expression1 with pattern1 | … -> expression2 | pattern2 | … -> expression3 |… The
expressions expression2, expression3 etc. must have the same type as one another, and this is the type of the whole
match … with expression.

4

Lists, which are ordered collections of zero or more elements of like type. They are written between square brackets, with
elements separated by semicolons e.g. [1; 2; 3; 4; 5]. If a list is non-empty, it has a head, which is its first element, and
a tail, which is the list composed of the rest of the elements. The :: “cons” operator, which adds an element to the
front of a list. The @ “append” operator, which concatenates two lists together. Lists and the :: “cons”
symbol may be used for pattern matching to distinguish lists of length zero, one, etc. and with particular
contents.

5

Matching two or more things at once, using commas to separate as in match a, b with 0, 0 -> expression1 | x, y ->
expression2 | …

6

Anonymous functions fun name -> expression. Making operators into functions as in (<) and (+).

7

Defining exceptions with exception name. They can carry extra information by adding of type. Raising exceptions with
raise. Handling exceptions with try … with …

8

Tuples to combine a fixed number of elements (a, b), (a, b, c) etc. with types α × β, α × β × γ
etc.

9

Partial application of functions by giving fewer than the full number of arguments. Partial application with functions
built from operators.

Chapter 10
New Kinds of Data
So far, we have considered the simple types int, bool, char, the compound type list, and tuples. We have
built functions from and to these types. It would be possible to encode anything we wanted as lists and tuples
of these types, but it would lead to complex and error-strewn programs. It is time to make our own types. New
types are introduced using
type. Here’s a type for colours:

 OCaml

type colour = Red | Green | Blue | Yellow;;
type colour = Red | Green | Blue | Yellow

The name of our new type is colour. It has four
constructors, written with an initial capital letter: Red, Green,
Blue, and Yellow. These are the possible forms a value of type colour may take. Now we can build values of
type color:

Let us extend our type to include any other colour which can be expressed in the RGB (Red, Green, Blue)
colour system (each component ranges from 0 to 255 inclusive, a standard range giving about 16 million
different colours).

We use of in our new constructor, to carry information along with values built with it. Here, we are using
something of type int × int × int. Notice that the list cols of type colour list contains varying things, but
they are all of the same type, as required by a list. We can write functions by pattern matching over our new
type:

Types may contain a
type variable like α to allow the type of part of the new type to vary – i.e. for the type to
be polymorphic. For example, here is a type used to hold either nothing, or something of any
type:

 OCaml

type 'a option = None | Some of 'a;;
type 'a option = None | Some of 'a

We can read this as
“a value of type α option is either nothing, or something of type α”. For example:

The option type is useful as a more manageable alternative to exceptions where the lack of an answer is
a common (rather than genuinely exceptional) occurrence. For example, here is a function to
look up a value in a dictionary, returning None instead of raising an exception if the value is not
found:

Now, there is no need to worry about exception handling – we just pattern match on the result of the
function.

In addition to being polymorphic, new types may also be
recursively defined. We can use this
functionality to define our own lists, just like the built-in lists in OCaml but without the special
notation:

 OCaml

type 'a sequence = Nil | Cons of 'a * 'a sequence;;
type 'a sequence = Nil | Cons of 'a * 'a sequence

We have called our type sequence to avoid confusion. It has two constructors: Nil which is equivalent to [],
and Cons which is equivalent to the :: operator. Cons carries two pieces of data with it – one of type α (the
head) and one of type α sequence (the tail). This is the recursive part of our definition. Now we can make our
own lists equivalent to OCaml’s built-in ones:

Now you can see why getting at the last element of a list in OCaml is harder than getting at the first element –
it is deeper in the structure. Let us compare some functions on OCaml lists with the same ones on our new
sequence type. First, the ones for built-in lists.

And now the same functions with our new sequence type:

Notice how all the conveniences of pattern matching such as completeness detection and the use of the
underscore work for our own types too.

A Type for Mathematical Expressions
Our sequence was an example of a recursively-defined type, which can be processed naturally by recursive
functions. Mathematical expressions can be modeled in the same way. For example, the expression 1 + 2 × 3
could be drawn like this:

Notice that, in this representation, we never need parentheses – the diagram is unambiguous. We can evaluate
the expression by reducing each part in turn:

Here’s a suitable type for such expressions:

For example, the expression 1 + 2 * 3 is represented in this data type as:

Add (Num 1, Mul (Num 2, Num 3))

We can now write a function to evaluate expressions:

Building our own types leads to clearer programs with more predictable behaviour, and helps us to think
about a problem – often the functions are easy to write once we have decided on appropriate
types.

Questions

	Design a new type rect for representing rectangles. Treat squares as a special case.

	Now write a function of type rect → int to calculate the area of a given rect.

	Write a function which rotates a rect such that it is at least as tall as it is wide.

	Use this function to write one which, given a rect list, returns another such list which has the
smallest total width and whose members are sorted widest first.

	Write take, drop, and map functions for the sequence type.

	Extend the expr type and the evaluate function to allow raising a number to a power.

	Use the option type to deal with the problem that Division_by_zero may be raised from the
evaluate function.

So Far

1

Integers min_int … -3 -2 -1 0 1 2 3 … max_int of type int. Booleans true and false of type bool. Characters of
type char like 'X' and '!'. Mathematical operators + - * / mod which take two integers and give another. Operators = <
<= > >= <> which compare two values and evaluate to either true or false. The conditional if expression1 then
expression2 else expression3, where expresssion1 has type bool and expression2 and expression3 have the
same type as one another. The boolean operators && and || which allow us to build compound boolean
expressions.

2

Assigning a name to the result of evaluating an expression using the let name = expression construct. Building
compound expressions using let name1 = expression1 in let name2 = expression2 in … Functions, introduced by
let name argument1 argument2 … = expression. These have type α → β, α → β → γ etc. for some types
α, β, γ etc. Recursive functions, which are introduced in the same way, but using let rec instead of
let.

3

Matching patterns using match expression1 with pattern1 | … -> expression2 | pattern2 | … -> expression3 |… The
expressions expression2, expression3 etc. must have the same type as one another, and this is the type of the whole
match … with expression.

4

Lists, which are ordered collections of zero or more elements of like type. They are written between square brackets, with
elements separated by semicolons e.g. [1; 2; 3; 4; 5]. If a list is non-empty, it has a head, which is its first element, and
a tail, which is the list composed of the rest of the elements. The :: “cons” operator, which adds an element to the
front of a list. The @ “append” operator, which concatenates two lists together. Lists and the :: “cons”
symbol may be used for pattern matching to distinguish lists of length zero, one, etc. and with particular
contents.

5

Matching two or more things at once, using commas to separate as in match a, b with 0, 0 -> expression1 | x, y ->
expression2 | …

6

Anonymous functions fun name -> expression. Making operators into functions as in (<) and (+).

7

Defining exceptions with exception name. They can carry extra information by adding of type. Raising exceptions with
raise. Handling exceptions with try … with …

8

Tuples to combine a fixed number of elements (a, b), (a, b, c) etc. with types α × β, α × β × γ
etc.

9

Partial application of functions by giving fewer than the full number of arguments. Partial application with functions
built from operators.

10

New types with type name = constructor1 of type1 | constructor2 of type2 | … Pattern matching on them as with the
built-in types. Polymorphic types.

Chapter 11
Growing Trees
We have used lists to represent collections of elements of like type but varying length, and tuples to represent
collections of things of any type but fixed length. Another common type is the
binary tree, which is used to
represent structures which branch, such as the arithmetical expressions we constructed in the last
chapter.

How can we represent such trees using an OCaml type? When we built our version of the OCaml list type,
we had two constructors – Cons to hold a head and a tail, and Nil to represent the end of the list. With a tree,
we need a version of Cons which can hold two tails – the left and right, and we still need a version of
Nil.

Our type is called tree, and is polymorphic (can hold any kind of data at the branches). There
are two constructors: Br for branches, which hold three things in a tuple: an element, the left
sub-tree, and the right sub-tree. If it is not a Br, it is a Lf (leaf), which is used to signal that
there is no left, or no right sub-tree. Here are some representations in our new type of integer
trees:

The empty tree is simply Lf. You can see now why we used abbreviated constructor names – even
small trees result in long textual representations. Let us write some simple functions on trees. To
calculate the number of elements in the tree, we just count one for each branch, and zero for each
leaf:

Notice that the recursive function follows the shape of the recursive type. A similar function can be used to
add up all the integers in an int tree:

How can we calculate the maximum depth of a tree? The depth is the longest path from the root (top) of the
tree to a leaf.

We defined a function max which returns the larger of two integers. Then, in our main function, we count a leaf
as zero depth, and calculate the depth of a branch as one plus the maximum of the left and right
sub-trees coming from that branch. Now consider extracting all of the elements from a tree into a
list:

Notice that we chose to put all the elements on the left branch before the current element, and
all the elements in the right branch after. This is arbitrary (it is clear that there are multiple
answers to the question “How can I extract all the elements from a tree as a list?”). Before we
consider real applications of trees, let us look at one more function. Here is how to map over
trees:

Notice the similarity to our map function for lists, both in the type and the definition.

Using trees to build better dictionaries

We have seen that arithmetic expressions can be drawn as trees on paper, and we have designed an OCaml
data type for binary trees to hold any kind of element. Now it is time to introduce the most important
application of trees: the
binary search tree, which is another way of implementing the dictionary
data structure
we described in Chapter 8.

The most important advantage of a tree is that it is often very much easier to reach a given element. When
searching in a dictionary defined as a list, it took on average time proportional to the number of items in the
dictionary to find a value for a key (the position of the required entry is, on average, halfway along
the list). If we use a binary tree, and if it is reasonably nicely balanced in shape, that time can
be reduced to the logarithm base two of the number of elements in the dictionary. Can you see
why?

We can use our existing tree type. In the case of a dictionary, it will have type (α × β) tree, in other words
a tree of key-value pairs where the keys have some type α and the values some type β. For this example, we
are going to be using another built-in type, string. A
string is a sequence of characters written between double
quotation marks. We have seen these as messages attached to exceptions, but they are a basic OCaml type
too.

So, our tree representing a dictionary mapping integers like 1 to their spellings like “one” would have type
(int × string) tree:

which would be written as

Br ((3, "three"), Br ((1, "one"), Lf, Br ((2, "two"), Lf, Lf), Br ((4, "four"), Lf, Lf)))

If we arrange the tree such that, at each branch, everything to the left has a key less than the key at the
branch, and everything to the right has a key greater than that at the branch, we have a binary search
tree.

Lookup is simple: start at the top, and if we have not found the key we are looking for, go left or right
depending upon whether the required key is smaller or larger than the value at the current branch. If we reach
a leaf, the key was not in the tree (assuming the tree is a well-formed binary search tree), and we raise an
exception.

Alternatively, we may use the option type to avoid exceptions:

How can we insert a new key-value pair into an existing tree? We can find the position to insert by using the
same procedure as the lookup function – going left or right at each branch as appropriate. If we find an equal
key, we put our new value there instead. Otherwise, we will end up at a leaf, and this is the insertion point –
thus, if the key is not in the dictionary when insert is used, it will be added in place of an existing
leaf.

For example, if we wish to insert the value "zero" for the key 0 in the tree drawn above, we would
obtain

The shape of the tree is dependant upon the order of insertions into the tree – if they are in order
(or reverse order), we obtain a rather inefficient tree – no better a dictionary than a list in fact.
However, on average, we obtain a reasonably balanced tree, and logarithmic lookup and insertion
times.

Lists and trees are examples of data structures. The design of an algorithm and its data structures are
intimately connected.

Questions

	Write a function of type α → α tree → bool to determine if a given element is in a tree.

	Write a function which flips a tree left to right such that, if it were drawn on paper, it would
appear to be a mirror image.

	Write a function to determine if two trees of the same type have the same shape, irrespective of
actual values of the elements. Can you write a more general version which can tell if two trees
have the same shape even if one has type α tree and one has type β tree for some α and β ?

	Write a function tree_of_list which builds a tree representation of a dictionary from a list
representation of a dictionary.

	Write a function to combine two dictionaries represented as trees into one. In the case of clashing
keys, prefer the value from the first dictionary.

	Can you define a type for trees which, instead of branching exactly two ways each time, can
branch zero or more ways, possibly different at each branch? Write simple functions like size,
total, and map using your new type of tree.

So Far

1

Integers min_int … -3 -2 -1 0 1 2 3 … max_int of type int. Booleans true and false of type bool. Characters of
type char like 'X' and '!'. Mathematical operators + - * / mod which take two integers and give another. Operators = <
<= > >= <> which compare two values and evaluate to either true or false. The conditional if expression1 then
expression2 else expression3, where expresssion1 has type bool and expression2 and expression3 have the
same type as one another. The boolean operators && and || which allow us to build compound boolean
expressions.

2

Assigning a name to the result of evaluating an expression using the let name = expression construct. Building
compound expressions using let name1 = expression1 in let name2 = expression2 in … Functions, introduced by
let name argument1 argument2 … = expression. These have type α → β, α → β → γ etc. for some types
α, β, γ etc. Recursive functions, which are introduced in the same way, but using let rec instead of
let.

3

Matching patterns using match expression1 with pattern1 | … -> expression2 | pattern2 | … -> expression3 |… The
expressions expression2, expression3 etc. must have the same type as one another, and this is the type of the whole
match … with expression.

4

Lists, which are ordered collections of zero or more elements of like type. They are written between square brackets, with
elements separated by semicolons e.g. [1; 2; 3; 4; 5]. If a list is non-empty, it has a head, which is its first element, and
a tail, which is the list composed of the rest of the elements. The :: “cons” operator, which adds an element to the
front of a list. The @ “append” operator, which concatenates two lists together. Lists and the :: “cons”
symbol may be used for pattern matching to distinguish lists of length zero, one, etc. and with particular
contents.

5

Matching two or more things at once, using commas to separate as in match a, b with 0, 0 -> expression1 | x, y ->
expression2 | …

6

Anonymous functions fun name -> expression. Making operators into functions as in (<) and (+).

7

Defining exceptions with exception name. They can carry extra information by adding of type. Raising exceptions with
raise. Handling exceptions with try … with …

8

Tuples to combine a fixed number of elements (a, b), (a, b, c) etc. with types α × β, α × β × γ
etc.

9

Partial application of functions by giving fewer than the full number of arguments. Partial application with functions
built from operators.

10

New types with type name = constructor1 of type1 | constructor2 of type2 | … Pattern matching on them as with the
built-in types. Polymorphic types.

11

Strings, which are sequences of characters written between double quotes and are of type string.

Chapter 12
In and Out
We have considered a function (and indeed, a whole program composed of many functions) to take a chunk of
data, do some calculations, and then produce a result. This assumption has allowed us to write neat, easily
understood programs.

However, some computer programs do not have all data available at the beginning of the program (or even
the beginning of a given function). The user might provide new data interactively, or the program might fetch
data from the internet, or two or more programs might communicate with one another in real
time.

We must learn how to write such programs, whilst understanding the utility of restricting
such complications to as small a part of the program as possible – interactivity turns out to be
surprisingly hard to reason about, since the result of a function no longer depends only on its initial
argument.

Writing to the screen
OCaml has a built-in function print_int which prints an integer to the screen:

 OCaml

print_int 100;;
100- : unit = ()

What is the type of this function? Well, it is a function, and it takes an integer as its argument. It prints the
integer to the screen, and then returns…what? Nothing! OCaml has a special type to represent nothing, called
unit. There is exactly one thing of type
unit which is written () and is called “unit”. So, the function
print_int has type int → unit.

There is another built-in function print_string of type string → unit to print a string, and another
print_newline to move to the next line. This function has type unit → unit because it requires no
substantive argument and produces no useful result.
It is only wanted for its “side-effect”.

We can produce several side-effects, one after another, using the
; symbol. This evaluates the
expression on its left hand side, throws away the result (which will normally be unit anyway), and
then evaluates the expression to its right hand side, returning the result (which is often unit
too). The type of the expression x ; y is thus the type of y. For example, we can write a function
to write to the screen an int × string pair as an integer on one line, followed by a string on
another:

Notice we have added a second call to print_newline, so that our function can be called several times in a row
without intervening calls to print_newline. We wrote the function applications all on one line to emphasize
that ; behaves a little like an operator. However, for convenience, we would normally write it like
this:

This makes it look rather like ; is used to end each expression, but just remember that ; is a bit like an
operator – notice that there is no ; after the last print_newline (). Let us see how print_dict_entry is used
in practice:

 OCaml

print_dict_entry (1, "one");;
1
one
- : unit = ()

How might we print a whole dictionary (represented as a list of entries) this way? Well, we could write our own
function to iterate over all the entries:

Better, we can extract this method into a more general one, for doing an action on each element of a
list:

Normally β will be unit. Now we can redefine print_dict using iter:

For example:

 OCaml

print_dict [(1, "one"); (2, "two"); (3, "three")];;
1
one
2
two
3
three
- : unit = ()

Reading from the keyboard

Now we should like to write a function to read a dictionary as an (int × string) list. We will use two
built-in OCaml functions. The function read_int of type unit → int waits for the user to type
in an integer and press the Enter key. The integer is then returned. The function read_line of
type unit → string waits for the user to type any string and press the enter key, returning the
string.

We want the user to enter a series of keys and values (integers and strings), one per line. They will enter
zero for the integer to indicate no more input. Our function will take no argument, and return a dictionary of
integers and strings, so its type will be unit → (int × string) list.

We can run this function and type in some suitable values:

 OCaml

read_dict ();;
1
oak
2
ash
3
elm
0
- : (int * string) list =
[(1, "oak"); (2, "ash"); (3, "elm")]

But there is a problem. What happens if we type in something which is not an integer when an integer is
expected?

 OCaml

read_dict ();;
1
oak
ash
Exception: Failure "int_of_string".

We must handle this exception, and ask the user to try again. Here’s a revised function:

Now, typing mistakes can be fixed interactively:

 OCaml

read_dict ();;
1
oak
ash
This is not a valid integer. Please try again.
2
ash
3
elm
0
- : (int * string) list =
[(1, "oak"); (2, "ash"); (3, "elm")]

Using files
It is inconvenient to have to type new data sets in each time, so we will write functions to store a dictionary to
a file, and then to read it back out again.

OCaml has some basic functions to help us read and write from places data can be stored, such as files.
Places we can read from have type in_channel and places we can write to have type out_channel. Here are
functions for writing a dictionary of type (int × string) to a channel:

We are using the functions output_string and output_char to write the data in the same format we used to
print it to the screen. There is no output_int function, so we have used the built-in string_of_int function
to build a string from the integer. The character '\n' is a special one, representing moving to the next line
(there is no output_newline function).

How do we obtain such a channel? The function open_out gives an output channel for filename
given as a string. It has type string → out_channel. After we have written the contents to
the file, we must call close_out (which has type out_channel → unit) to properly
close the
file.

After running this function, you should find a file of the chosen name on your computer in the same folder
from which you are running OCaml. If you are not sure where the file is being put, consult the
documentation for your OCaml implementation, or use a full file path such as "C:/file.txt" or
"/home/yourname/file.txt", again depending on your system. In the following example, we are reading a
dictionary from the user and writing it to file as file.txt:

 OCaml

dictionary_to_file "file.txt" (read_dict ());;
1
oak
2
ash
3
elm
0
- : unit

Now we have written a file, we can read it back in:

We have written a function entry_of_channel to read a single integer and string (one element of our
dictionary) from an input channel using the built-in functions input_line and int_of_string, and a function
dictionary_of_channel to read all of them as a dictionary. It makes use of the built-in exception
End_of_file to detect when there is no more in the file. Now, we can build the main function to read our
dictionary from the file:

The process is the same as for dictionary_to_file but we use open_in and close_in instead of open_out
and close_out.

