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Introduction:

Analyzing machine-targeted, compiled code is a much more difficult task then analyzing software in 
which source code is available. Often times, commercial software does not come with source code 
resulting in binary code, in the form of libraries and executables, being all that is available to the 
developer using the code. Binary code has a lot less apparent information then source code and the 
implementation of a binary only distribution is often mysterious. As a result, when an error is 
encountered it can take days, weeks, or even months to debug and reverse engineer.

Having used many different types of closed-source software in my day to day tasking professionally, I 
often want to analyze and collect data on the behavior of the unknown code I am using. It is useful to 
know how long a specific API call in a third party library is executing for, or how well a test suite is 
performing during unit testing. Instrumenting closed-source software allows a user to have 
introspection on what is going on in software that otherwise would be treated as a blackbox.

From a security standpoint, binary instrumentation allows complex types of analysis to be performed 
on closed source software. One can insert instrumentation into target code that allows for the collection 
of code coverage information which is a useful metric when performing automated random tests such 
as fuzzing[1]. It should be noted that these types of analysis rely on the runtime behavior of the target 
process meaning that they can not be run on the code at rest as in a static analysis. Thus, these types of 
analyses are typically categorized as dynamic analyses. 

There exist a number of binary instrumentation frameworks, however, each has pros and cons 
depending on the type of code it is instrumenting. Some frameworks specialize in static binary 
instrumentation which is the process of inserting code directly into the target binary before it is 
executed. When the binary is executed the inserted code will also be executed allowing the user to 
obtain run time information. Other frameworks specialize in dynamic binary instrumentation which is a
type of instrumentation that monitors the code being executed at run time and inserts instrumentation 
when it observes a user specified event. Additionally, each framework has its own esoteric API usually 
written in C or C++ that has a learning curve. 



Language Proposal:

I am proposing the Generic Binary Instrumentation Language (GBIL) as a language to unify the 
existing binary instrumentation framework tools so that one domain specific language for binary 
instrumentation can be used to target each framework. The GBIL language will allow a user to 
generically specify the type of instrumentation he or she wants to insert into the target binary. The 
GBIL language will be a compact language that allows a developer to quickly prototype their 
instrumentation scheme and compile it to one of several back end binary instrumentation framework 
APIs. This means that GBIL source code will be compiled into C or C++ code utilizing the APIs from 
one of several binary instrumentation frameworks such as Intel PIN[2], DynamoRIO[3], or Paradyn's 
Dyninst[4].  

There is existing research that create languages for binary instrumentation but none generically define a
language that can be used to target multiple frameworks. For example, the MIL language[5] was 
developed to express analysis in the MAQAO framework but can not target any other framework. 
There is also the MDL language[6] created by Paradyn, the creators of the Dyninst instrumentation 
framework. While MDL is a platform independent instrumentation language that is capable of targeting
multiple machine architectures it is limited to the Paradyn tool set.

To create GBIL, I will need to coalesce the common features shared among many of these binary 
instrumentation frameworks to create an accessible way for a GBIL developer to express their intent to 
use a common feature. For example, each instrumentation framework supports the ability to install 
instrumentation functions that insert code at the instruction level, basic block level, and function level. 
Thus, GBIL must be designed with the ability to express the same type of instrumentation functions.

Language Overview:

The GBIL language is meant to unify various features shared between many binary instrumentation 
frameworks such that a developer using the GBIL language will be able to generically specify how they
want their target binary to be instrumented. The GBIL source code should also be very easy to write 
and understand, and be an easy platform for developing a prototype instrumentation setup. No 
knowledge of any target instrumentation API should be needed by the developer in order to write a 
GBIL program. 

Types

The GBIL language will be statically typed. There will be a small number of basic variable types in the 
GBIL language. These are the uint (unsigned int), sint (signed int), float, list, map, string, and file 
types. There are also multiple types of functions. Depending on the type of function, there are “special”
variables that can be accessed from within the scope of that function. For example, there is a basic 
block instrument function that is executed every time a basic block event is triggered in the 
instrumentation code. From within the basic block function, a developer can access a special variable 
called “$begin_address”, which corresponds to the address of the first instruction in the basic block and
a variable “$end_address” which corresponds to the address of the last instruction in the block. 



The uint type is synonymous to the uint64_t type in C or C++ presented in the inttypes.h header file. 
The sint type is exactly the signed opposite and corresponds to the int64_t type. These two types are 
included to allow the developer to specify collection variables to log things like the number of times an 
instruction has been executed, or the number of times a specific function has been called.

The float type is included to allow the developer to specify statistic variables to collect statistics on the 
running process. This type could be used to store things such as the distribution of load instructions 
relative to other instructions executed. 

The string type will exist primarily for output purposes. The developer will be able to create strings that
can be outputted to a file. The purpose of this is to examine the output of the instrumentation code after
the monitored process has finished executing.

The file type is very similar to the FILE * type in the C language. It exists to represent a file on disk 
that can have data written to it. An instance of the file type can also be read from. A developer may 
want to read from a file when they want to serialize or extract results from a previous instrumentation 
run. 

The list type is present to allow the user to work with lists of objects of a specified type. All elements in
the list must be of the same type. For example, one will be able to create a list of sints, a list of lists, a 
list of floats, etc.