 OCaml

dictionary_of_file "file.txt";;
- : (int * string) list =
[(1, "oak"); (2, "ash"); (3, "elm")]

Summary of functions
We have introduced the types unit, in_channel, and out_channel, and the exception End_of_file. Here
are the functions we have used:

Questions

	Write a function to print a list of integers to the screen in the same format OCaml uses – i.e.
with square brackets and semicolons.

	Write a function to read three integers from the user, and return them as a tuple. What exceptions
could be raised in the process? Handle them appropriately.

	In our read_dict function, we waited for the user to type 0 to indicate no more data. This is
clumsy. Implement a new read_dict function with a nicer system. Be careful to deal with possible
exceptions which may be raised.

	Write a function which, given a number x, prints the x-times table to a given file name. For
example, table "table.txt" 5 should produce a file table.txt containing the following:

Adding the special tabulation character '\t' after each number will line up the columns.

	Write a function to count the number of lines in a given file.

	Write a function copy_file of type string → string → unit which copies a file line by line. For
example, copy_file "a.txt" "b.txt" should produce a file b.txt identical to a.txt. Make sure you
deal with the case where the file a.txt cannot be found, or where b.txt cannot be created or
filled.

So Far

1

Integers min_int … -3 -2 -1 0 1 2 3 … max_int of type int. Booleans true and false of type bool. Characters of
type char like 'X' and '!'. Mathematical operators + - * / mod which take two integers and give another. Operators = <
<= > >= <> which compare two values and evaluate to either true or false. The conditional if expression1 then
expression2 else expression3, where expresssion1 has type bool and expression2 and expression3 have the
same type as one another. The boolean operators && and || which allow us to build compound boolean
expressions.

2

Assigning a name to the result of evaluating an expression using the let name = expression construct. Building
compound expressions using let name1 = expression1 in let name2 = expression2 in … Functions, introduced by
let name argument1 argument2 … = expression. These have type α → β, α → β → γ etc. for some types
α, β, γ etc. Recursive functions, which are introduced in the same way, but using let rec instead of
let.

3

Matching patterns using match expression1 with pattern1 | … -> expression2 | pattern2 | … -> expression3 |… The
expressions expression2, expression3 etc. must have the same type as one another, and this is the type of the whole
match … with expression.

4

Lists, which are ordered collections of zero or more elements of like type. They are written between square brackets, with
elements separated by semicolons e.g. [1; 2; 3; 4; 5]. If a list is non-empty, it has a head, which is its first element, and
a tail, which is the list composed of the rest of the elements. The :: “cons” operator, which adds an element to the
front of a list. The @ “append” operator, which concatenates two lists together. Lists and the :: “cons”
symbol may be used for pattern matching to distinguish lists of length zero, one, etc. and with particular
contents.

5

Matching two or more things at once, using commas to separate as in match a, b with 0, 0 -> expression1 | x, y ->
expression2 | …

6

Anonymous functions fun name -> expression. Making operators into functions as in (<) and (+).

7

Defining exceptions with exception name. They can carry extra information by adding of type. Raising exceptions with
raise. Handling exceptions with try … with …

8

Tuples to combine a fixed number of elements (a, b), (a, b, c) etc. with types α × β, α × β × γ
etc.

9

Partial application of functions by giving fewer than the full number of arguments. Partial application with functions
built from operators.

10

New types with type name = constructor1 of type1 | constructor2 of type2 | … Pattern matching on them as with the
built-in types. Polymorphic types.

11

Strings, which are sequences of characters written between double quotes and are of type string.

12

The value () and its type unit. Input channels of type in_channel and output channels of type out_channel.
Built-in functions for reading from and writing to them respectively.

Chapter 13
Putting Things in Boxes
So far, we have considered “pure” functions which have no side-effects, and functions which have the side-effect
of reading or writing information to and from, for example, files. When we assigned a value to a name, that
value could never change. Sometimes, it is convenient to allow the value of a name to be changed – some
algorithms are more naturally expressed in this way.

OCaml provides a construct known as a
reference which is a box in which we can store a value. We build a
reference using the built-in function ref of type α → α ref. For example, let us build a reference with initial
contents 0. It will have type int ref.

 OCaml

let x = ref 0;;
val x : int ref = {contents = 0}

OCaml tells us that x is a reference of type int ref which currently has contents 0. We can extract the current
contents of a reference using the !operator, which has type α ref → α.

let p = !x;;
val p : int = 0

We can update the contents of the reference using the := operator:

x := 50;;
- : unit = ()

The := operator has type α ref → α → unit, since it takes a reference and a new value to put in it, puts the
value in, and returns nothing. It is only useful for its side-effect. Now, we can get the contents with !
again.

let q = !x;;
val q : int = 50
p;;
- : int = 0

Notice that p is unchanged. Here’s a function to swap the contents of two references:

We needed to use a temporary name t to store the contents of a. Can you see why?

This type of programming, which consists of issuing a number of commands, in order, about which
references are to be altered and how, is known as
imperative programming. OCaml provides some useful
structures for imperative programming with references. We will look at these quickly now, and in a moment
build a bigger example program to show why they are useful.

For readability, OCaml lets us miss out the else part of the if … then … else … construct if it would just
be (), which is if we are doing nothing in the else case, so

if x = 0 then a := 0 else ()

can be written as

if x = 0 then a := 0

and if x is not zero, the expression will just evaluate to (). Due to this, when putting imperative code inside if
… then … else … constructs, we need to surround the inner imperative expressions with parentheses so the
meaning is unambiguous:

OCaml allows us to use
begin and end instead, for readability:

Doing it again and again
There are two ways to repeat an action. To perform an action a fixed number of times, we use the
for … = … to
… do … done construct. For example,

for x = 1 to 5 do print_int x; print_newline () done

evaluates the expression print_int x; print_newline () five times: once where x is 1, once where x is 2 etc,
so the result is:

for x = 1 to 5 do print_int x; print_newline () done;
1
2
3
4
5
- : unit = ()

This is known as a
“for loop”. Note that the type of the whole for … = … to … do … done expression is unit
irrespective of the type of the expression(s) inside it.

There is another looping construct – this time for evaluating an expression repeatedly until some condition
is true. This is the while … do … done construct. It takes a boolean condition, and evaluates a given
expression repeatedly, zero or more times, until the boolean condition is true. For example, here is a function
which, given a positive integer, calculates the lowest power of two greater than or equal to that number (i.e. for
the argument 37, the result will be 64).

The while loop continues until the contents of the reference t is greater than x. At that point, it ends, and the
contents of t is returned from the function. Again, note that the type of the whole while … do … done
construct is unit.

Example: text file statistics
We are going to write a program to count the number of words, sentences and lines in a text file. We shall
consider the opening paragraph of Kafka’s “Metamorphosis”.

There are newline characters at the end of each line, save for the last. You can cut and paste or type this into a
text file to try these examples out. Here, it is saved as gregor.txt.

We will just count lines first. To this, we will write a function channel_statistics to gather the statistics
by reading an input channel and printing them. Then we will have a function to open a named file, call our
first function, and close it again.

Notice the use of true as the condition for the while construct. This means the computation would carry on
forever, except that the End_of_file exception must eventually be raised. Note also that OCaml emits a
warning when reading the channel_statistics function:

Warning 26: unused variable line.

This is an example of a warning we can ignore – we are not using the actual value line yet, since we are just
counting lines without looking at their content. Running our program on the example file gives
this:

 OCaml

file_statistics "gregor.txt";;
There were 8 lines.
- : unit = ()

Let us update the program to count the number of words, characters, and sentences. We will do this
simplistically, assuming that the number of words can be counted by counting the number of spaces, and
that the sentences can be counted by noting instances of '.', '!', and '?'. We can extend the
channel_statistics function appropriately – file_statistics need not change:

We have used the built-in function String.iter of type (char → unit) → string → unit which calls a
function we supply on each character of a string.

Substituting this version of channel_statistics (if you are cutting and pasting into OCaml, be sure to
also paste file_statistics in again afterwards, so it uses the new channel_statistics), gives the following
result on our example text:

 OCaml

file_statistics "gregor.txt";;
There were 8 lines, making up 464 characters with 80 words in 4 sentences.
- : unit = ()

Adding character counts
We should like to build a histogram, counting the number of times each letter of the alphabet or other
character occurs. It would be tedious and unwieldy to hold a hundred or so references, and then pattern match
on each possible character to increment the right one. OCaml provides a data type called array for situations
like this.

An
array is a place for storing a fixed number of elements of like type. We can introduce arrays by using [|
and |], with semicolons to separate the elements:

 OCaml

let a = [|1; 2; 3; 4; 5|];;
val a : int array = [|1; 2; 3; 4; 5|]

We can access an element inside our array in constant time by giving the position of the element (known as the
subscript) in parentheses, after the array name and a period:

a.(0);;
- : int = 1

Notice that the first element has subscript 0, not 1. We can update any of the values in the array, also in
constant time, like this:

a.(4) <- 100;;
- : unit = ()
a;;
a : int array = [|1; 2; 3; 4; 100|]

If we try to access or update an element which is not within range, an exception is raised:

a.(5);;
Exception: Invalid_argument "index out of bounds".

There are some useful built-in functions for dealing with arrays. The function Array.length of type α array
→ int returns the length of an array:

Array.length a;;
- : int = 5

In contrast to finding the length of an array, the time taken by Array.length is constant, since it was fixed
when the array was created. The Array.make function is used for building an array of a given length,
initialized with given values. It takes two arguments – the length, and the initial value to be given to every
element. It has type int → α → α array.

Array.make 6 true;;
- : bool array =
[|true; true; true; true; true; true|]
Array.make 10 'A';;
- : char array =
[|'A'; 'A'; 'A'; 'A'; 'A'; 'A'; 'A'; 'A'; 'A'; 'A'|]
Array.make 3 (Array.make 3 5);;
- : int array array =
[|[|5; 5; 5|]; [|5; 5; 5|]; [|5; 5; 5|]|]

Back to our original problem. We want to store a count for each possible character. We cannot
subscript our arrays with characters directly, but each character has a special integer code (its
so-called
“ASCII code”, a common encoding of characters as integers in use since the 1960s), and we
can convert to and from these using the built-in functions int_of_char and char_of_int. For
example:

 OCaml

int_of_char 'C';;
- : int = 67
char_of_int 67;;
- : char = 'C'

The numbers go from 0 to 255 inclusive (they do not all represent printable characters, for example the
newline character '\n' has code 10). So, we can store our histogram as an integer array of length
256.

Our main function is getting rather long, so we will write a separate one which, given the completed array
prints out the frequencies. If there were no instances of a particular character, no line is printed for that
character.

This prints lines like:

For character 'd' (character number 100) the count is 6.

Now, we can alter our channel_statistics to create an appropriate array, and update it, once again using
String.iter:

Here is the output on our text:

 OCaml

file_statistics "gregor.txt";;
There were 8 lines, making up 464 characters with 80 words in 4 sentences.
Character frequencies:
For character ' ' (character number 32) the count is 80.
For character ',' (character number 44) the count is 6.
For character '-' (character number 45) the count is 1.
For character '.' (character number 46) the count is 4.
For character 'G' (character number 71) the count is 1.
For character 'H' (character number 72) the count is 2.
For character 'O' (character number 79) the count is 1.
For character 'S' (character number 83) the count is 1.
For character 'T' (character number 84) the count is 1.
For character 'a' (character number 97) the count is 24.
For character 'b' (character number 98) the count is 10.
For character 'c' (character number 99) the count is 6.
For character 'd' (character number 100) the count is 25.
For character 'e' (character number 101) the count is 47.
For character 'f' (character number 102) the count is 13.
For character 'g' (character number 103) the count is 5.
For character 'h' (character number 104) the count is 22.
For character 'i' (character number 105) the count is 30.
For character 'k' (character number 107) the count is 4.
For character 'l' (character number 108) the count is 23.
For character 'm' (character number 109) the count is 15.
For character 'n' (character number 110) the count is 21.
For character 'o' (character number 111) the count is 27.
For character 'p' (character number 112) the count is 3.
For character 'r' (character number 114) the count is 20.
For character 's' (character number 115) the count is 24.
For character 't' (character number 116) the count is 21.
For character 'u' (character number 117) the count is 6.
For character 'v' (character number 118) the count is 4.
For character 'w' (character number 119) the count is 6.
For character 'y' (character number 121) the count is 10.
For character 'z' (character number 122) the count is 1.
- : unit = ()

The most common character is the space. The most common alphabetic character is 'e'.

Questions

	Consider the expression
let x = ref 1 in let y = ref 2 in x := !x + !x; y := !x + !y; !x + !y

What references have been created? What are their initial and final values after this expression
has been evaluated? What is the type of this expression?

	What is the difference between [ref 5; ref 5] and let x = ref 5 in [x; x]?

	Imagine that the for… to … do … done construct did not exist. How might we create the same
behaviour?

	What are the types of these expressions?
[|1; 2; 3|]

[|true; false; true|]

[|[|1|]|]

[|[1; 2; 3]; [4; 5; 6]|]

[|1; 2; 3|].(2)

[|1; 2; 3|].(2) <- 4

	Write a function to compute the sum of the elements in an integer array.

	Write a function to reverse the elements of an array in place (i.e. do not create a new array).

	Write a function table which, given an integer, builds the int array array representing the
multiplication table up to that number. For example, table 5 should yield:

There is more than one way to represent this as an array of arrays; you may choose.

	The ASCII codes for the lower case letters 'a'…'z' are 97…122, and for the upper case letters
'A'…'Z' they are 65…90. Use the built-in functions int_of_char and char_of_int to write
functions to uppercase and lowercase a character. Non-alphabetic characters should remain
unaltered.

	Comment on the accuracy of our character, word, line, and sentence statistics in the case of our example
paragraph. What about in general?

	Choose one of the problems you have identified, and modify our program to fix it.

So Far

1

Integers min_int … -3 -2 -1 0 1 2 3 … max_int of type int. Booleans true and false of type bool. Characters of
type char like 'X' and '!'. Mathematical operators + - * / mod which take two integers and give another. Operators = <
<= > >= <> which compare two values and evaluate to either true or false. The conditional if expression1 then
expression2 else expression3, where expresssion1 has type bool and expression2 and expression3 have the
same type as one another. The boolean operators && and || which allow us to build compound boolean
expressions.

2

Assigning a name to the result of evaluating an expression using the let name = expression construct. Building
compound expressions using let name1 = expression1 in let name2 = expression2 in … Functions, introduced by
let name argument1 argument2 … = expression. These have type α → β, α → β → γ etc. for some types
α, β, γ etc. Recursive functions, which are introduced in the same way, but using let rec instead of
let.

3

Matching patterns using match expression1 with pattern1 | … -> expression2 | pattern2 | … -> expression3 |… The
expressions expression2, expression3 etc. must have the same type as one another, and this is the type of the whole
match … with expression.

4

Lists, which are ordered collections of zero or more elements of like type. They are written between square brackets, with
elements separated by semicolons e.g. [1; 2; 3; 4; 5]. If a list is non-empty, it has a head, which is its first element, and
a tail, which is the list composed of the rest of the elements. The :: “cons” operator, which adds an element to the
front of a list. The @ “append” operator, which concatenates two lists together. Lists and the :: “cons”
symbol may be used for pattern matching to distinguish lists of length zero, one, etc. and with particular
contents.

5

Matching two or more things at once, using commas to separate as in match a, b with 0, 0 -> expression1 | x, y ->
expression2 | …

6

Anonymous functions fun name -> expression. Making operators into functions as in (<) and (+).

7

Defining exceptions with exception name. They can carry extra information by adding of type. Raising exceptions with
raise. Handling exceptions with try … with …

8

Tuples to combine a fixed number of elements (a, b), (a, b, c) etc. with types α × β, α × β × γ
etc.

9

Partial application of functions by giving fewer than the full number of arguments. Partial application with functions
built from operators.

10

New types with type name = constructor1 of type1 | constructor2 of type2 | … Pattern matching on them as with the
built-in types. Polymorphic types.

11

Strings, which are sequences of characters written between double quotes and are of type string.

12

The value () and its type unit. Input channels of type in_channel and output channels of type out_channel.
Built-in functions for reading from and writing to them respectively.

13

References of type α ref. Building them using ref, accessing their contents using ! and updating them using the :=
operator. Bracketing expressions together with begin and end instead of parentheses for readability. Performing an
action many times based on a boolean condition with the while boolean expression do expression done construct.
Performing an action a fixed number of times with a varying parameter using the for name = start to end do expression
done construct. Arrays of type α array. Creating an array with the built-in function Array.make, finding its length with
Array.length, accessing an element with a.(subscript). Updating with a.(subscript) <- expression. The built-in
function String.iter.

Chapter 14
The Other Numbers
The only numbers we have considered until now have been the integers. For a lot of programming tasks, they
are sufficient. And, except for their limited range and the possibility of division by zero, they are easy to
understand and use. However, we must now consider the
real numbers.

It is clearly not possible to represent all numbers exactly – they might be irrational like π or e and have no
finite representation. For most uses, a representation called
floating-point is suitable, and this is how OCaml’s
real numbers are stored. Not all numbers can be represented exactly, but arithmetic operations are very
quick.

Floating-point numbers have type float. We can write a floating-point number by including a decimal
point somewhere in it. For example 1.6
or 2. or 386.54123. Negative floating-point numbers are preceded by
the -.
characters just like negative integers are preceded by the -
character. Similarly, we write
+.
-.
*.
/.
for
the standard arithmetic operators on floating-point numbers. Exponentiation is written with the **
operator.

 OCaml

1.5;;
- : float = 1.5
6.;;
- : float = 6.
-.2.3456;;
- : float = -2.3456
1.0 +. 2.5 *. 3.0;;
- : float = 8.5
1.0 /. 1000.0;;
- : float = 0.001
1. /. 100000.;;
- : float = 1e-05
3000. ** 10.;;
- : float = 5.9049e+34
3.123 -. 3.;;
- : float = 0.12300000000000022

Notice an example of the limits of precision in floating-point operations in the final lines. Note also that very
small or very large numbers are written using scientific notation (such as 5.9049e+34 above). We can find out
the range of numbers available:

 OCaml

max_float;;
- : float = 1.79769313486231571e+308
min_float;;
- : float = 2.22507385850720138e-308

Working with floating-point numbers requires care, and a comprehensive discussion is outside the scope of this
book. These challenges exist in any programming language using the floating-point system. For example,
evaluating 1./.0.gives the special value infinity (there is no Division_by_zero exception for floating-point
operations). There are other special values such as neg_infinity
and nan
(“not a number”). We will leave
these complications for now – just be aware that they are lurking and must be confronted when writing robust
numerical programs.

A number of standard functions are provided, both for operating on floating-point numbers and for
converting to and from them, some of which are listed here:

Let us write some functions with floating-point numbers. We will write some simple operations
on vectors in two dimensions. We will represent a point as a pair of floating-point numbers of
type float × float such as (2.0, 3.0). We will represent a vector as a pair of floating-point
numbers too. Now we can write a function to build a vector from one point to another, one to
find the length of a vector, one to offset a point by a vector, and one to scale a vector to a given
length:

Notice that we have to be careful about division by zero, just as with integers. We have used tuples for the
points because it is easier to read this way – we could have passed each floating-point number as a separate
argument instead, of course.

Floating-point numbers are often essential, but must be used with caution. You will discover this when
answering the questions for this chapter. Some of these questions require using the built-in functions listed in
the table above.

Questions

	Give a function which rounds a positive floating-point number to the nearest whole number,
returning another floating-point number.

	Write a function to find the point equidistant from two given points in two dimensions.

	Write a function to separate a floating-point number into its integer and whole parts. Return
them as a tuple of type float × float.

	Write a function star of type float → unit which, given a floating-point number between zero
and one, draws an asterisk to indicate the position. An argument of zero will result in an asterisk
in column one, and an argument of one an asterisk in column fifty.

	Now write a function plot which, given a function of type float → float, a range, and a step
size, uses star to draw a graph. For example, assuming the existence of the name pi for π, we
might see:

Here, we have plotted the sine function on the range 0…π in steps of size π∕20. You can define pi by
calculating 4.0 *. atan 1.0.

So Far

1

Integers min_int … -3 -2 -1 0 1 2 3 … max_int of type int. Booleans true and false of type bool. Characters of
type char like 'X' and '!'. Mathematical operators + - * / mod which take two integers and give another. Operators = <
<= > >= <> which compare two values and evaluate to either true or false. The conditional if expression1 then
expression2 else expression3, where expresssion1 has type bool and expression2 and expression3 have the
same type as one another. The boolean operators && and || which allow us to build compound boolean
expressions.

2

Assigning a name to the result of evaluating an expression using the let name = expression construct. Building
compound expressions using let name1 = expression1 in let name2 = expression2 in … Functions, introduced by
let name argument1 argument2 … = expression. These have type α → β, α → β → γ etc. for some types
α, β, γ etc. Recursive functions, which are introduced in the same way, but using let rec instead of
let.

3

Matching patterns using match expression1 with pattern1 | … -> expression2 | pattern2 | … -> expression3 |… The
expressions expression2, expression3 etc. must have the same type as one another, and this is the type of the whole
match … with expression.

4

Lists, which are ordered collections of zero or more elements of like type. They are written between square brackets, with
elements separated by semicolons e.g. [1; 2; 3; 4; 5]. If a list is non-empty, it has a head, which is its first element, and
a tail, which is the list composed of the rest of the elements. The :: “cons” operator, which adds an element to the
front of a list. The @ “append” operator, which concatenates two lists together. Lists and the :: “cons”
symbol may be used for pattern matching to distinguish lists of length zero, one, etc. and with particular
contents.

5

Matching two or more things at once, using commas to separate as in match a, b with 0, 0 -> expression1 | x, y ->
expression2 | …

6

Anonymous functions fun name -> expression. Making operators into functions as in (<) and (+).

7

Defining exceptions with exception name. They can carry extra information by adding of type. Raising exceptions with
raise. Handling exceptions with try … with …

8

Tuples to combine a fixed number of elements (a, b), (a, b, c) etc. with types α × β, α × β × γ
etc.

9

Partial application of functions by giving fewer than the full number of arguments. Partial application with functions
built from operators.

10

New types with type name = constructor1 of type1 | constructor2 of type2 | … Pattern matching on them as with the
built-in types. Polymorphic types.

11

Strings, which are sequences of characters written between double quotes and are of type string.

12

The value () and its type unit. Input channels of type in_channel and output channels of type out_channel.
Built-in functions for reading from and writing to them respectively.

13

References of type α ref. Building them using ref, accessing their contents using ! and updating them using the :=
operator. Bracketing expressions together with begin and end instead of parentheses for readability. Performing an
action many times based on a boolean condition with the while boolean expression do expression done construct.
Performing an action a fixed number of times with a varying parameter using the for name = start to end do expression
done construct. Arrays of type α array. Creating an array with the built-in function Array.make, finding its length with
Array.length, accessing an element with a.(subscript). Updating with a.(subscript) <- expression. The built-in
function String.iter.

14

Floating-point numbers min_float … max_float of type float. Floating-point operators +. *. -. /. ** and built-in
functions sqrt log etc.

Chapter 15
The OCaml Standard Library
OCaml is provided with a wide range of useful built-in functions, in addition to the ones we have already seen,
called the
OCaml Standard Library. These functions are divided into
modules, one for each area of
functionality (in the next chapter, we will learn how to write our own modules). Here are a few examples of
modules in the standard library:

We will take the List module as an example. You can find the documentation for the OCaml Standard
Library installed with your copy of OCaml, or on the internet.

The functions from a module can be used by putting a period (full stop) between the module
name and the function. For example the length function in the List module can be used like
this:

 OCaml

List.length [1; 2; 3; 4; 5];;
- : int = 5

We can look at the type too by writing just the name of the function:

 OCaml

List.length;;
- : 'a list -> int = <fun>

Here’s the documentation for List.length:

We will talk about val in the next chapter. Sometimes, more information is required:

For example,

 OCaml

List.nth [1; 2; 4; 8; 16] 3;;
- : int = 8

In the documentation, we are told what the function does for each argument, and what exceptions may be
raised. Functions which are not tail-recursive and so may fail on huge arguments are marked as
such.

The questions for this chapter use functions from the standard library, so you will need to have a copy of
the documentation to hand.

Questions

	Write your own version of the function List.concat. The implementation OCaml provides is not
tail-recursive. Can you write one which is?

	Use List.mem to write a function which returns true only if every list in a bool list list contains
true somewhere in it.

	Write a function to count the number of exclamation marks in a string, using one or more functions
from the String module.

	Use the String.map function to write a function to return a new copy of a string with all
exclamation marks replaced with periods (full stops).

	Use the String module to write a function which concatenates a list of strings together.

	Do the same with the Buffer module. This will be faster.

	Use the String module to count the number of occurrences of the string "OCaml" within a given
string.

So Far

1

Integers min_int … -3 -2 -1 0 1 2 3 … max_int of type int. Booleans true and false of type bool. Characters of
type char like 'X' and '!'. Mathematical operators + - * / mod which take two integers and give another. Operators = <
<= > >= <> which compare two values and evaluate to either true or false. The conditional if expression1 then
expression2 else expression3, where expresssion1 has type bool and expression2 and expression3 have the
same type as one another. The boolean operators && and || which allow us to build compound boolean
expressions.

2

Assigning a name to the result of evaluating an expression using the let name = expression construct. Building
compound expressions using let name1 = expression1 in let name2 = expression2 in … Functions, introduced by
let name argument1 argument2 … = expression. These have type α → β, α → β → γ etc. for some types
α, β, γ etc. Recursive functions, which are introduced in the same way, but using let rec instead of
let.

3

Matching patterns using match expression1 with pattern1 | … -> expression2 | pattern2 | … -> expression3 |… The
expressions expression2, expression3 etc. must have the same type as one another, and this is the type of the whole
match … with expression.

4

Lists, which are ordered collections of zero or more elements of like type. They are written between square brackets, with
elements separated by semicolons e.g. [1; 2; 3; 4; 5]. If a list is non-empty, it has a head, which is its first element, and
a tail, which is the list composed of the rest of the elements. The :: “cons” operator, which adds an element to the
front of a list. The @ “append” operator, which concatenates two lists together. Lists and the :: “cons”
symbol may be used for pattern matching to distinguish lists of length zero, one, etc. and with particular
contents.

5

Matching two or more things at once, using commas to separate as in match a, b with 0, 0 -> expression1 | x, y ->
expression2 | …

6

Anonymous functions fun name -> expression. Making operators into functions as in (<) and (+).

7

Defining exceptions with exception name. They can carry extra information by adding of type. Raising exceptions with
raise. Handling exceptions with try … with …

8

Tuples to combine a fixed number of elements (a, b), (a, b, c) etc. with types α × β, α × β × γ
etc.

9

Partial application of functions by giving fewer than the full number of arguments. Partial application with functions
built from operators.

10

New types with type name = constructor1 of type1 | constructor2 of type2 | … Pattern matching on them as with the
built-in types. Polymorphic types.

11

Strings, which are sequences of characters written between double quotes and are of type string.

12

The value () and its type unit. Input channels of type in_channel and output channels of type out_channel.
Built-in functions for reading from and writing to them respectively.

13

References of type α ref. Building them using ref, accessing their contents using ! and updating them using the :=
operator. Bracketing expressions together with begin and end instead of parentheses for readability. Performing an
action many times based on a boolean condition with the while boolean expression do expression done construct.
Performing an action a fixed number of times with a varying parameter using the for name = start to end do expression
done construct. Arrays of type α array. Creating an array with the built-in function Array.make, finding its length with
Array.length, accessing an element with a.(subscript). Updating with a.(subscript) <- expression. The built-in
function String.iter.

14

Floating-point numbers min_float … max_float of type float. Floating-point operators +. *. -. /. ** and built-in
functions sqrt log etc.

15

Using functions from the OCaml Standard Library with the form Module.function.

Chapter 16
Building Bigger Programs
So far we have been writing little programs and testing them interactively in OCaml. However, to conquer the
complexity of the task of writing larger programs, tools are needed to split them into well-defined
modules,
each with a given set of types and functions. We can then build big systems without worrying that some
internal change to a single module will affect the whole program. This process of modularization is known as
abstraction, and is fundamental to writing large programs, a discipline sometimes called
software
engineering.

In this chapter, you will have to create text files and type commands into the command prompt of your
computer. If you’re not sure how to do this, or the examples in this chapter do not work for you, ask a friend
or teacher. In particular, if using Microsoft Windows, some of the commands may have different
names.

Making a module
We will be building a modular version of our text statistics program from Chapter 13. First, write the text file
shown in Figure 16.1
(but not the italic annotations) and save it as textstat.ml (OCaml programs live in files
with lowercase names ending in .ml).

Figure 16.1: textstat.ml

The first line is a
comment. Comments in OCaml are written between (* and *). We use comments in
large programs to help the reader (who might be someone else, or ourselves some time later) to understand the
program.

We have then introduced a type for our statistics. This will hold the number of words, characters, and
sentences. We have then written a function stats_from_channel which for now just returns zeros for all the
statistics.

Now, we can issue a command to turn this program into a pre-processed OCaml module. This
compiles the
program into an
executable. The module can then be loaded into interactive OCaml, or used to build
standalone programs. Execute the following command:

ocamlc textstate.ml

You can see that the name of the OCaml compiler is ocamlc. If there are errors in textstat.ml they will be
printed out, including the line and character number of the problem. You must fix these, and try the command
again. If compilation succeeds, you will see the file textstate.cmo in the current directory. There will be
other files, but we are not worried about those yet. Let us load our pre-compiled module into
OCaml:

 OCaml

#load "textstat.cmo";;
load the
module
Textstat.stats_from_file "gregor.txt";;
use a
function
- : int * int * int * int = (0, 0, 0, 0)

Note that
#load is different from our earlier #use command – that was just reading a file as if it had been cut
and pasted – we are really loading the compiled module here.

Filling out the module
Let us add a real stats_from_channel function, to produce a working text statistics module. We will also add
utility functions for retrieving individual statistics from the stats type. This is shown in Figure 16.2. We can
compile it in the same way, and try it with our example file:

Figure 16.2: textstat.ml

 OCaml

#load "textstat.cmo";;
let s = Textstat.stats_from_file "gregor.txt";;
val s : Textstat.stats = (8, 464, 80, 4)
Textstat.lines s;;
- : int = 8
Textstat.characters s;;
- : int = 464
Textstat.words s;;
- : int = 80
Textstat.sentences s;;
- : int = 4

You might ask why we need the functions lines, characters etc. when the information is returned in the
tuple. Let us discuss that now.

Making an interface

We said that modules were for creating abstractions, so that the implementation of an individual module could
be altered without changing the rest of the program. However, we have not achieved that yet – the
details of the internal type are visible to the program using the module, and that program would
break if we changed the type of stats to hold an additional statistic. In addition, the internal
count_words function is available, even though the user of the module is not expected to use
it.

What we would like to do is to restrict the module so that only the types and functions we want to be used
directly are available. For this, we use an interface. Interfaces are held in files ending in .mli, and we can write
one for our module. Our interface is shown in Figure 16.3.

Figure 16.3: textstat.mli

In this interface, we have exposed every type and function. Types are written in the same way as
in the .ml file. Functions are written with
val, followed by the name, a colon, and the type of
the function. We can compile this by giving the .mli file together with the .ml file when using
ocamlc:

ocamlc textstat.mli textstat.ml

The ocamlc compiler has created at least two files: textstat.cmo as before and textstat.cmi (the compiled
interface). You should find this operates exactly as before when loaded into OCaml. Now, let us remove the
definition of the type from the interface, to make sure that the stats type is
hidden, and its parts can only be
accessed using the lines, characters, words, and sentences functions. We will also remove the declaration
for stats_from_channel to demonstrate that functions we do not need can be hidden too. This is shown in
Figure 16.4.

Figure 16.4: textstat.mli with hidden (abstract) type

Now, if we compile the program again with ocamlc textstat.mli textstat.ml, we see that
the stats_of_channel function is now not accessible, and the type of stats is now hidden, or
abstract.

 OCaml

#load "textstat.cmo";;
let s = Textstat.stats_from_file "gregor.txt";;
val s : Textstat.stats = <abstr> the type is now
abstract
Textstat.lines s;;
- : int = 8
Textstat.characters s;;
- : int = 464
Textstat.words s;;
- : int = 80
Textstat.sentences s;;
- : int = 4
Textstat.stats_from_channel;; we have hidden this
function
Error: Unbound value Textstat.stats_from_channel

We have successfully separated the implementation of our module from its interface – we can now change the
stats type internally to hold extra statistics without invalidating existing programs. This is
abstraction in a
nutshell.

Building standalone programs
Now it is time to cut ourselves free from interactive OCaml, and build standalone programs which can be
executed directly. Let us add another file stats.ml which will use functions from the Textstat module to
create a program which, when given a file name, prints some statistics about it. This is illustrated in Figure
16.5. There are some new things here:

Figure 16.5: stats.ml

	The built-in array Sys.argv lists the arguments given to a command written at the command
line. The first is the name of our program, so we ignore that. The second will be the name of the
file the user wants our program to inspect. So, we match against that array. If there is any other
array size, we print out a usage message.

	The function Printexc.to_string from the OCaml Standard Library converts an exception into
a string – we use this to print out the error.

	There was an error, so it is convention to specify an exit code of 1 rather than 0. Do not worry
about this.

Let us compile this standalone program using ocamlc, giving a name for the executable program using the -o
option:

ocamlc textstat.mli textstat.ml stats.ml -o stats

Now, we can run the program:

$./stats gregor.txt
Words: 80
Characters: 464
Sentences: 4
Lines: 8

$./stats not_there.txt
An error occurred: Sys_error("not_there.txt: No such file or directory")

$./stats
Usage: stats <filename>

This output might look different on your computer, depending on your operating system. On most computers,
the
ocamlopt compiler is also available. If we type

ocamlopt textstat.mli textstat.ml stats.ml -o stats

we obtain an executable which is much faster than before, and completely independent of OCaml – it can run
on any computer which has the same processor and operating system (such as Windows or Mac
OS X) as yours, with no need for an OCaml installation. On the other hand, the advantage of
ocamlc is that it produces a program which can run on any computer, so long as OCaml support is
installed.

Questions

	Extend our example to print the character histogram data as we did in Chapter 13.

	Write and compile a standalone program to reverse the lines in a text file, writing to another file.

	Write a program which takes sufficiently long to run to allow you to compare the speed of programs
compiled with ocamlc and ocamlopt.

	Write a standalone program to search for a given string in a file. Lines where the string is found
should be printed to the screen.

So Far

1

Integers min_int … -3 -2 -1 0 1 2 3 … max_int of type int. Booleans true and false of type bool. Characters of
type char like 'X' and '!'. Mathematical operators + - * / mod which take two integers and give another. Operators = <
<= > >= <> which compare two values and evaluate to either true or false. The conditional if expression1 then
expression2 else expression3, where expresssion1 has type bool and expression2 and expression3 have the
same type as one another. The boolean operators && and || which allow us to build compound boolean
expressions.

2

Assigning a name to the result of evaluating an expression using the let name = expression construct. Building
compound expressions using let name1 = expression1 in let name2 = expression2 in … Functions, introduced by
let name argument1 argument2 … = expression. These have type α → β, α → β → γ etc. for some types
α, β, γ etc. Recursive functions, which are introduced in the same way, but using let rec instead of
let.

3

Matching patterns using match expression1 with pattern1 | … -> expression2 | pattern2 | … -> expression3 |… The
expressions expression2, expression3 etc. must have the same type as one another, and this is the type of the whole
match … with expression.

4

Lists, which are ordered collections of zero or more elements of like type. They are written between square brackets, with
elements separated by semicolons e.g. [1; 2; 3; 4; 5]. If a list is non-empty, it has a head, which is its first element, and
a tail, which is the list composed of the rest of the elements. The :: “cons” operator, which adds an element to the
front of a list. The @ “append” operator, which concatenates two lists together. Lists and the :: “cons”
symbol may be used for pattern matching to distinguish lists of length zero, one, etc. and with particular
contents.

5

Matching two or more things at once, using commas to separate as in match a, b with 0, 0 -> expression1 | x, y ->
expression2 | …

6

Anonymous functions fun name -> expression. Making operators into functions as in (<) and (+).

7

Defining exceptions with exception name. They can carry extra information by adding of type. Raising exceptions with
raise. Handling exceptions with try … with …

8

Tuples to combine a fixed number of elements (a, b), (a, b, c) etc. with types α × β, α × β × γ
etc.

9

Partial application of functions by giving fewer than the full number of arguments. Partial application with functions
built from operators.

10

New types with type name = constructor1 of type1 | constructor2 of type2 | … Pattern matching on them as with the
built-in types. Polymorphic types.

11

Strings, which are sequences of characters written between double quotes and are of type string.

12

The value () and its type unit. Input channels of type in_channel and output channels of type out_channel.
Built-in functions for reading from and writing to them respectively.

13

References of type α ref. Building them using ref, accessing their contents using ! and updating them using the :=
operator. Bracketing expressions together with begin and end instead of parentheses for readability. Performing an
action many times based on a boolean condition with the while boolean expression do expression done construct.
Performing an action a fixed number of times with a varying parameter using the for name = start to end do expression
done construct. Arrays of type α array. Creating an array with the built-in function Array.make, finding its length with
Array.length, accessing an element with a.(subscript). Updating with a.(subscript) <- expression. The built-in
function String.iter.

14

Floating-point numbers min_float … max_float of type float. Floating-point operators +. *. -. /. ** and built-in
functions sqrt log etc.

15

Using functions from the OCaml Standard Library with the form Module.function.

16

Writing modules in .ml files. Building interfaces in .mli files with types and val. Using the ocamlc and ocamlopt
compilers. Comments written between (* and *).

Answers to Questions
Hints may be found at the end of the book.

1 (Starting Off)

1
The expression 17 is of type int and is a value already. The expression 1 + 2 * 3 + 4 is of type int
and evaluates to the value 11, since the multiplication is done first. The expression 800 / 80 /
8 has type int. It is the same as (800 / 80) / 8 rather than 800 / (80 / 8) and evaluates to
1.

The expression 400 > 200 has type bool because this is the type of the result of the comparison operator >.
It evaluates to true. Similarly, 1 <> 1 has type bool and evaluates to false. The expression true || false is
of type bool and evaluates to true since one of the operands is true. Similarly, true && false evaluates to
false since one of the operands is false. The expression if true then false else true evaluates to false
since the first (then) part of the conditional expression is chosen, and takes the place of the entire
expression.

The expression '%' is of type char and is already a value. The expression 'a' + 'b' has no type – it gives
a type error because the + operator does not operate on characters.

2
The mod operator is of higher precedence than the + operator. So 1 + 2 mod 3 and 1 + (2 mod 3) are the same
expression, evaluating to 1 + 2 which is 3, but (1 + 2) mod 3 is the same as 3 mod 3, which is
0.

3
The expression evaluates to 11. The programmer seems to be under the impression that spacing affects
evaluation order. It does not, and so this use of space is misleading.

4
The expression max_int + 1 evaluates to a number equal to min_int. Likewise, min_int - 1 evaluates to a
number equal to max_int. The number line “wraps around”. This leads to the odd situation that max_int + 1 <
max_int evaluates to true. It follows that when writing programs, we must be careful about what happens
when numbers may be very large or very small.

5
OCaml accepts the program, but complains when it is run:

 OCaml

1 / 0;;
Exception: Division_by_zero.

We will talk about such exceptions later in the book. They are used for program errors which
cannot necessarily be found just by looking at the program text, but are only discovered during
evaluation.

6
For x mod y:

	when y = 0, OCaml prints Exception: Division_by_zero

	when y <> 0, x < 0, the result will be negative

	when y <> 0, x = 0, the result will be zero

This illustrates how even simple mathematical operators require careful specification when programming – we
must be explicit about the rules.

7
It prevents unexpected values: what would happen if an integer other than 1 and 0 was calculated in the
program – what would it mean? It is better just to use a different type. We can then show more easily that a
program is correct.

8
The lowercase characters are in alphabetical order, for example 'p' < 'q' evaluates to true. The
uppercase characters are similarly ordered. The uppercase letters are all “smaller” than the lowercase
characters, so for example 'A' < 'a' evaluates to true. For type bool, false is considered “less than”
true.

2 (Names and Functions)

1
Just take in an integer and return the number multiplied by ten. The function takes and returns an integer, so
the type is int → int.

 OCaml

let times_ten x = x * 10;;
val times_ten : int -> int = <fun>

2
We must take two integer arguments, and use the && and <> operators to test if they are both
non-zero. So the result will be of type bool. The whole type will therefore be int → int →
bool.

 OCaml

let both_non_zero x y =
 x <> 0 && y <> 0;;
val both_non_zero : int -> int -> bool = <fun>

3
Our function should take an integer, and return another one (the sum). So, it is type will be int → int. The
base case is when the number is equal to 1. Then, the sum of all numbers from 1…1 is just 1. If not, we add the
argument to the sum of all the numbers from 1…(n - 1).

 OCaml

let rec sum n =
 if n = 1 then 1 else n + sum (n - 1);;
val sum : int -> int = <fun>

The function is recursive, so we used let rec instead of let. What happens if the argument given is zero or
negative?

4
The function will have type int → int → int. A number to the power of 0 is 1. A number to the power of 1 is
itself. Otherwise, the answer is the current n multiplied by nx-1.

 OCaml

let rec power x n =
 if n = 0 then 1 else
 (if n = 1 then x else
 x * power x (n - 1));;
val power : int -> int -> int = <fun>

Notice that we had to put one if … then … else inside the else part of another to cope with the
three different cases. The parentheses are not actually required, though, so we may write it like
this:

 OCaml

let rec power x n =
 if n = 0 then 1 else
 if n = 1 then x else
 x * power x (n - 1);;
val power : int -> int -> int = <fun>

In fact, we can remove the case for n = 1 since power x 1 will reduce to x * power x 0 which is just
x.

5
The function isconsonant will have type char → bool. If a lower case character in the range 'a'…'z' is not a
vowel, it must be a consonant. So we can reuse the isvowel function we wrote earlier, and negate its result
using the not function:

 OCaml

let isconsonant c = not (isvowel c);;
val isconsonant : char -> bool = <fun>

6
The expression is the same as let x = 1 in (let x = 2 in x + x), and so the result is 4. Both instances of x in
x + x evaluate to 2 since this is the value assigned to the name x in the nearest enclosing let
expression.

7
We could simply return 0 for a negative or zero argument:

 OCaml

let rec factorial x =
 if x <= 0 then 0 else
 if x = 1 then 1 else
 x * factorial (x - 1);;
val factorial : int -> int = <fun>

Note that factorial can fail in other ways too – if the number gets too big and “wraps around”. For example,
on the author’s computer, factorial 40 yields -2188836759280812032.

3 (Case by Case)

1
We can just pattern match on the boolean. It does not matter, in this instance, which order the two cases are
in.

2
Recall our solution from the previous chapter:

Modifying it to use pattern matching:

3
Again, modifying our solution from the previous chapter:

5
This is the same as

(A match case belongs to its nearest enclosing match). So the expression evaluates to 5.

6
We write two functions of type char → bool like this:

Alternatively, we might write:

These two solutions have differing behaviour upon erroneous arguments (such as punctuation). Can you see
why?

4 (Making Lists)

1
This is similar to odd_elements:

But we can perform the same trick as before, by reversing the cases, to reduce their number:

2
This is like counting the length of a list, but we only count if the current element is true.

We can use an accumulating argument in an auxiliary function to make a tail recursive version:

3
To make a palindrome from any list, we can append it to its reverse. To check if a list is a palindrome,
we can compare it for equality with its reverse (the comparison operators work over almost all
types).

4
We pattern match with three cases. The empty list, where we have reached the last element, and where we
have yet to reach it.

We can build a tail recursive version by adding an accumulating list, and reversing it when finished (assuming
a tail recursive rev, of course!)

5
The empty list cannot contain the element; if there is a non-empty list, either the head is equal to the element
we are looking for, or if not, the result of our function is just the same as the result of recursing on the
tail.

Note that we are using the property that the || operator only evaluates its right hand side
if the left hand side is false to limit the recursion – it really does stop as soon as it finds the
element.

6
If a list is empty, it is already a set. If not, either the head exists somewhere in the tail or it does not; if it
does exist in the tail, we can discard it, since it will be included later. If not, we must include
it.

For example, consider the evaluation of make_set [4; 5; 6; 5; 4]:

7
The first part of the evaluation of rev takes time proportional to the length of the list, processing each element
once. However, when the lists are appended together, the order of the operations is such that the first
argument becomes longer each time. The @
operator, as we know, also takes time proportional to the length of
its first argument. And so, this accumulating of the lists takes time proportional to the square of the length of
the list.

By using an additional accumulating argument, we can write a version which operates in time proportional to
the length of the list.

For the same list:

5 (Sorting Things)

1
Simply add an extra let to define a name representing the number we will take or drop:

2
The argument to take or drop is length l / 2 which is clearly less than or equal to length l for all possible
values of l. Thus, take and drop always succeed. In our case, take and drop are only called with length l is
more than 1, due to the pattern matching.

3
We may simply replace the <= operator with the >= operator in the insert function.

The sort function is unaltered.

4
We require a function of type α list → bool. List of length zero and one are, by definition, sorted. If the list is
longer, check that its first two elements are in sorted order. If this is true, also check that the rest of the list is
sorted, starting with the second element.

We can reverse the cases to simplify:

5
Lists are compared starting with their first elements. If the elements differ, they are compared, and that is the
result of the comparison. If both have the same first element, the second elements are considered, and so
on. If the end of one list is reached before the other, the shorter list is considered smaller. For
example:

[1] < [2] < [2; 1] < [2; 2]

These are the same principles you use to look up a word in a dictionary: compare the first letters – if same,
compare the second etc. So, when applied to the example in the question, it has the effect of sorting the words
into alphabetical order.

6
The let rec construct can be nested just like the let construct:

We have renamed the second argument of the insert function to avoid confusion.

6 (Functions upon Functions upon Functions)

1
Our function will have type char list → char list. We just match on the argument list: if it is empty, we are
done. If it starts with an exclamation mark, we output a period, and carry on. If not, we output the character
unchanged, and carry on:

To use map instead, we write a simple function calm_char to process a single character. We can then use map to
build our main function:

This avoids the explicit recursion of the original, and so it is easier to see what is going on.

2
The clip function is of type int → int and is easy to write:

Now we can use map for the cliplist function:

3
Just put the body of the clip function inside an anonymous function:

4
We require a function apply f n x which applies function f a total of n times to the initial value x. The base
case is when n is zero.

Consider the type:

The function f must take and return the same type α, since its result in one iteration is fed back in as its
argument in the next. Therefore, the argument x and the final result must also have type α. For example, for
α =
int, we might have a power function:

So power a b calculates ab.

5
We can add an extra argument to the insert function, and use that instead of the comparison
operator:

Now we just need to rewrite the sort function.

6
We cannot use map here, because the result list will not necessarily be the same length as the argument list.
The function will have type (α → bool) → α list → α list.

For example, filter (fun x -> x mod 2 = 0) [1; 2; 4; 5] evaluates to [2; 4].

7
The function will have type (α → bool) → α list → bool.

For example, we can see if all elements of a list are positive: for_all (fun x -> x > 0) [1; 2; -1] evaluates to
false. Notice that we are relying on the fact that &&
only evaluates its right hand side when the left hand side
is true to limit the recursion.

8
The function will have type (α → β) → α list list → β list list. We use map on each element of the
list.

We have used explicit recursion to handle the outer list, and map to handle each inner list.

7 (When Things Go Wrong)

1
The function smallest_inner takes a currently smallest found integer, a boolean value found indicating if we
have found any suitable value or not, and the list of integers. It is started with max_int as the current
value, so that any number is smaller than it, and false for found because nothing has been found
yet.

Thus, the function raises an exception in the case of an empty list, or one which is non-empty but contains no
positive integer, and otherwise returns the smallest positive integer in the list.

2
We just surround the call to smallest with an exception handler for Not_found.

3
We write a function sqrt_inner which, given a test number x and a target number n squares x and tests
if it is more than n. If it is, the answer is x - 1. The test number will be initialized at 1. The
function sqrt raises our exception if the argument is less than zero, and otherwise begins the testing
process.

4
We wrap up the function, handle the Complex exception and return.

8 (Looking Things Up)

1
Since the keys must be unique, the number of different keys is simply the length of the list representing the
dictionary – so we can just use the usual length function.

2
The type is the same as for the add function. However, if we reach the end of the list, we raise an exception,
since we did not manage to find the entry to replace.

3
The function takes a list of keys and a list of values and returns a dictionary. So it will have type α list → β
list → (α × β) list.

4
This will have the type (α list × β list) → (α × β) list. For the first time, we need to return a pair,
building up both result lists element by element. This is rather awkward, since we will need the
tails of both of the eventual results, so we can attach the new heads. We can do this by pattern
matching.

Here’s a sample evaluation (we cannot really show it in the conventional way, so you must work through it
whilst looking at the function definition):

Since the inner pattern match has only one form, and is complete, we can use let instead:

5
We can use our member function which determines whether an element is a member of a list, building up a list
of the keys we have already seen, and adding to the result list of key-value pairs only those with new
keys.

How long does this take to run? Consider how long member takes.

6
We pattern match on the first list – if it is empty, the result is simply b. Otherwise, we add the first element of
the first list to the union of the rest of its elements and the second list.

We can verify that the elements of dictionary a have precedence over the elements of dictionary b by noting
that add replaces a value if the key already exists.

9 (More with Functions)

1
The function g a b c has type α → β → γ → δ which can also be written α → (β → (γ → δ)). Thus, it takes
an argument of type α and returns a function of type β → (γ → δ) which, when you give it an argument of
type β returns a function of type γ → δ which, when you give it an argument of type γ returns something of
type δ. And so, we can apply just one or two arguments to the function g (which is called partial application),
or apply all three at once. When we write let g a b c = … this is just shorthand for let g = fun a -> fun b ->
fun c -> …

2
The type of member is α → α list → bool, so if we partially apply the first argument, the type of member x
must be α list → bool. We can use the partially-applied member function and map to produce a list of
boolean values, one for each list in the argument, indicating whether or not that list contains
the element. Then, we can use member again to make sure there are no false booleans in the
list.

We could also write:

Which do you think is clearer? Why do we check for the absence of false rather than the presence of
true?

3
The function (/) 2 resulting from the partial application of the / operator is the function which divides two
by a given number, not the function which divides a given number by two. We can define a reverse divide
function…

let rdiv x y = y / x

…which, when partially applied, does what we want.

4
The function map has type (α → β) → α list → β list. The function mapl we wrote has type (α → β) → α
list list → β list list. So the function mapll will have type (α → β) → α list list list → β list list list. It
may be defined thus:

But, as discussed, we may remove the ls too:

It is not possible to write a function which would map a function f over a list, or list of lists, or list of lists of
lists depending upon its argument, because every function in OCaml must have a single type. If a function
could map f over an α list list it must inspect its argument enough to know it is a list of lists, thus it could
not be used on a β list unless β = α list.

5
We can write a function to truncate a single list using our take function, being careful to deal
with the case where there is not enough to take, and then use this and map to build truncate
itself.

Here we have used partial application of truncate to build a suitable function for map. Note that we could use
exception handling instead of calling length, saving time:

You might, however, reflect on whether or not this is good style.

6
First, define a function which takes the given number and a list, returning the first element (or the number if
none). We can then build the main function, using partial application to make a suitable function to give to
map:

10 (New Kinds of Data)

1
We need two constructors – one for squares, which needs just a single integer (the length of a side), and one for
rectangles which needs two integers (the width and height, in that order):

The name of our new type is rect. A rect is either a Square or a Rectangle. For example,

2
We pattern match on the argument:

3
This will be a function of type rect → rect. Squares remain unaltered, but if we have a rectangle with a bigger
width than height, we rotate it by ninety degrees.

4
We will use map to perform our rotation on any rects in the argument list which need it. We will then use the
sorting function from the previous chapter which takes a custom comparison function so as to just compare the
widths.

For example, packing the list of rects

[Square 6; Rectangle (4, 3); Rectangle (5, 6); Square 2]

will give

[Square 2; Rectangle (3, 4); Rectangle (5, 6); Square 6]

5
We follow the same pattern as for the list type, being careful to deal with exceptional circumstances:

6
We can use our power function from earlier:

7
We can just wrap up the previous function:

11 (Growing Trees)

1
Our function will have type α → α tree → bool. It takes a element to look for, a tree holding that kind of
element, and returns true if the element is found, or false otherwise.

Note that we have placed the test x = y first of the three to ensure earliest termination upon finding an
appropriate element.

2
Our function will have type α tree → α tree. A leaf flips to a leaf. A branch has its left and right swapped, and
we must recursively flip its left and right sub-trees too.

3
We can check each part of both trees together. Leaves are considered equal, branches are equal if their left and
right sub-trees are equal.

We can build a more general one which can compare trees of differing types to see if they have the same shape
by using the tree_map function to make two trees, each with type int tree with all labels set to 0, and then
compare them using OCaml’s built-in equality operator:

4
We can use the tree insertion operation repeatedly:

There will be no key clashes, because the argument should already be a dictionary. If it is not, earlier keys are
preferred since insert replaces existing keys.

5
We can make list dictionaries from both tree dictionaries, append them, and build a new tree from the
resultant list.

The combined list may not be a dictionary (because it may have repeated keys), but tree_of_list will prefer
keys encountered earlier. So, we put entries from t' after those from t.

6
We will use a list for the sub-trees of each branch, with the empty list signifying there are no more i.e. that
this is the bottom of the tree. Thus, we only need a single constructor.

type 'a mtree = Branch of 'a * 'a mtree list

So, now we can define size, total, and map.

In fact, when there is only one pattern to match, we can put it directly in place of the function’s argument,
simplifying these definitions:

12 (In and Out)

1
A first attempt might be:

However, there are two problems:

 OCaml

[1; 2; 3];;
- : int list = [1; 2; 3]
print_integers [1; 2; 3];;
[1; 2; 3;]- : unit = ()

There is an extra space after the last element, and a semicolon too. We can fix this, at the cost of a longer
program:

Now, the result is correct:

 OCaml

[1; 2; 3];;
- : int list = [1; 2; 3]
print_integers [1; 2; 3];;
[1; 2; 3]- : unit = ()

2
We must deal with the exception raised when read_int attempts to read something which is not an integer, as
before. When that exception is caught, we try again, by recursively calling ourselves. The function ends when
three integers are input correctly, returning them as a tuple.

You may wonder why we used nested let… in structures rather than just writing (read_int (), read_int (),
read_int ()) – the evaluation order of a tuple is not specified and OCaml is free to do what it
wants.

3
We ask the user how many dictionary entries will be entered, eliminating the need for a special “I have
finished” code. First, a function to read a given number of integer–string pairs, dealing with the usual problem
of malformed integers:

And now, asking the user how many entries there will be, and calling our first function:

Notice that we defined, raised, and handled our own exception BadNumber to deal with the user asking
to read a negative number of dictionary entries – this would cause read_dict_number to fail to
return.

4
If we write a function to build the list of integers from 1 to n (or the empty list if n is zero):

We can then write a function to output a table of a given size to an output channel.

Look at this carefully. We are using nested calls to iter to build the two-dimensional table from
one-dimensional lists. Can you separate this into more than one function? Which approach do you think is
more readable?

We can test write_table_channel most easily by using the built-in output channel stdout which just
writes to the screen:

 OCaml

write_table_channel stdout 5;;
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25
- : unit = ()

Now we just need to wrap it in a function to open an output file, write the table, and close the output, dealing
with any errors which may arise.

In addition to raising Invalid_argument in the case of a negative number, we handle all possible exceptions to
do with opening, writing to, and closing the file, re-raising them as our own, predefined one. Is this good
style?

5
We write a simple function to count the lines in a channel by taking a line, ignoring it, and adding one to the
result of taking another line; our recursion ends when an End_of_file exception is raised – it is caught and 0
ends the summation.

The main function countlines just opens the file, calls the first function, and closes the file. Any errors are
caught and re-raised using the built-in Failure exception.

6
As usual, let us write a function to deal with channels, and then deal with opening and closing files afterward.
Our function takes an input channel and an output channel, adds the line read from the input to the output,
follows it with a newline character, and continues. It only ends when the End_of_file exception is raised
inside input_line and caught.

Now we wrap it up, remembering to open and close both files and deal with the many different errors which
might occur.

13 (Putting Things in Boxes)

1
Two references, x and y, of type int ref have been created. Their initial values are 1 and 2. Their final values
are 2 and 4. The type of the expression is int because this is the type of !x + !y, and the result is
6.

2
The expression [ref 5; ref 5] is of type int ref list. It contains two references each containing the integer 5.
Changing the contents of one reference will not change the contents of the other. The expression let x = ref 5
in [x; x] is also of type int ref list and also contains two references to the integer 5. However, altering one
will alter the other:

 OCaml

let r = let x = ref 5 in [x; x];;
val r : int ref list = [{contents = 5}; {contents = 5}]
match r with h::_ -> h := 6;;
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
[]
- : unit = ()
r;;
- : int ref list = [{contents = 6}; {contents = 6}]

3
We can write a function forloop which takes a function of type int → α (where alpha would normally be
unit), together with the start and end numbers:

For example:

 OCaml

forloop print_int 2 10;;
2345678910- : unit = ()
forloop print_int 2 2;;
2- : unit = ()

4
[|1; 2; 3|] : int array

[|true; false; true|] : bool array

[|[|1|]|] : (int array) array which is int array array

[|[1; 2; 3]; [4; 5; 6]|] : int list array

[|1; 2; 3|].(2) : int, has value 2

[|1; 2; 3|].(2) <- 4 : unit, updates the array to [|1; 2; 4|]

5
We use a for construct:

Note that this works for the empty array, because a for construct where the second number is less than the
first never executes its expression.

6
Since we wish to reverse the array in place, our function will have type α array → unit. Our method is to
proceed from the first element to the half-way point, swapping elements from either end of the array. If the
array has odd length, the middle element will not be altered.

Note that we must check for the case where the array is empty; otherwise there would be an invalid attempt to
access element zero inside the for loop.

7
We will represent the int array array as an array of columns so that a.(x).(y) is the element in column x
and row y.

Note that the result is correct for table 0.

8
The difference between the codes for 'a' and 'A', or 'z' and 'Z' is 32, so we add or subtract as appropriate.
Codes not in those ranges are unaltered.

9
Periods, exclamation marks and question marks may appear in multiples, leading to a wrong answer.
The number of characters does not include newlines. It is not clear how quotations would be
handled. Counting the words by counting spaces is inaccurate – a line with ten words will count only
nine.

14 (The Other Numbers)

1
We calculate the ceiling and floor, and return the closer one, being careful to make sure that a point equally
far from the ceiling and floor is rounded up.

The behaviour with regard to values such as infinity and nan is fine, since it always returns the result of
either floor or ceil.

2
The function returns another point, and is simple arithmetic.

3
The whole part is calculated using the built-in floor function. We return a tuple, the first number being the
whole part, the second being the original number minus the whole part. In the case of a negative number, we
must be careful – floor always rounds downward, not toward zero!

Notice that we are using the unary operator -. to make the number positive.

4
We need to determine at which column the asterisk will be printed. It is important to make sure that the range
0…1 is split into fifty equal sized parts, which requires some careful thought. Then, we just print enough spaces
to pad the line, add the asterisk, and a newline character.

5
We use a reference to hold the current value, starting at the beginning of the range, and then loop until the we
are outside the range.

No allowance has been made here for bad arguments (for example, b smaller than a). Can you extend our
program to move the zero-point to the middle of the screen, so that the sine function can be graphed even
when its result is less than zero?

15 (The OCaml Standard Library)

1
A non-tail-recursive one is simple:

To make a tail-recursive one, we can use an accumulator, reversing each list as we append it, and reversing the
result. List.rev is tail-recursive already.

2
We can use List.mem, partially applied, to map over the list of lists. We then make sure that false is not in
the resultant list, again with List.mem.

3
The String.iter function calls a user-supplied function of type char → unit on each character of the string.
We can use this to increment a counter when an exclamation mark is found.

The contents of the counter is then the result of the function.

4
We can use the String.map function, which takes a user-supplied function of type char → char and returns a
new string, where each character is the result of the mapping function on the character in the same place in
the old string.

Notice that we have taken advantage of partial application to erase the last argument as usual.

5
Looking at the documentation for the String module we find the following:

So, by using the empty string as a separator, we have what we want:

6
We can use the functions create, add_string, and contents from the Buffer module together with the usual
list iterator List.iter:

The initial size of the buffer, 100, is arbitrary.

7
We repeatedly check if the string we are looking for is right at the beginning of the string to be searched. If
not, we chop one character off the string to be searched, and try again. Every time we find a match, we
increment a counter.

You might consider that writing this function with lists of characters rather than strings would be easier.
Unfortunately, it would be slow, and these kinds of searching tasks are often required to be very
fast.

16 (Building Bigger Programs)

1
First, we extend the Textstat module to allow frequencies to be counted and expose it through the interface.
Then we must revise the main program is as shown below.

2
We can write two little functions – one to read all the lines from a file, and one to write them. The main
function, then, reads the command line to find the input and output file names, reads the lines from
the input, reverses the list of lines, and writes them out. If a problem occurs, the exception is
printed out. If the command line is badly formed, we print a usage message and exit. This is shown
below.

Note that there is a problem if the file has no final newline – it will end up with one. How might you solve
that?

3
We can simply do something (or nothing) a huge number of times using a for loop.

On many systems, typing time followed by a space and the usual command will print out on the screen how
long the program took to run. For example, on the author’s computer:

$ ocamlc bigloop.ml -o bigloop
$ time ./bigloop

real 0m1.896s
user 0m1.885s
sys 0m0.005s

$ ocamlopt bigloop.ml -o bigloop
$ time ./bigloop

real 0m0.022s
user 0m0.014s
sys 0m0.003s

You can see that, when compiled with ocamlc, it takes 1.9s to run, but when compiled with ocamlopt just
0.022s.

4
We can get all the lines in the file using our getlines function from question two. The main function simply
calls string_in_line on each line, printing it if true is returned.

The interesting function is string_in_line. To see if term is in line we start at position 0.
The condition for the term having been found is a combination of boolean expressions. The first
ensures that we are not so far through the string that the expression could not possibly fit at the
current position. The second checks to see if the term is found at the current position by using the
function String.sub from the OCaml Standard Library. If not, we carry on. This is illustrated
below.

Hints for Questions
1
Starting Off

1
Try to work these out on paper, and then check by typing them in. Remember that the type of an
expression is the type of the value it will evaluate to. Can you show the steps of evaluation for each
expression?

2
Type each expression in. What number does each evaluate to? Can you work out which operator (mod or +) is
being calculated first?

3
Type it in. What does OCaml print? What is the evaluation order?

7
What if a value of 2 appeared? How might we interpret it?

2
Names and Functions

1
The function takes one integer, and returns that integer multiplied by ten. So what must its type
be?

2
What does the function take as arguments? What is the type of its result? So what is the whole type? You can
use the <> and && operators here.

3
This will be a recursive function, so remember to use let rec. What is the sum of all the integers from 1…1?
Perhaps this is a good base case.

4
This will be a recursive function. What happens when you raise a number to the power 0? What about the
power 1? What about a higher power?

5
Can you define this in terms of the isvowel function we have already written?

6
Try adding parentheses to the expression in a way which does not change its meaning. Does this make it easier
to understand?

7
When does it not terminate? Can you add a check to see when it might happen, and return 0
instead?

3
Case by Case

1
We are pattern matching on a boolean value, so there are just two cases: true and false.

2
Convert the if … then … else structure of the sum function from the previous chapter into a pattern
matching structure.

3
You will need three cases as before – when the power is 0, 1 or greater than 1 – but now in the form of a
pattern match.

5
Consider where parentheses might be added without altering the expression.

6
There will be two cases in each function – the special range pattern x..y, and _ for any other
character.

4
Making Lists

1
Consider three cases: (1) the argument list is empty, (2) the argument list has one element, (3) the
argument list has more than one element a::b::t. In the last case, which element do we need to miss
out?

2
The function will have type bool list→ int. Consider the empty list, the list with true as its head, and the
list with false as its head. Count one for each true and zero for each false.

3
The function to make a palindrome is trivial; to detect if a list is a palindrome, consider the definition of a
palindrome – a list which equals its own reverse.

4
Consider the cases (1) the empty list, (2) the list with one element, and (3) the list with more than one
element. For the tail recursive version, use an accumulating argument.

5
Can any element exist in the empty list? If the list is not empty, it must have a head and a tail.
What is the answer if the element we are looking for is equal to the head? What do we do if it is
not?

6
The empty list is already a set. If we have a head and a tail, what does it tell us to find out if the head exists
within the tail?

7
Consider in which order the @ operators are evaluated in the reverse function. How long does each append
take? How many are there?

5
Sorting Things

1
Consider adding another let before let left and let right.

2
Consider the situations in which take and drop can fail, and what arguments msort gives them at each
recursion.

3
This is a simple change – consider the comparison operator itself.

4
What will the type of the function be? Lists of length zero and one are already sorted – so these will be the
base cases. What do we do when there is more than one element?

6
You can put one let rec construct inside another.

6
Functions upon Functions upon Functions

1
The function calm is simple recursion on lists. There are three cases – the empty list, a list beginning with '!'
and a list beginning with any other character. In the second part of the question, write a function
calm_char which processes a single character. You can then use map to define a new version of
calm.

2
This is the same process as Question 1.

3
Look back at the section on anonymous functions. How can clip be expressed as an anonymous function? So,
how can we use it with map?

4
We want a function of the form let rec apply f n x = … which applies f to x a total of n times. What is the
base case? What do we do in that case? What otherwise?

5
You will need to add the extra function as an argument to both insert and sort and use it in place of the <=
operator in insert.

6
There are three possibilities: the argument list is empty, true is returned when its head is given to the function
f, or false is returned when its head is given to the function f.

7
If the input list is empty, the result is trivially true – there cannot possibly be any elements for
which the function does not hold. If not, it must hold for the first one, and for all the others by
recursion.

8
You can use map on each α list in the α list list.

7
When Things Go Wrong

1
Make sure to consider the case of the empty list, where there is no smallest positive element, and also the
non-empty list containing entirely zero or negative numbers.

2
Just put an exception handler around the function in the previous question.

3
First, write a function to find the number less than or equal to the square root of its argument. Now, define a
suitable exception, and wrap up your function in another which, on a bad argument, raises the exception or
otherwise calls your first function.

4
Use the try … with construct to call your function and handle the exception you defined.

8
Looking Things Up

1
The keys in a dictionary are unique – does remembering that fact help you?

2
The type will be the same as for the add function, but we only replace something if we find it there – when do
we know we will not find it?

3
The function takes a list of keys and a list of values, and returns a dictionary. So it will have type α list → β
list → (α × β) list. Try matching on both lists at once – what are the cases?

4
This function takes a list of pairs and produces a pair of lists. So its type must be (α × β) list → α list × β
list.

For the base case (the empty dictionary), we can see that the result should be ([], []). But what to do in
the case we have (k, v) ::more? We must get names for the two parts of the result of our function on more,
and then cons k and v on to them – can you think of how to do that?

5
You can keep a list of the keys which have already been seen, and use the member function to make sure you do
not add to the result list a key-value pair whose key has already been included.

6
The function will take two dictionaries, and return another – so you should be able to write down its type
easily.

Try pattern matching on the first list – when it is empty, the answer is trivial – what about when it has a
head and a tail?

9
More with Functions

2
Try building a list of booleans, each representing the result of member on a list.

3
The / operator differs from the * operator in an important sense. What is it?

4
The type of map is (α → β) → α list → β list. The type of mapl is (α → β) → α list list → β list list. So,
what must the type of mapll be? Now, look at our definition of mapl – how can we extend it to lists of lists of
lists?

5
Use our revised take function to process a single list. You may then use map with this (partially applied)
function to build the truncate function.

6
Build a function firstelt which, given the number and a list, returns the first element or that number. You
can then use this function (partially applied) together with map to build the main firstelts
function.

10
New Kinds of Data

1
The type will have two constructors: one for squares, requiring only a single integer, and one for rectangles,
requiring two: one for the width and one for the height.

2
The function will have type rect → int. Work by pattern matching on the two constructors of your
type.

3
Work by pattern matching on your type. What happens to a square. What to a rectangle?

4
First, we need to rotate the rectangles as needed – you have already written something for this. Then, we need
to sort them according to width. Can you use our sort function which takes a custom comparison function for
this?

5
Look at how we re-wrote length and append for the sequence type.

6
Add another constructor, and amend evaluate as necessary.

7
Handle the exception, and return None in that case.

11
Growing Trees

1
The type will be α → α tree → bool. That is, it takes an element to search for, and a tree containing elements
of the same type, and returns true if the element is found, and false if not. What happens if the tree is a
leaf? What if it is a branch?

2
The function will have type α tree → α tree. What happens to a leaf? What must happen to a branch and its
sub-trees?

3
If the two trees are both Lf, they have the same shape. What if they are both branches? What if one is a
branch and the other a leaf or vice versa? For the second part of the question, consider a devious way to use
map_tree to produce trees of like type.

4
We have already written a function for inserting an element into an existing tree.

5
Try using list dictionaries as an intermediate representation. We already know how to build a tree from a
list.

6
Consider using a list of sub-trees for a branch. How can we represent a branch which has no sub-trees?

12
In and Out

1
You can use the print_string and print_int functions. Be careful about what happens when you print the
last number.

2
You can use the read_int function to read an integer from the user. Be sure to give the user proper
instructions, and to deal with the case where read_int raises an exception (which it will if the user does not
type an integer).

3
One way would be to ask the user how many dictionary entries they intend to type in first. Then we do not
need a special code to signal the end of input.

4
Try writing a function to build a list of integers from 1 to n. Can you use that to build the table and print it?
The iter and/or map functions may come in useful. Deal with a channel in your innermost function – the
opening and closing of the file can be dealt with elsewhere.

5
The input_line function can be used – how many times can you call it until End_of_file is
raised?

6
We can read lines from the file using input_line and write using output_string – make sure the newlines do
not get lost! How do we know when we are done? Write a function to copy a line from one channel to another –
we can deal with opening and closing the files separately.

13
Putting Things in Boxes

1
Consider the initial values of the references, and then work through how each one is altered by each part of the
expression. What is finally returned as the result of the expression?

2
Try creating a value for each list in OCaml. Now try getting the head of the list, which is a reference, and
updating its contents to another integer. What has happened in each case?

3
Try writing a function forloop which takes a function to be applied to each number, and the start and end
numbers. It should call the given function on each number. What should happen when the start number is
larger than the end number?

4
Type them in if you are stuck. Can you work out why each expression has the type OCaml prints?

5
We want a function of type int array → int. Try a for loop with a reference to accumulate the
sum.

6
Consider swapping elements from opposite ends of the array – the problem is symmetric.

7
To build an array of arrays, you will need a use Array.make to build an array of empty arrays. You can then
set each of the elements of the main array to a suitably sized array, again created with Array.make. Once the
structure is in place, putting the numbers in should be simple.

8
What is the difference between the codes for 'a' and 'A'? What about 'z' and 'Z'?

14
The Other Numbers

1
Consider the built-in functions ceil and floor.

2
This is simple arithmetic. The function will take two points and return another, so it will have type float ×
float → float × float → float × float.

3
Consider the built-in function floor. What should happen in the case of a negative number?

4
Calculate the column number for the asterisk carefully. How can it be printed in the correct column?

5
You will need to call the star function with an appropriate argument at points between the beginning and end
of the range, as determined by the step.

15
The OCaml Standard Library

1
You can assume List.rev which is tail-recursive.

2
You might use List.map here, together with List.mem

3
The String.iter function should help here.

4
Try String.map supplying a suitable function.

5
Consider String.concat.

6
Create a buffer, add all the strings to it in order, and then return its contents.

7
String.sub is useful here. You can compare strings with one another for equality, as with any other
type.

16
Building Bigger Programs

1
You will need to alter the Textstat module to calculate the histogram and allow it to be accessed
through the module’s interface. Then, alter the main program to retrieve and print the extra
information.

2
You will need functions to read and write the lines. You can read the required input and output filenames from
Sys.argv. What should we do in case of an error, e.g. a bad filename?

3
Consider doing something a very large number of times. You should avoid printing information to the screen,
because the printing speed might dominate, and the differing computation speeds may be hard to
notice.

4
Start with a function to search for a given string inside another. You might find some functions from the
String module in the OCaml Standard Library to be useful, or you can write it from first principles. Once this
is done, the rest is simple.

Coping with Errors
It is very hard to write even small programs correctly the first time. An unfortunate
but inevitable part of programming is the location and fixing of mistakes. OCaml has a range of messages to
help you with this process.

Here are descriptions of the common messages OCaml prints when a program cannot be accepted or when
running it causes a problem (a so-called “run-time error”). We also describe warnings OCaml prints to alert
the programmer to a program which, though it can be accepted for evaluation, might contain
mistakes.

ERRORS
These are messages printed when an expression could not be accepted for evaluation, due to being malformed
in some way. No evaluation is attempted. You must fix the expression and try again.

Syntax error
This error occurs when OCaml finds that the program text contains things which are not valid words (such as
if, let etc.) or other basic parts of the language, or when they exist in invalid combinations – this is known as
syntax. Check carefully and try again.

 OCaml

#1 +;;
Error: syntax error

OCaml has underlined where it thinks the error is. Since this error occurs for a wide range of
different mistakes and problems, the underlining may not pinpoint the exact position of your
mistake.

Unbound value …
This error occurs when you have mentioned a name which has not been defined (technically “bound to a
value”). This might happen if you have mistyped the name.

 OCaml

x
+ 1;;
Error: Unbound value x

In our example x is not defined, so it has been underlined.

This expression has type … but an expression was expected of type …
You will see this error very frequently. It occurs when the expression’s syntax is correct (i.e. it is made up of
valid words and constructs), and OCaml has moved on to type-checking the expression prior to evaluation. If
there is a problem with type-checking, OCaml shows you where a mismatch between the expected and actual
type occurred.

 OCaml

1 + true;;
Error: This expression has type bool but an expression was expected of type
 int

In this example, OCaml is looking for an integer on the right hand side of the + operator, and finds something
of type bool instead.

It is not always as easy to spot the real source of the problem, especially if the function is recursive.
Nevertheless, a careful look at the program will often shine light on the problem – look at each function and its
arguments, and try to find your mistake.

This function is applied to too many arguments
Exactly what it says. The function name is underlined.

 OCaml

let f x = x + 1;;
val f : int -> int = <fun>
f
x y;;
Error: This function is applied to too many arguments;
maybe you forgot a ‘;'

The phrase “maybe you forgot a ‘;’ ” applies to imperative programs where accidently missing out a ‘;’ between
successive function applications might commonly lead to this error.

Unbound constructor …
This occurs when a constructor name is used which is not defined.

 OCaml

type t = Roof | Wall | Floor;;
type t = Roof | Wall | Floor
Window;;
Error: Unbound constructor Window

OCaml knows it is a constructor name because it has an initial capital letter.

The constructor … expects … argument(s), but is applied here to … argument(s)
This error occurs when the wrong kind of data is given to a constructor for a type. It is just another type
error, but we get a specialised message.

 OCaml

type p = A of int | B of bool;;
type p = A of int | B of bool
A;;
Error: The constructor A expects 1 argument(s),
 but is applied here to 0 argument(s)

RUN-TIME ERRORS
In any programming language powerful enough to be of use, some errors cannot be detected before attempting
evaluation of an expression (until “run-time”). The exception mechanism is for handling and recovering from
these kinds of problems.

Stack overflow during evaluation (looping recursion?)
This occurs if the function builds up a working expression which is too big. This might occur if the
function is never going to stop because of a programming error, or if the argument is just too
big.

 OCaml

let rec f x = 1 + f (x + 1);;
val f : int -> int = <fun>
f 0;;
Stack overflow during evaluation (looping recursion?).

Find the cause of the unbounded recursion, and try again. If it is really not a mistake, rewrite the function to
use an accumulating argument (and so, to be tail recursive).

Exception: Match_failure …
This occurs when a pattern match cannot find anything to match against. You would have been warned about
this possibility when the program was originally entered. For example, if the following function f were defined
as

let f x = match x with 0 -> 1

then using the function with 1 as an argument would produce:

 OCaml

f 1;;
Exception: Match_failure ("//toplevel//", 1, 10).

In this example, the match failure occurred in the top level (i.e. the interactive OCaml we are using), at line
one, character ten.

Exception: …
This is printed if an un-handled exception reaches OCaml.

 OCaml

exception Exp of string;;
exception Exp of string
raise (Exp "Failed");;
Exception: Exp "Failed".

This can occur for built-in exceptions like Division_by_Zero or Not_found or ones the user has defined like
Exp above.

WARNINGS
Warnings do not stop an expression being accepted or evaluated. They are printed after an expression is
accepted but before the expression is evaluated. Warnings are for occasions where OCaml is concerned you
may have made a mistake, even though the expression is not actually malformed. You should check each new
warning in a program carefully.

This pattern-matching is not exhaustive
This warning is printed when OCaml has determined that you have missed out one or more cases in a pattern
match. This could result in a Match_failure exception being raised at run-time.

 OCaml

let f x = match x with 0 -> 1;;
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
1
val f : int -> int = <fun>

Helpfully, it is able to generate an example of something the pattern match does not cover, so this should give
you a hint about what has been missed out. You may ignore the warning if you’re sure that, for other reasons,
this case can never occur.

This match case is unused
This occurs when two parts of the pattern match cover the same case. In this situation, the second one could
never be reached, so it is almost certain the programmer has made a mistake.

 OCaml

let f x = match x with _ -> 1 | 0
-> 0;;
Warning 11: this match case is unused.
val f : int -> int = <fun>

In this case, the first case matches everything, so the second cannot ever match.

This expression should have type unit
Sometimes when writing imperative programs, we ignore the result of some side-effect-producing function.
However, this can indicate a mistake.

 OCaml

f 1; 2;;
Warning 10: this expression should have type unit.
- : int = 2

It is better to use the built-in ignore function in these cases, to avoid this warning:

 OCaml

ignore (f 1); 2;;
- : int = 2

The ignore function has type α → unit. It has no side-effect.

images/00185.jpg
count_exclamations : string — int

let count_exclamations s =
let n = ref 0 in
String.iter (function '!' ->n :=

matl_->0) s

images/00184.jpg

images/00187.jpg
add : int — int — int

let add xy=x+y

images/00186.jpg
entry_to_channel : out_channel — (int x string) — unit
dictionary_to_channel : out_channel — (int x string) list — unit

let entry_to_chamnel ch (k, v) =
output_string ch (string of_int k);
output_char ch '\n';
output_string ch v;
output_char ch '\n'

let dictionary_to_chamel ch d =
iter (entry_to_chamnel ch) d

images/00181.jpg

images/00180.jpg
Lookup : (a x) tree = o —+ §

let rec lookup tr k =
match tr with
Lt -> raise Not_found
1 Br (&', W, 1, 1) ->
if k= k' then v
else if k < k' then lookup 1 k
else lookup T k

Jound the key

return the value
g0 left
go right

images/00183.jpg
tree_of list

let rec tree.
match 1 wi
0 -> 1t

| &, v

(o x 8) list — (a x B) tree

_of_list 1 =
th

t -> insert (tree_of list t) kv

images/00182.jpg
type expr =
Mum of int
Add of expr * expr
Subtract of expr * expr
Multiply of expr * expr

I
I
I
| Divide of expr * expr

cover.jpeg
John Whitington

images/00179.jpg
apply : (@ —+a) = int—a —+ o

let rec apply fn x =
ifn=0

then x t

else £ (apply £ (n - 1)) S R

images/00178.jpg
concat : a list list — a list

let rec concat 1 =
match 1 with
0->0
| hiit ->h @ concat t

images/00174.jpg
calm_char : char — char
caln : char list — char list

let calm char x =

match x with '1! >

let calm 1 =
map calm_char 1

images/00173.jpg

images/00176.jpg
add 1 — 8 = (ax 8) list + (ax B) list

let rec add k vd =
match d with
0 -> [0]
|, vt >
it k=K
then (k, V) i1 t
else (k', v') :: add kvt

key, value, dictionary

it is not present, so add it

found an apual key so replace the entry
otherwise, keep the entry and continuc

images/00175.jpg
match 1 + 1 with
2>
(match 2 + 2 with
34
|4 ->58)

images/00170.jpg
RS MOTHANGs, WOSH, LCEROr SAMER-WOkE: ITONLEOLNLAG dreans, b Toond
hinself transformed in his bed into a horrible vermin. He lay on
his armour-like back, and if he lifted his head a little he could
see his brown belly, slightly domed and divided by arches into stifs
sections. The bedding was hardly able to cover it and seemed ready
to slide off any moment. His many legs, pitifully thin compared
with the size of the Test of him, waved about helplessly as he
Yooked

images/00169.jpg
type rect =
Square of int
| Rectangle of int * int

images/00172.jpg
truncate 1 : int — o list —+ a list
truncate : int — o list list — o list list

let truncate 1 n 1 =
if length 1 >= n then take n 1 else 1

let truncate n 11 =
map (truncate n) 11

images/00171.jpg

images/00177.jpg
make set 14 5; 0; & 4
set [5; 6; 5; 4

set [6; 5; 4]

— 6 :: pake set [5; 4]

— 6 ::5:: make set [4]

— 6 ::5::4:: pakeset [J

— 6::5::4::0

images/00168.jpg
y ¢ int x int list

let y = (1, [2; 3; 41)

images/00163.jpg
calm : string — string

let calm =
String.map (function 't! -

| x>0

images/00162.jpg
read_dict : unit — (int x string) list

let rec read dict () =
try
let i = read_int) in
if i = 0 then [else
let name = read_line () in
(i, name) :: read_dict ()

with
Failure "int_of string’ ->

print_string "This is not a valid integer.

print_nesline ;
read dict)

read an integer
if zero, we are done

otherwise, read a name too
build a dictionary entry, fetch another

Please try again

images/00165.jpg
between : float x float — float x float — float x float

1et between (x, y) (x',) =
G+ x) /.2, 7+) /. 2)

images/00164.jpg
census : (int x int) list

let census = [(1, 4); (2, 2); 3, 2); (4, 3); (5, 1); (6, D]

images/00159.jpg
insert : (@ — a — bool) —+ a — a list — a list
let rec insert fx 1=
match 1 with
0 -
I hict >
ifxh
then x :: b i %
else h i: insert £ x €

add ertra argument f

remember to add f here too

images/00158.jpg
—_—— N~
o ba) s It — & 4 &

images/00161.jpg
fst taxfoa
od taxfof

let fst (x,)
let snd (, 3)

images/00160.jpg
member : a —+ a list — bool

let rec member & 1 =
match 1 with
0 -> false

| hist ->h = e || member e ©

images/00009.jpg
insert 3 l1;
insert 3 [1; 2; 3; 5; 91

1

1
1
1

3 25 3 55

1 :: msert 3 [2; 3; 6; 9
1::2:: insert 3 [3; 6; 9]

1::2::03 08 (6 0]

[: 1: 2: 3: 3: 5: 9]

images/00008.jpg
forloop : (int — a) = int — int — unit

let rec forloop £ nm =
if n <= then
begin
£n;
forloop £ (@ + 1) =
end

images/00011.jpg
factorial : int — int

let rec factorial a =
match a with
11
| _ -> a* factorial (a- 1)

images/00167.jpg
val length

Ret

'a list -> int

1 the length (

her of clements) of the given list.

images/00010.jpg
Temove :a — (ax 8) list — (ax B) list
let rec remove k d =
match d with
0-0
|G, vt -
if k=K
then ©

else (k', v') :: remove k t

it is not present, so we are done

equal key — remove it, and we are done

otheruise, retain and keep looking

images/00166.jpg
print_dict_entry : int x string — unit

let print_dict_entry (k, v) =
print_int k;
print_neuline O
print_string v
print_newline ()

images/00013.jpg
Bort 1635 95 2; 6; 19)

insert
insert
insert
insert
insert
insert
insert
insert
insert
insert

2: 6:

5
5
5
5
5
5
5
5
5
5
.

(sort_[9; 2; 6; 191)

(insert
Cinsert
Cinsert
(insert
Cinsert
Cinsert
(insert

Cinsert

9

°
°
°
°
°
s
5

[2; 65 9;

19: B3]

(sort_[2; 6; 191))

Cinsert:

(sort_[6; 191)))
(insert 2 (imsert 6 (sort [191))))
(insert 2 (imsert 6 (imsert 19 (sort [1)))))
(insert 2 (imsert 6 (imsert 19 [1))))
(insert 2 (imsert 6 [191)))
[6; 191))

[2; 6; 191)

19]

Cinsert.

images/00012.jpg
member_tree : a — a tree — bool

let rec member_tree x tr =
match tr with
Lt -> false

| Br (7, 1,) -> x = y || member_tree x 1 || member_tree x r

images/00152.jpg
q : int x char

let q = (1, '1)

images/00151.jpg
pover_match : int — int — int

let rec pover_zatch x n =
zatch n with
01
112
| _ > x » power match x (@ - 1)

images/00154.jpg
copy_file : string — string — unit
exception CopyFailed

let copy_file from name to_name =
try
let from_ch = open_in from name in
let to_ch = open_out to_name in
copy_tile_ch from_ch to_ch;
close_in from_ch;
close_out to_ch

with
_ -> raise CopyFailed

images/00153.jpg
R R

mklists L1, 2); 3, 4); 5, 6)]
mklists [(3, 4); (5, 6)]
mklists [(5, 6)]

melists []

@, o

(1, [6])

(13; 81, [4; 61)

([1: 3: 5], [2: 4: 6])

images/00148.jpg
smallest_pow2 : int — int

let smallest_pou2 x =

let t =ref 1in start the test value at 1
while !t < x do cach time it is less than .
t = tp a2 double it
done;

1t the final result is the contents of ¢

images/00150.jpg
P :int x int

let p= (1, 4)

images/00149.jpg
concat: string list —

string

let concat =
String. concat

images/00156.jpg
fst taxfoa
od taxfof

let st p
let snd p

atch p uith (x,) > x
match p with (, y) -> ¥

images/00155.jpg
sort : alist — a list

let rec sort 1=
let rec insert x s

match s with

0 ->
[
ifx<=h
then x i1 h it
else h:: insert x t
match 1 with
o-0

| hist -> insert h (sort t)

images/00157.jpg
uppercase : char — char
lovercase : char —+ char
let uppercase x =
if int_of char x >= 97 &k int_of char x <= 122
then char_of _int (int_of_char x - 32)
else x

let lowercase x =
if int_of char x >= 65 &k int_of char x <= 90
then char_of_int (int_of_char x + 32)
else x

images/00002.jpg
let rec sort 1
match 1 with
0->0 an empty list is already sorted

| hist -> insert h (sort t) insert the head into the sorted tail

images/00001.jpg
concat_tail : a list —+ a list list — o list
concat : a list list — o list

let rec concat_tail al =
match 1 with
0 -> List.rev a
| hist -> concat_tail (List.rev h @ a) t

let concat 1 =
concat_tail [] 1

images/00004.jpg
factorial : int — int

let rec factorial a =
if a = 1 then 1 else a * factorial (a - 1)

images/00003.jpg
concat : string list —+ string

let concat ss =
let b = Buffer.create 100 in
List.iter (Buffer.add_string b) ss;
Butfer.contents b

images/00006.jpg
nothing : a option
mumber : int option
mumbers : int option list
word : char list option

let nothing = None

let nuzber = Some 50

16t numbers = [Some 12; None; Nome; Some 2]

let word = Some ['c'; 'a’; 'K'; 'e']

images/00005.jpg
let rec insert x 1
match 1 with

the simple euse — just put @ in

0 -
| hest o> otherwise we have a head and a tail
ifx<n if we are at an appropriate point
then x :: b it Just put @ here
else h :: insert x t otherwise, keep h and carry on

images/00007.jpg
factorial

let rec
ifas=

int — int

actorial a =
1 then 1 else a * factorial (a - 1)

images/00141.jpg

images/00262.jpg
dictionary of file : string — (int x string) list

let dictionary_of file filename =
let ch = open_in filename in
let dict = dictionary_of_channel ch in
close_in ch;
dict

images/00140.jpg
array_sum : int array — int

let array_sum a =

let sum = ref 0 in
for x = 0 to Array.length a - 1 do
sun := lsum + a. (o)
done;

images/00261.jpg
area : rect — int

let area r =
match T with
Square s -> s * 5
| Rectangle (v, h) > w * b

images/00143.jpg
last : alist + a

let rec last 1=
match 1 with
0 -> raise Not_found
1B > x
| it -> last ©

images/00264.jpg
Bed
ged
ged

b A e i

3456 1792

17

1664

1664 128

£ed
ged
128

128 0

images/00142.jpg
mapl : (o — B) — a list list — 3 list list

let mapl £ = map (zap £)

images/00263.jpg
is written as Br (1, Lf, Lf)

1
2 is written as Br (2, Br (1, Lf, Lf), Lf)
1

A

2 iswrittenas Br (2, Br (1, Lf, Lf), Br (4, Lf, Lf))

images/00258.jpg
union : (@ x 8) list = (a x 8) list — (a x 8) list

let rec union a b =
match a with
o->b
| (k,)iit -> add k v (union t b)

images/00139.jpg
read_three : unit — int x int x int

let rec read_thres ()
try

print_string 'Type three integers, pressing Enter after each';

print_nevline (;

let x = readint) in

let y = read_int () in
let z = read_int) in
< . 2

with
Failure “int_of string® >
print_string "Failed to read integers; please try again';
print_nesline 0;
read_three ()

images/00260.jpg
JZactarial (=13

-1 * factorial (-2)

-1 (-2 % factorial (-3))
2w

* factorial (-4)))

images/00138.jpg
isupper : char — bool
islover : char — bool

let isupper ¢ =
match ¢ with
W20 o> true
| - -> false

let islover ¢ =
match ¢ with
‘al..'z! > true
| _ -> false

images/00259.jpg
Tead_dict_number : int — (int x string) list

let rec read dict_mumber n =
ifn =0 then [else
try
let i = read_int () in
let name = read_line () in
(i, name) :: read_dict_number (n - 1)
with
Failure "int_of string’ ->
print_string 'This is not a valid integer."
print_nevline ();
print_string 'Please enter integer and mame again."
print_neuline O;
read_dict_number n

images/00029.jpg
merge 19; 53] 12; 6; 197

(merge [9; 53] [6; 19])

6 :: (merge [9; 53] [19])

6 ::9 :: (merge [53] [19])
6119 :: 19 :: (merge [53] [)
6::9:: 19 :: [53]

2: 6: 9: 19: 53]

images/00028.jpg
ged : int — int — int

let rec ged a b=
if b = 0 then a else ged b (a mod b)

images/00031.jpg
count_true

bool list —+ int

let rec count_true 1=

match 1

o -
| true
| false

with
o
£ > 1+ count_true t

+ -> count_true t

count this one
but not this one

images/00030.jpg
clip : int = int

let clip x
if x < 1 then 1 else
if x > 10 then 10 alse x

images/00033.jpg
ey Ll; 253 A
— rev [2;3; 41 e [1]
— Gev [3; 410 [2D) e [1]
— (Gev [4] @ [3D) ¢ [2]) e [1]
— (@ev D e[4) e [3D) 0 [2D) e
— (O e[e eleo
— (4l e [3) e 2) e [1]
— (4, 30D el
4, 3, 21 ¢ 1]
4 3: 2: 1]

images/00145.jpg
(3, "three")

/\

(1, "ome") (4, "four")

A

(2, "two")

A

images/00266.jpg
(* Textstat module interface *)
type stats = int * int * int * int

val lines : stats -> int
val characters : stats -> int

val words : stats -> int

val sentences : stats -> int

val stats_from_chamnel : in_channel -> stats

val stats_from file : string -> stats

images/00032.jpg
ged : int — int — int

let rec ged a b =
match b with
0->a
| _ > ged b (a mod b)

images/00144.jpg
s :rect
T :rect

let s

let T

Square 7

Rectangle (5, 2)

width 5, height 2

images/00265.jpg
List The List module provides many functions over lists, some of
which we have already written ourselves in carlier chapters. Tt
also provides a simple implemer
sorting and searching functior

hrray Fu for creating and modifying arrays, conversion to and
from lists, and array sorting. Functions to iterate over arrays

tation of dictionarics, and list

Char Operations onc
cters and th

integer cquivalents.
Functions to build and modify strings, together with searching,
uapping, and iteration functions.

String

Random Generating ps
bers.

ntegers and foating-point

Butfer Buffers are used for building strings up from sub-strings or
characters, without the cost of repeated string concatenation.
Printf Fu for printing with “format strings’, which are more
fiexible and concise than repeated use of print_int and
print_string cic

images/00035.jpg
key_exists : a — (ax) list — bool

let rec key_exists k d =
try

let
with

Not_found -> false

Yookup k d in true

images/00147.jpg
even_elements : a list — a list

let rec even_elements 1 =
zatch 1 with

_iibiit -> b i: even_elements t drop one, keep one, curvy on

[otherwise, no more to drop

images/00034.jpg
msort : alist — a list

let rec msort 1 =
match 1 with
0-0
I >
(=
let left = take (length 1/ 2) 1 in
let right = drop (length 1/2) 1in
merge (msort left) (msort right)

we are done if the list is cmpty
also if it has only one clement

get the left hand half
and the right hand half
sort sublists and merge

images/00146.jpg

images/00026.jpg
merge : a list — a list — o list

let rec merge x y =
match x, y with
0,1->1
11, 0->1
| hx:itx, hy:ity >
if hx < by
then hx :: merge tx (hy :: ty)
else hy :: merge (hx :: tx) ty

we can match on more than one thing using commas

if the first is empty, just return. the second.
and vice-versa

put ha first because it is smaller
otheruise put hy first

images/00025.jpg
mklists : (o x 8) list — a list x 3 list

let rec mklists 1 =

match 1 with
0 - @, o build the empty pair
| &, v:more -> we have at least one key-value pair
match mklists more with ‘make the rest

(ks, vs) -> (k :: ks, v :: vs) and attach k and v

images/00027.jpg
size : a tree — int.

let rec size tr =
match tr with
Br (L, 1, 1) ->1+sizel+sizer
| Lt ->0

images/00130.jpg
Totate : rect — rect

let rect T =
match T with
Rectangle (v, h) ->
if w > b then Rectangle (b, w) else
| Square _ -> T

images/00251.jpg
mklists : (o x 8) list — a list x 3 list

let rec mklists 1 =
match 1 with
o -> (@, o
| (&, v)::more ->
let (ks, vs) = mklists more in
(e :: ks, v i:ovs)

build the empty pair
we have at least one key-valuc pair
make the rest

and attach k and

images/00129.jpg
sate_divide

let safe divide x ¥

int — int — int

try x / y with
Division_by_zero -> 0

images/00250.jpg
even_elements : a list — a list

let rec even_elements 1 =
zatch 1 with

0 -0 the list has zero clements

1 ->0 the list has one clement — drop it

| _::biit -> b even_elements t h is the head, t the tail

images/00132.jpg
——
try % /y with Division_by_zero
o e

images/00253.jpg
cliplist

int list — int list

let cliplist 1=
map clip 1

images/00131.jpg
drop 2 12; 4; 6; & 10
drop 1 [4; 6; 8; 101
drop 0 [6; 8; 101

6: 8: 10]

images/00252.jpg
—
cube 200
_—

images/00128.jpg
firstelt :a — alist + a
firstelts : o — o list list — o list

let firstelt n 1
match 1with [->n | hii_ ->h

let firstelts n1 =
map (firstelt) 1

images/00249.jpg
width_of rect : rect — int
rect_compare : rect — rect — bool
pack : rect list — rect list

let width_of rect r =
match T with
Square 5 -> 5
| Rectangle (w, 1) -> w

let rect_compare a b =
width_of rect a < width of rect b

let pack racts =
sort rect_compare (map rotate rects)

images/00248.jpg
—_—
i 100 > 99 then 0 else 1

—_—

images/00018.jpg
insert :a — alist —+ a list
sort : alist —+ a list

let rec insert x 1 =
match 1 with

0 -
| it ->
ifx<h
then x it b if t
else h :: insert x t

let rec sort 1=
match 1 with
0-0
| hiit -> insert h (sort t)

images/00137.jpg
drop_last_inner
drop_last : alist —+ a list
let rec drop_last_imner al =
match 1 with
0 ->reva
1 L1 > reva
| bi:t -> drop_last_imner (b

let drop_last 1=
drop_last_inner [1

alist — a list —+ o list

return the reversed. accumulator
same, ignoring the last clement
2t at leust tuo elements remain

images/00020.jpg
val concat : string -> string list -> string

String.concat sep sl concatenates the list of s
between eac

s 51, inserting the separator string sep

images/00019.jpg
sqrt_inner : int — int — int
sqrt : int— int

let rec sqrt_inner x n =
if x x> nthen x - 1 else sqrt_immer (x + 1) n

exception Complex

let sqrt n =
if n < 0 then raise Complex else sqrt_immer 1n

images/00022.jpg

images/00134.jpg
append : a list — a list — a list

Lot rec appond 3 b =
match with
0->b
| Bist ->h :: append © b

images/00255.jpg
svap : a ref — a ref — unit

let swap a b =
let t = fain
a:=tb; b=t

images/00021.jpg
isvowel : char — bool

let isvowel ¢ =
match ¢ with

'al o> true
| te! -> true
1140 -> true
| to! -> true
|t -> true
|

> false

images/00133.jpg
treemap : (a = 8) = a tree — § tree

let rec treemap £ tr =
match tr with
Br (x, 1, 1) -> Br (¢ x, treemap £ 1, tree_map £)
I Lt > Le

images/00254.jpg
dictionary_of pairs_imner : a list — (o x §) list —+ (o x 3) list

dictionary_of pairs : (a x) list =+ (a x §) list

let rec dictionary of pairs imner keys_seen 1 =
zmatch 1 with
0-0
|G, Wit >
if member k keys_seen
then dictionary_of pairs_imer keys_seen t
else (k, v) :: dictionary_of pairs_imner (k

let dictionary_of pairs 1 =
dictionary_of_pairs_imner [1 1

keys_seen)

images/00024.jpg
isvowel : char — bool

Lot isvouel c
match c with
ar e

| _ > false

> true

images/00136.jpg
last : alist + a

let rec last 1=
match 1 with
b > x
| it -> last ©

images/00257.jpg
Tev_inner : a list —+ a list — o list
rev : o list - o list

let rec rev_inner al=
match 1 with

0->a
| hitt -> rev_inner (h :: a) 1
let rev 1=

rev_imer [1 1

images/00023.jpg
(* Textstat module interface *)
type stats

val lines : stats -> int
val characters : stats -> int
val words : stats -> int

val sentences : stats -> int

val stats_from file : string -> stats

images/00135.jpg
truncate 1 : int — o list —+ a list
truncate : int — o list list — o list list

let truncate 1 n 1 =
try take n 1 with Invalid argurent "take’ -> 1

let truncate n 11 =
map (truncate n) 11

images/00256.jpg
Zaciorial ‘2

factorial 3

@ » factorial 2)
(3 + (2 + factorial 1)
@xer1)

@x2

s

images/00015.jpg
channel_statistics : in_channel — unit

let channel statistics in_channel =
let lines = ref 0 in
let characters = ref 0 in we do not indent all these Lets.
let words = ref 0 in
let sentences = ref 0 in
let histogran = Array.make 256 0 in length 256, all elements initially 0
ry
while true do
let line = input_line in_chamnel in

lines := !lines + 1;
characters := !characters + String.length line;
String.iter
(fm e ->
match ¢ with
.01 170 | "1 > sentences := !sentences + 1
I ' > vords := twords + 1
[
Line;
String.iter Jor each character
(fum ¢ >
let i = int_of_char c in
histogran. (i) <- histogram. (i) + 1) update histogram
Line
done
with

End_of_tile ->
print_string "There were ";
print_int !lines;
print_string " lines, making up '3
print_int !characters;
print_string " characters with ';
print_int tvords;
print_string " words in '
print_int !sentences;
print_string " sentences.";
print_neuline O
print_histogran histogran call histogram printer

images/00014.jpg
cliplist : int list — int list

let cliplist 1=
map
(fun x ->
if x < 1 then 1 else
if x > 10 then 10 else x)

images/00017.jpg
type stats
val lines : stats -> int

val characters : stats -> int

val words : stats -> int

val sentences : stats -> int

val frequency : stats -> char -> int

val stats_from file : string -> stats

images/00016.jpg
isvovel

char — bool

let isvowel ¢ =

images/00119.jpg
occurrences : string — string — int

let occurrences ss s = occurrences of ssin s
if ss = "' then 0 else defined as zero
let mum = ref 0 in occurrences found so far
let str = ref s in current string
while
String.length ss <= String.length !str &k !str < "
do
if String.sub !str 0 (String.length ss) = ss then
mm = tmm o+ 15
str := String.sub !str 1 (String.length !str - 1)

done;

images/00240.jpg
10
15
20
25

12
16
20

12
15

10

images/00118.jpg
Bt tord 0 @ A

6: §: 4: 2: 1]

images/00239.jpg
(3, "three")

(1, "one") (4, "four")

(0, "zero") (2, "two")

images/00121.jpg
take : int — a list — a list
drop : int —+ a list —+ a list

let rec take n 1=
if n =0 then [] else
match 1 with
hitt -> bt take (- 1)t

let rec drop n 1=
ifn =0 then 1 else
match 1 with
hiit -> drop (n- D)t

images/00242.jpg
numlist : int — int list

let rec numlist n =
match n with
0> 0
| _ -> nunlist (a - 1) @ [a]

images/00120.jpg
Woaml

plot sin 0. pi (pi /. 2005}

images/00241.jpg
™

+AHA2

images/00049.jpg
total : int tree — int

let rec total tr
match tr with
Br (r, 1, 1) -> x + total 1 + total
|1t >0

images/00238.jpg
Operator Description
a+b addition

a-b subtract b from a
axb multiplication

alb divide a by b, ret

ng the whole part

amod b divide a by b, returning the remainder

images/00048.jpg
double : int list — int list

let rec double 1 =
match 1 with

0->0 no clement to process

| hist -> (% 2) it double t process the clement, and the rest

images/00051.jpg
length : a list — int

let rec length 1 =
match 1 with

0->0 the list has zero clements (the “base case

| hist -> 1 + length t his the head, t the tail

images/00127.jpg
Take 2 12; 4; 6; 8; 10]
— 2 :: take 1 [4; 6; 8; 10)
— 2::4:: take 0 [6; 8; 101
— 2::4::0

2: 4]

images/00050.jpg
read dict

unit — (int x string) list

let rec read dict () =

let i = read_int () in

if i =0 then [else
16t name = read_line () in
(i, name) :: read_dict ()

read an integer
if zero, we are done

otherwise, read a name too

build a dictionary entry, fetch another

images/00126.jpg
sum_match : int — int

let rec summatch n =
match n with
11
| _ ->n+ sunmatch (n - 1)

images/00247.jpg
round : float — float

let round x =
let ¢ = ceil x in
let £
if ¢ -. x <= x -. £ then c else

loor x in

images/00053.jpg
doulas L3 35 A3
— 2 :: double (2 4
— 2 ::4 :: double [/
— 2::4::8 :: dowble []
— 2:4:8::0

images/00052.jpg
(* Text statistics *)
type stats = int * int * int * int * int array

(+ Utility functions to retrieve parts of a stats value %)
let lines (1, B

let characters (_, c, _, -

let words (L, _, W, -,)

let semtences (., _, _, s,) =

let frequency (., _, _, -, h) x = h.(int_of_char x)

(* Read statistics from a channel %)
let stats_from channel in_chamnel =

let lines = ref 0 in

let characters = ref 0 in

let words = ref 0 in

let sentences = ref 0 in

let histogram = Array.make 266 0 in

try
while true do
let line = input_line in channel in

lines := !lines + 1;
characters := !characters + String.length line;
String.iter
(fun ¢ ->
match ¢ with
.07t | 't o> sentences := !sentences + 1
|1t > vords := twords + 1
o>
Line;
String.iter
(fun ¢ ->

let i = int_of_char c in
histogran, (i) <- histogram. (i) + 1)
Line
done;
€0, 0, 0, 0, [111) (+ Just to make the type agres +)
with
End_of_file -> (!lines, !characters, lwords, !sentences, histogram)

(+ Read statistics, given a filemame. Exceptions are not handled *)
let stats_fromfile filename =
let channel = open_in filename in
let result = stats_fron_channel chamnel in
close_in chamnel;

result

images/00055.jpg
equal_shape : a trec — £ tree — bool

let equal_shape tr tr2 =
tree_map (fun _ -> 0) tr = tres map (fun _ -> 0) tr2

images/00123.jpg
member_all : a — a list list + bool

let member_all x 1s =
let booleans = map (member x) 1s in
not (member false booleans)

images/00244.jpg
insert : (a x B) tree + @ — 8 — (a x B) tree
let rec insert tr kv =
match tr with
Lt -> Br (G, V), Lf, L)
1 Br (', v, 1, 1) ->
if k= k' then Br ((,), 1, 1)
else if k < k' then Br ((k', v'), insert 1k v,)
slse Br ((x', v'), 1, insert T k v)

insert at leaf

replace value
g0 left
go right

images/00054.jpg
Function

Type

Description

print_int
print_string
print_newline

read_line

read_int

int_of_string

string of int

open_out

close_out

open_in

close_in
output_string
output_char

int — unit
string — unit
unit — unit

unit — string

unit - int

string — int

int — string

string — out_channel

out_channel — unit

string — in_channel

in_channel — unit
out_channel — string — unit
out_channel — char — unit

Print an integer to the screen
Print a string to the screen.

aracter to th
i of the next line.

Print a newline
to the begi

Read a string from the user. The user indicates
they have finished by pressing the Enter key.
Read an integer from the user. The user
dicates they have finished by pressing the En.
ter key. Raises Failure "int_of string" if the
user types something other than an integer.
Make an integer from a string. Raiscs Failure
“int_of_string” if the string docs not repre-
sent a valid integer.

Makes a string representation of an integer.
Given a filename, open a channel for output.
Raiscs the exception Sys_error if the file could
not, be opened.

Close an output channel

Given a filename, open a channel for input
Raises the exception Sys_error if the file could
not, be opened.

Close an

put channel
Write a string to an output channel.
Write a

aracter to an output channel

images/00122.jpg
Tead dict : unit — (int x string) list
exception Badiumber

let rec read dict () =
print_string "Hou many dictionary entries to imput?';
print_neuline O;
try
Lot n = read_int O in
if 0 < 0 then raise Badiumber slse read_dict mumber n
with
Failure "int_of string’ ->
print_string 'lot a number. Try again';
print_neuline O3
read dict ()
| Badiiumber ->
print_string 'Mumber is negative. Try again’;
print_neuline O}
read dict O

images/00243.jpg
Operator

Do

true if @ and b are cqual

a<h
a<=b
a>b
a>=b
e b

truc if a is less than b

true if a is less than or equal to b

true if a is more than b

true if a is more than or equal to b

true if a is not cqual to b

images/00057.jpg
Type

Deseription

sqrt
log
1og10
tan
atan
ceil

f1oor

float_of_int
int_of_float

print_float
string of float
float_of_string

float — float
float — float
float — float
float — float
float — float
float — float
float — float
float — float

float — float

int — float
float —+ int

float — unit,
float — string
string — float

Square root of a number.
Natural logarithm

Logarithm base ten.

Sinc of an angle, given in radians
Cosine of an angle, given in radian:

thngent of an angle, given in radians
Arctangent of an angle, given in radians
Cal

Hoating-poi

late the nearcst, whole

umber at least as big as a

ber.

The nearest whole number at least as small as a foati

point number

Convert an integer to a floating-point number

cger from a Roatin

point number, ignoring

number to the screen

Print a floating-po

ld a s mber.

g from a floating-point n

Build a Roating-point number from a string. Raises
Failure "float_of_string" on a bad argument

images/00125.jpg

images/00246.jpg

images/00056.jpg
dength 18; 5: 31

1+ length [5; 5]

1+ (1 + length [51)

1+ s h 1)) bse case
1+ s+ aro)

3 B onamns: e e uptiohinting it ke vhigs]

images/00124.jpg
take : int — o list — a list
drop : int —+ a list —+ o list

let rec take n 1=
match 1 with
o -
ifn=0
then [
else raise (Invalid_arguvent "take") note the parentheses
| bict >
if 0 < 0 then raise (Invalid_argument "take') else
ifn=0then [] else b :: take (a - 1) ©

let rec drop n 1 =
match 1 with
o -
ifn=0
then [
else raise (Invalid_arguvent "drop")
| bict >
if < 0 then raise (Invalid_argument "drop") else
if n =0 then 1 else drop (n - 1) £

images/00245.jpg
print_histogram : int array — unit

let print_histogran arr =
print_string 'Character frequencies:;
print_neuline ();
for x = 0 to 255 do
if arr.(0) > 0 then
begin
print_string "For character
print_char (char_of_int x);
print_string "' (character musber
print_int x;
print_string) the comnt is ';
print_int arr.(0);
print_string *."
print_neuline ()
end

done

Jor cach character
only if the count is non-zero
print the character

print the charucter number

print the count

images/00047.jpg
make_set : a list — o list

let rec make set 1 =
match 1 with
0->0
| hist -> if member b ¢ then make

set ¢ else b

make_set ©

images/00108.jpg
flip_tree : a tree — a tree

let rec flip_tree tr =
match tr with
Lf > Lt
| Br (x, 1, 1) -> Br (x, flip_tres r, flip_tree 1)

images/00229.jpg
Ours

[1}

11

['aly tx) tell

[Red; RGB (20, 20, 20)]

i1

Cons (1, Hi1) int sequence

Cons ('a’, Coms ('x', Cons ('e’, Nil))) char sequence

Cons (Red, Cons (RGB (20, 20, 20), Nil)) color sequence

images/00228.jpg
safe_sqrt : int — int

let safe_sqrt n =
try sqrt n with Complex -> 0

images/00110.jpg
take : int — @ sequence — a sequence
drop : int — a sequence — a sequence
map : (@ —) — a sequence — 3 sequence

let rec take n 1=
if n = 0 then Nil slse
match 1 with
Wil -> raise (Invalid argurent "take")
| Cons (n, t) -> Cons (h, take (n - 1) t)

Lot rec dropn 1=
ifn =0 then 1 else
match 1 with
Wil -> raise (Invalid_arguent "drop")
| Cons (_, 1) ->drop (@ -1 1

let rec map £ 1=
match 1 with
Nil > Nil

| Cons (h, t) -> Cons (£ b, map £ t)

images/00231.jpg
type 'a tree =
Br of 'ax 'atree * 'a tres branch
| Lt leaf

images/00109.jpg
Baarh goecac 1B 30 % b

6: 6: 4: 2: 1]

images/00230.jpg
size : a mtree —+ int
total : a mtrce —+ int
map_mtree : (o —) = amtree —+ 8 mtrec

let rec size tr =
match tr with
Branch (e, 1) -> 1 + sun (map size 1)

let rec total tr =
match tr with
Branch (e, 1) -> e + sun (map total 1)

let rec map_mtree f tr
match tr with
Branch (e, 1) -> Branch (£ e, map (map_mtree 1)

1)

images/00038.jpg
10
15
20
25

12
16
20

12
18

10

images/00040.jpg
5 ey Tales)

sruns Taise)

images/00116.jpg
print_dict : (int x string) list — unit

let print dict d
iter print_dict_entry d

let print_dict =
iter print_dict_entry

images/00237.jpg
array_rev : a array — u

let array.rev a =
ifa & [11] then
for x = 0 to Array.length a / 2 do
let t = a.(0) in
a.(0) < a.(Array.length a - 1 - 0);
a.(hrray.length a - 1 - x) <= ©
done

images/00039.jpg
tree_union : (a x B) tree —+ (a x B) tree = (@ x B) tree

let tree_union t t'
tree_of_list (list_of_tree t @ list_of tree t')

images/00115.jpg
ettt o

[1: 2: 4: 5: 6]

images/00236.jpg
mkdict : o list + 8 list — (a x 8) list
let rec mkdict keys values =
match keys, values with
0, 0->0
| 0, _ -> raise (Invalid_argunent 'mkdict")
| -, O -> raise (Invalid_argunent 'mkdict")
| kitks, viivs -> (k, v) :: mkdict ks vs

unequal length.
ditto

make one pair, and move on

images/00042.jpg
let print_histogram stats =
print_string 'Character frequencies:\n';
for x = 0 to 256 do
let freq = Textstat.frequency stats (char_of it x) in
if freq > 0 then
begin
print_string "For character '';
print_char (char_of int x);
print_string " (character nuzber ';
print_int x;
print_string ") the count is ';
print_int freq;
print_string ".\n"
end
done
try
begin match Sys.argy with
[I_; filenamel] ->
let stats - Textstat.stats_from_file filename in
print_string "Words: ';
print_int (Textstat.words stats);
print_neuline (3
print_string "Characters: ';
print_int (Textstat.characters stats);
print_neuline ();
print_string "Sentences: ';
print_int (Textstat.sentences stats);
print_neuline ();
print_string "Lines: *;
print_int (Textstat.lines stats);
print_neuline (;
print_histogran stats
[
print_string 'Usage: stats <filename>\n"
end
with
. >
print_string "An error occurred: ';
print_string (Printexc. to_string e);
print_neuline ()
exit 1

images/00041.jpg
let rec length 1 =

match 1 with
o->o0

I hist > 1 + length t

let rec append a b =

match a with
o->b
| hitt >k

append t b

images/00117.jpg
ey L1;.32; 3; A)
— rev 2,3 410 [1]
rev [3; 41 @ [2] e [1]
rev [4] ¢ [3] @ [2] @ [1]
— revDo[le[3e[em
— DeMemer el

4: 3: 2: 1]

images/00044.jpg
0OCanl

fuse "lists.ml';;
val length : 'a list -> int = <fun>
val append : 'a list -> 'a list -> 'a list

<tun>

images/00112.jpg
sort : (a = a — bool) — o list — a list

let rec sort £1 =
match 1 with
0o-0
| hist -> insert £ b (sort £ t)

images/00233.jpg
Teplace

a— B = (a x B) list —+ (a x 8) list
let rec replace k v 1=
match 1 with

0 -> raise Not_found
|, vt >
it k=
then (k, v) i1 t
else (k', v')

replace k v £

could ot find it; fail

Jound it — replace

heep it, and heep looking

images/00043.jpg
;21 @ [3; 4; 5l
[1: 2: 3: 4: 5]

images/00111.jpg
length : a sequence
append : a sequence

let rec length s =
match s with
Nil -> 0
| Cons (_, ©) ->

let rec append a b
match a with
Nil -> b
| Cons (n,) ->

—+ int
—~+ a sequence — a sequ

1+ length t

Cons (1, append t b)

images/00232.jpg
tilter : (o — bool) — o list — o list

let rec filter £1 =
match 1 with

0-0
| bt ->
it th

then h :: filter £t
else filter £t

images/00046.jpg
isnil : a list —+ bool

let isnil 1=
match 1 with
0 -> true

| _ -> false

the list is empty
it has at lost one clement

images/00114.jpg
smallest_imner : int —+ bool — int list — int
srallest : int list — int

let rec smallest imner current found 1 =
ratch 1 with
o -
if found then current else raise Not_found
| hie >
if h> 0 &k h < current
then smallest_imner h true t
else smallest_ imner current found t

let smallest 1=
smallest_inner max_int false 1

images/00235.jpg
entry_of_channel : in_channel — (int x string)

dictionary_of_channel

in_channel — (int x string) list

let entry_of_chamnel ch =
let mumber = input_line ch in
Lot name = input_line ch in

(int_of _string mumber, name

let rec dictionary_of_channel ch =

try

let e = entry_of_chamnal ch in
e :: dictionary_of_channel ch

with
End_of file -> [I

images/00045.jpg
(* Command line text file statistics program %)
try
begin match Sys.argy with
[I_; filename|] ->
let stats - Textstat.stats_fron_file filename in
print_string 'Words: ';
print_int (Textstat.uords stats);
print_nevline ();
print_string 'Characters: *;
print_int (Textstat.characters stats);
print_newline ();
print_string 'Sentences: ;
print_int (Textstat.sentences stats) ;
print_nevline ();
print_string 'Lines: *;
print_int (Textstat.lines stats);
print_neuline ()
[
print_string "Usage: stats <filename>";
print_neuline
end
with
s
print_string "An error occurred: ;
print_string (Printexc.to_string e);
print_nevline (;
exit 1

see note 1

see note 2

see note 3|

images/00113.jpg
rev : a list — a list

let rec rev 1
ratch 1 with
0 -0

| hist > zev t @ [n]

images/00234.jpg
1l

(1+6)

images/00037.jpg
L
nerge
nerge
nerge
serge
nerge
nerge
nerge
nerge
nerge
nerge
nerge

nerge

2: 6:

153; 9; 2; € 191

(msort_[83; 91) (msort [2; 6; 19])

(merge (msort [63]) (msort [91)) (msort [2; 6; 191)

(merge [53] (msort [9)) (msort [2; 6; 191)

(merge [53] [9]) (msort [2; 6; 19])

[s;
[s;
[s;
[s;
[s;
[s;
[s;
[s;

a:

53]
53]
53]
53]
53]
53]
53]
53]
19:

(msort.
(merge
(merge
(merge
(merge
(merge
(merge
[2; 6
53]

[2;

6; 191)

(@sort [2]) (msort [6; 19])

21
[21
21
21
(21
19]

(msort_[6; 191))

(merge (msort [6]) (msort [191)))
(merge [6] (msort [191)))

(merge [6] [191))

[6; 191)

images/00036.jpg
match b with 0

images/00218.jpg
(* A progran which takes sufficiently long to run that we can distinguish
betueen the ocamlc and ocamlopt compilers *)

for x = 1 to 10000000 do
0

images/00099.jpg
‘type;axpr
thum of int

| Add of expr * expr

| Subtract of expr * expr

| Multiply of expr * expr

| Divide of expr * expr

| Pover of expr * expr

evaluate : expr — int

let rec evaluate o =
match e with
am x > x
| Add (e, e') -> evaluate e + evaluate e’
| Subtract (e, e') -> evaluate e - evaluate
| Maltiply (e, e') -> evaluate e * evaluate e
1
|

Divide (e, e') -> evaluate e / evaluate e'
Power (e, ') -> pover (evaluate e) (evaluate

images/00220.jpg
Rl
— 146

images/00098.jpg
(* Reverse the lines in a file *)
let putlines lines filename =
let channel = open_out filename in
List.iter
(fun 5 ->
output_string channel s;
output_char channel *\n’)
lines;
close_out channel
let getlines filename =
let channel = open_in filename in
let lines = ref [in

try
while true do
lines := input_line chammel :: !lines
done;
i}
with

End_of file ->
close_in channel;
List.rev !lines

let _
match Sys.argv with
[I_; infile; outfilel] ->
begin
try
let lines = List.rev (getlines infile) in
putlines lines outfile
with
print_string "There vas an error. Details follow:\n';
print_string (Printexc.to_string e);
print_neuline ();
exit 1

end
[
print_string "Usage: reverse input_filename output_filename\n';

exit 1

images/00219.jpg
msort : alist — a list

let rec meort 1=
match 1 with
00
[
[
let x = length 1 /2 1n
Lot loft = take x 1 in
Lot right = drop x 1 in
merge (msort left) (msort right)

we are done if the list is copty
and also if it only has one lement

get the left hand half
and the right hand half
sort and merge them

images/00069.jpg
0OCanl

et rec sum 1 =
match 1 with

Birt o> B+ oeun t;;
Varning 8: this pattern-matching is not exhaustive
Here is an example of a value that is not matched:
[i}

val sum : int list -> int = <fun>

images/00068.jpg
iter : (@ — B) — a list — unit

let rec iter £1=
match 1 with
0->0
| hiit > £ b dter £t

do nothing; just return unit

do this onc

and move on

images/00071.jpg
(* Text statistics %)
type stats = int * int * int * int

(+ Utility functions to retrieve parts of a stats value *)
let lines (1, B

let characters (., ¢, _,) = ¢
let words (L, _, w, J =w
let semtences (., _, _,) = 5

(* Read statistics from a chamnel %)
let stats_from chamnel in_channel =
let lines = ref 0 in
let characters = ref 0 in
let vords = ref 0 in
let sentences = ref 0 in
try
while true do
let line = input_line in_channel in

lines := !lines + 1;
characters := !characters + String.length line;
String.iter

(fum ¢ >
match c with
.11 170 | 1) o> sentences := !sentences + 1
't -> vords := twords + 1
[IO)
Line
done;
(0, 0, 0, 0) (x Just to make the type agree *)
with

End_of_file -> (!lines, !characters, lwords, !sentences)

(+ Read statistics, given a filemame. Exceptions are not handled *)
let stats_from file filename =
let channel = open_in filename in
let result = stats_fron_channel chamel in
close_in chamnel;
result

images/00070.jpg
halve : int — int

let halve x = x / 2

images/00073.jpg
length_inner : a list — int — int
length : a list — int

let rec length imner 1 n =
ratch 1 with
0->n
| Bt -> length_imer t (+ 1)

let length 1 = length_inner 1 0

list és empty, return the accumulator
add one to the accumulator, and carry on

give an initial accumulator of zero

images/00105.jpg
greater

@ — a — bool

let greater a b =

b

images/00226.jpg
print_dict_entry : int x string — unit

let print_dict_entry (x, v) =
print_int k ; print_newline () ; print_string v ; print_newline ()

images/00072.jpg
mot : bool —+ bool
let mot x =
match x with
true -> false
| false -> true

images/00104.jpg
write_table_channel : in_channel — int — unit

let urite_table_chamnel chn =
iter
(fum x ->
iter
(fum &
output_string ch (string of_int 1);
output_string ch "\t")
(map ((*+) x (mumlist n));
output_string ch "\n")
(nuzlist n)

images/00225.jpg
1ookup_opt

a — (o x B) list — B opti

let rec lookup_opt x 1 =
match 1 with
0 -> tone

| (s, v)

©

> if x

= k then Some v slse lookup_opt

images/00075.jpg
map hatve 110; 20; 30)
5 :: map halve [20; 30)

5 ::10 :: pap halve [30]

5 ::10 :: 16 :: pap halve [
5::10 :: 16 :: O

[5: 10: 15]

images/00107.jpg
append [1; 2; 3] [4; 5; 6
— 1 :: append [2; 3 [4; 5; 6]
1::2 :: append [3] [4; 6; 6
— 1::2::3 :: append O [4; 55 6]
1::2::3:: 45 6
[1: 2: 3: 4: B: 6]

images/00074.jpg
pover : int — int — int

let pover a b =
apply (fun x > x * @) b1

images/00106.jpg
list_of tree : atree — a list

let rec list of tres tr =
match tr with
Br (x, 1, 1) -> list_of tree 1 @ [x] © list_of tree r
|1t >0

images/00227.jpg
lookup : o — (a x 8) list + 8

let rec lookup x 1 =
match 1 with
0 -> raise Not_found we reached the end, and did not find it
|G, vt -
if k = x then v else lookup X t return the value, or keep looking

images/00077.jpg
length 153 5; bl

— length_imer [5; 5; 5] 0
Is; 51 1
length_imer [5] 2

03 tase case

images/00101.jpg
msort : (o — a — bool) — a list = a list

let rec merge cup x y =

match x, y with
0,1->1
11, 0->1

| bx:stx, hy:sty

if cup hx by

then hx :: merge cmp tx (hy :: ty)

else hy :: merge cmp (hx :: tx) ty

let rec msort cmp 1
match 1 with
0-0

1 -

1o

let left = take (lemgth 1/ 2) 1 in
let right = drop (length 1 /2) 1in

merge : (@ — a — bool) — a list — o list — o list

merge cup (msort cmp left) (msort cup right)

use our comparison function
put ha first — it is “smaller
otheruise put hy first

images/00222.jpg
isupper : char — bool
islover : char — bool

let isupper ¢ =
match ¢ with
.20 o> true
| - -> false

let islover c =
not (isupper c)

images/00076.jpg
max : int — int — int
maxdepth : a trec — int

let max x y
if x >y then x alse ¥

let rec maxdepth tr =
match tr with
Br (, 1, 1) -> 1 + max (maxdepth 1) (maxdepth r)
|1t >0

images/00100.jpg
ey L1; .32 3; Al
rev_imner [[1; 2; 3; 4]
1] [2; 3; 41
rev_imner [2; 1] [3; 4]
rev_imner [3; 2; 1] [4]
2110

4: 3: 2: 1)

images/00221.jpg
size : a mtree —+ int
total : a mtrce —+ int
map_mtree : (o —) = amtree —+ 8 mtrec

let rec size (Branch (e, 1)) =
1+ sun (map size 1)

1ot rec total (Bramch (e, 1)) =
e+ sun (map total 1)

16t rec map_mtree f (Branch (s, 1)) =
Branch (f e, map (map_mtree £) 1)

images/00103.jpg
append : a list — a list — a list

Lot rec appond 3 b =
match a with
0->b
| Bist ->h :: append © b

images/00224.jpg
table : string — int — unit
exception FileProblen

let table filename n =
if n <0 then raise (Invalid_argument "table’) slse
try
let ch = open_out filename in
write_table_channel ch n;
close_out ch
with
_ -> raise FileProblen

images/00102.jpg
sum : int — int

let rec sumn =
ifn =1 then 1 else n + sun (n - 1)

images/00223.jpg
count_true_inner : int — bool list — int
count_true : bool list — int

let rec count_true_immer n 1 =
match 1 with
0->n
| true::t -> count_true_imner (n + 1) t
| false::t -> count_true_inner n t

let count_true 1
count_true_inner 0 1

no more; return the accumulator
count this one
but not this one

initialize the accumulator with zero

images/00209.jpg
dictionary to_file : string — (int x string) list —+ unit

let dictionary_to_file filename dict =
let ch = open_out filename in
dictionary_to_channel ch dict;
close_out ch

images/00208.jpg
star : float — unit

Lot star x =
let i = int_of float (floor (x *. 50.)) in
Lot i = if 1 = 50 then 49 slss i in
for x = 1to i - 1do print_char * * done;
print_char *+;
print_neuline ()

images/00058.jpg
evens : int list — bool list

let rec evens 1=
match 1 with
0-0
| hi:t -> (b mod 2 = 0)

evens t

no clement to process
process the clement, and the rest

images/00060.jpg
length : a list — int

let rec length 1 =
zmatch 1 with

0->0 the list has zero clements

| it o> 1+ length ¢ his the head, t the tail

images/00059.jpg
print_dict : (int x string) list — unit

let rec print dict d =
ratch d with

0-0 do nothing; just return unit

| h:st -> print_dict_entry h; print_dict t do this one, and move on

images/00062.jpg
member_all : a — a list list + bool

let member_all x 1s =
not (member false (map (rember x) 1s))

images/00215.jpg
r —+ int x int x int

components : colo

let components c
match ¢ with
Red -> (255, 0, 0)
Green -> (0, 255, 0)
Blue -> (0, 0, 255)
Yellow -> (255, 285, 0)

|
|
|
| RGB (r, g, b) -> (r, g, b)

images/00061.jpg
table : int — int array array

let table n =
let a = Array.make n [I1] in

forx=0ton-1do
2.(x) < Array.make n 0

done;

for y=0ton-1do
forx=0ton-1do

2. < D) G+ 1)

done

done;

images/00214.jpg
146

images/00064.jpg
mapll : (@ — B) — « list list list — 3 list list list

let mapll £ = map (map (map £))

images/00217.jpg
smallest_or_zero : int list — int

let smallest_or_zero 1 =
try smallest 1 with lNot_found -> 0

images/00063.jpg
false :: evems [2; 4]
false :: true :: evens [4]

false :: true i: true :

false :: true :: true :: [

Ceadans trin: troal

images/00216.jpg
channel_statistics : in_channel — unit

let channel statistics in_channel =
let lines = ref 0 in
let characters = ref 0 in
let words = ref 0 in
let sentences = ref 0 in

try
while true do
let line = input_line in channel in
lines := !lines + 1;
characters := !characters + String.length line;
String.iter
(fun ¢ ->
match ¢ with
.01 1701 10 o> sentences := !sentences
| "' -> vords := twords + 1
[
line
done
with

End_of_tile ->
print_string "There were ';
print_int !lines;
print_string " lines, making up
print_int !characters;
print_string " characters with ';
print_int tvords;
print_string " words in '
print_int !sentences;
print_string " sentences.";
print_nevline O

images/00066.jpg
map : (a — 8) — alist — 3 list

let rec map £ 1=
match 1 with

0->0 10 clement to process

Ihit > £ h:map £t process the element, and the rest

images/00211.jpg
‘type colour =
Red

| Green

| Blue

| Yellow

| RGB of int x imt x it

cols : colour list

let cols = [Red; Red; Green; Yellow; RGE (150, 0, 255)]

images/00065.jpg
sum : int list — int

let rec sum 1 =
match 1 with

0n-o0 the sum of no clements is zero

| hitt > h +eumt otheruise, add the heud to the sum of the tail

images/00210.jpg
mapl : (o — B) — a list list — 3 list list

Lot rec mapl £ 1 =
match 1 with
0 -0
| Bt ->map £ b :omapl £ ©

images/00213.jpg
(* Text statistics *) comment

type stats = int * int * int * int our type for statistics
let stats_from_chamel _ = (0, 0, 0, 0) statistics from a channel
let stats_from_file filename = and from a file; exceptions are not handlal

let channel = open_in filename in
let result = stats_fron_channel channel in
close_in channel;
result

images/00067.jpg
plot : (float — float) — float — float — float — unit

let plot £ a bdy =
let pos = ref a in
while tpos <= b do
star (f !pos);
pos := tpos +. dy
done

images/00212.jpg
print_integers

int list — unit

Lot print_integers 1=
print_string "[';

iter (fun i -> print_int i; print_string

print_string

5 =

images/00207.jpg

images/00089.jpg
odd_slemmrin [2; 45 25 4; 2
— 2 :: odd elements [2; 4; 2]
— 212 :: odd_elements [2]
— 2::2:: (2

2: 2: 2]

images/00198.jpg

images/00088.jpg

images/00091.jpg
make_vector : float x float — float x float — float x float
vector_length : float x float — float

offset_point : float x float — float x float — float x foat
scale_to_length : float — float x float — float x float

1ot make_vector (x0, y0) (xt, y1) =
@t -. x0, y1 -. y0)

let vector_length (x, y) =
sart (xx. x .y 4P

let offset_point x, y) (px, py) =
(px +. x, py +. 7)

let scale_to_length 1 (a, b) =
let currentlength = vector_length (a, b) in
if currentlength = 0. then (a, b) else
let factor = 1 /. currentlength in
(a *. factor, b *. factor)

to avoid division by zero

images/00090.jpg
evens : int list — bool list

Zet evens 1
map (fun x -> x mod 2 =

0)

1

images/00093.jpg
odd_elements : a list — a list

let rec odd_elements 1 =
match 1 with

aii_iit > a i: odd_elements t there is something to skip over

[there is nothing to skip over

images/00092.jpg
for_all : (a — bool) — a list — bool

let rec forall £ 1=
match 1 with
0 -> true

| hist -> £ h &k forall £ truc for this one, and all the others

images/00095.jpg
map (un o x -> x /3 110; 305 0]

[5: 10: 15]

images/00204.jpg
Ctrl

images/00094.jpg
all_contain_true : bool list list — bool

let all_contain true 1 =
not (List.mem false (List.map (List.mem true) 1))

images/00203.jpg
evaluate : expr — int

let rec evaluate & =
match e with

Mum x > x

Add (e, ') -> evaluate e + evaluate o'

Subtract (e, ') -> evaluate e - evaluate o'

Multiply (s, o') -> evaluate o * evaluate e'

Divide (e, ') -> evaluate o / evaluate o'

images/00097.jpg
i1; 21 @ 13; 4; 5]
[1: 2: 3: 4: 5]

images/00206.jpg
copy_file_ch : in_channel — out_channel — unit

let rec copy.tile_ch from.ch toch =
try
output_string to_ch (input_line from_ch);
output_string to_ch "\n';
copy_tile_ch from_ch to_ch
with
End_of_file -> ()

images/00096.jpg
if x = y then
G@i=tat1;
bi=tb- 1)
else

e ———

images/00205.jpg
drop_last : a list —+ a list

let rec drop last 1=
match 1 with

0 -0
101 >0 it is the last one, so remove it
| Bist > b s: drop_last t at least tuo clements

images/00200.jpg
add : int — int — int

let add = fun x > fun y > x + ¥

images/00199.jpg
Lookup : (o x B) tree —+ o — 8 option

let rec lookup tr k =
match tr with

Lt -> None
1B (6,), 1,) >
if k= k' then Some v found. the key ~ return the value
else if k < k' then lookup 1 k g0 left

else lookup T k go right

images/00202.jpg
print_integers_imner : int list — unit
print_integers : int list — unit

Lot rec print_integers_imer 1=
match 1 with
0-0
| [i] -> print_int i
| Bist -> print_int by print_string '; *; print integers immer t

Lot print_integers 1=
print_string "[*;
print_integers_inmer 1;
print_string

images/00201.jpg
is_sorted : a list — bool

let rec is_sorted 1 =
match 1 with
0 -> true
| B -> true

| a:tbiit -> a <= b &k is_sorted (b :: t)

images/00078.jpg
let rec string in_line term line pos =
pos + String.length term <- String.length line
@
(String.sub line pos (String.length term) = tern
|1 string_in_line tern line (pos + 1))
let getlines filename =
let channel = open_in filename in
let lines = ref [in

try
while true do
lines := input_line chammel :: !lines
done;
i}
with

End_of file ->
close_in channel;
List.rev !lines

let _ =

match Sys.argy with
[I_; searchtern; filenamel] ->

begin
ry
List.iter
(fun line ->
if string in line searchtern line 0 then
begin
print_string line;
print_neuline ()
end)
(gotlines tilename)
with
print_string "An error occurred:\n';
print_string (Printexc.to_string o)}
print_neuline ()
end
[

print_string "Usage: search search_term filename\n"

images/00080.jpg
insert :a — alist —+ a list

let rec insert x 1 =
match 1 with
0 -
| it >
ifx>=h
then x i1 h it
else h :: insert x t

images/00079.jpg
is_sorted : a list — bool

let rec is_sorted 1 =
match 1 with
aitbiit > a <= b & is_sorted (b
| _ -> true

©

images/00082.jpg
length : a list — int
append : a list — a list —+ o list

let rec length 1 =
match 1 with
0o
| it > 1+ length ¢

Lot rec appond a b =
match with
0-b
| Bt ->h :: append © b

images/00081.jpg
3 aiereracr R s o

(@ B)— alst — Blst

images/00084.jpg
nk_palindrome : a list — a list
is_palindrome : a list — bool

let mk_palindrome 1
lerevl

let is_palindrome 1
1=rev 1

images/00083.jpg
odd_elements : a list — a list

let rec odd_elements 1 =
match 1 with

0->0 the list has zero clements

| [a -> (al the list has one clement

| a::_::t -> a :: odd_elements t the list has more than one element

images/00086.jpg
is_even : int —+ bool
evens : int list — bool list

let is_even x
xmod 2=0

let evens 1 =
map is_even 1

images/00085.jpg
countlines_chamel : in_channel — int
countlines : string —+ int

let rec countlines channel ch =
try
let _ = input_line ch in
1 + countlines_channel ch
with
End_of file -> 0

let countlines file =
try
let ch = open_in file in
let result = countlines_channel ch in
close_in ch;
result
with
_ -> raise (Failure "countlines")

images/00087.jpg
parts : float — float x float

let rec parts x =
if x < 0. then
let a, b = parts (-. x) in
G.a b
olse
(£loor x, x -. floor x)

images/00196.jpg
equal_shape : a tree — a tree — bool

let rec equal shape tr tr2 =
match tr, 2 with
Lt, Lf ->
true
1Br (L, 1, », Br (, 12, 12) ->
equal_shape 1 12 & equal shape T 2
|

talse

images/00195.jpg
col : colo
cols : colon

colpair : char

let col = Blue

let cols

let colpair

list

x colour

[Red; Red; Green; Yellou]

CR', Red)

images/00197.jpg

images/00192.jpg
channel _statistics : in_channel — unit
file_statistics : string — unit

let channel statistics in_channel =
let lines = ref 0 in

try
while true do
let line = input_line in_channel in
lines := !lines + 1
done
with

End_of_tile ->
print_string "There were ';
print_int !lines;
print_string " lines.';
print_newline O

let file statistics name
let channel = open_in name in
try
%ile_statistics channel channel;
close_in channel
with
_ -> close_in channel

images/00191.jpg
mapl : (o — B) — a list list — 3 list list

Lot rec mapl £ 1 =
match 1 with
0 -0
| Bt ->map £ b :omapl £ ©

images/00194.jpg
calm : char list — char list

let rec calm 1 =
match 1 with
0o-0
I'e > 0 s caln g
| it > h ::ocalm ©

images/00193.jpg
mapl : (o — B) — a list list — 3 list list

let mapl £ 1 = map (map £) 1

images/00188.jpg
evaluate_opt : expr —+ int option

let evaluate_opt o =
+try Some (evaluate o) with Division by zero -> Nome

images/00190.jpg
val nth : 'a list -> int -> 'a

Return the n-th clement of the list. The first clement (head of the

Failure "nth" if the list is too short. Raise Invalid_argument "List.nth

s at position 0. Raise

if n s negative.

images/00189.jpg
mapll : (@ — §) — o list list list — 3 list list list

let mapll £ 1 = map (map (map £)) 1