The map type exists to associate objects with each other. It will function much like a dictionary type 
where an object can be looked up in the list as a key and its corresponding value can be extracted.  As 
an example, one can use this type to associate a list of memory addresses that have been resolved from 
a variable memory access with an instruction address. Additionally, one can use this to keep track of a 
hit count for an instruction address where the map keeps track of how many times a given instruction 
has executed.

There are eight types of functions that are available to the developer. Depending on the type of function
the developer has access to special variables that are relevant to the type of function that is being 
executed. The eight types of functions are: instrument initialization, instruction instrument, basic block 
begin instrument, basic block end instrument, function begin instrument, function end instrument, 
termination, and utility. Each type of instrument function has a yet to be determined set of special 
variable associated with them. These special variables exist to allow the developer to operate on 
constructs that they normally would want to operate on in the scope of a similar API instrumentation 
function in the instrumentation framework. I gave one example of this earlier, but another could be the 
variable “$instruction_address” from within the scope of an instrument instruction  function type. The 
“$instruction_address” variable will return a uint representing the address in the process' virtual address
space containing the binary code for the instruction.



Operations

Each type has a number of operations that can operate on an instance of the specified type.

There are a number of polymorphic operators that can operate on multiple built in types. These 
operators are standard in many languages such as C, C++, and Java. These are addition (+), subtraction 
(-),  multiplication (*), division (/), equality (==), inequality (!=), greater than (>), greater than or equal 
to (>=), less than (<), less than or equal to (<=), and assignment (=). 

All of these operators can operate on uint and sint types. The boolean operators: equality,inequality, 
greater than, greater than or equal, less than, and less than or equal, can operate on every type except 
the float type. For list and map types, only the equality and inquality operators are supported which will
recurse through the data structure and compare at each level of recursion.

There is also the bracket operator ([]) used for accessing the list and map data structures. For lists, the 
bracket operator is used to index into the list. For maps, it is used to access a particular value for a 
supplied key.

There will be a builtin function len() that will operate on list objects. The len variable will return the 
length of the list in an instance of a uint type.

Maps and lists can be searched with a quickhand notation as follows:

if element in map
{
  map[element] +=1;
}
else
{
  map[element] = 1;
}

List can be substituted in the above code for map with the exception that it can be dereferenced with 
element as an index.
 
Control Flow

The function level control flow for the GBIL language is event based. Events occur as the instrumented
process is executing. There are 7 types of events: initialization, function begin, function end, basic 
block begin, basic block end, instruction, and termination.

Control flow in the GBIL language from within a function happens, in general, with the order of the 
desired behavior to execute happening in the order specified in the program. All functions have access 
to the looping constructs of the for loop, the while loop, and the do-while loop. These constructs 
operate in the same way they do in languages like C, C++, and Java. There is also the conditional 
construct if-then-else which operates as expected. 



Event functions can not be recursive but there can be more then one event function. If there is more 
then one event function all are assumed to execute every time an event trigger happens. Each event 
function can also call utility functions. Utility functions can be recursive. Scope is not carried over 
from an event function to a utility function. Utility functions behave in much the same way as a 
function in the C language. There is a return type associated with the function and a list of typed, 
expected arguments. If a utility function wishes to access a special variable the special variable must be
passed as an argument to the utility function from the event function.

Variable Scope

All variables must be declared before any statement regardless of scope. To create a globally accessible
variable, whose symbol is available throughout each instrument function type, the variable must be 
declared in the initialization function. Other then globally accessible variables, locally accessible 
variables can be defined in the beginning of a function definition. Variables can not be created inside of
a looping construct or an if then else construct. 

If a locally declared variable shares a name with a globally declared variable, the locally declared 
variable will override the resolution procedure for the shared symbol.

Compiler Architecture:

The GBIL compiler will accept input in the form of a GBIL source file, it will then translate this source
file into one of the binary instrumentation framework's expected format. Thus, it will produce a C or 
C++ source file using the specified API for the framework. The C or C++ file will be passed to the gcc 
or g++ compiler which will produce the final executable.



Example Program:

@function_begin
1.function handle_function_begin {
2. 
3.  call_context.push($func_begin);
4. 
5.  if $func_begin in function_cover_map
6.  {
7.    func_cover_map[$func_begin] += 1;
8.  }
9.  else
10.  {
11.    func_cover_map[$func_begin] = 0;
12.  }
13.}
14. 
15.@function_terminate
16.function handle_function_end {
17. 
18.  call_context.pop();
19.}
20. 
21.@basic_block
22.function handle_basic_block {
23. 
24.  if $bb_begin in basic_block_cover_map
25.  {
26.    bb_cover_map[$bb_begin] += 1;
27.  }
28.  else
29.  {
30.    bb_cover_map[$bb_begin] = 0;
31.  }
32. 
33. 
34.}
35. 
36.@instruction
37.function handle_instruction {
38. 
39.  //Demonstrating special variable
40.  if $instr_address in cover_map
41.  {
42.    instr_cover_map[$instr_address] += 1;
43.  }



44.  else
45.  {
46.    instr_cover_map[$instr_address] = 0;
47.  }
48.}
49. 
50.@init
51.function initialize {
52. 
53.  //Global data structures must be declared in the initialization routine
54.  map<uint,uint> instr_cover_map;
55.  map<uint,uint> basic_block_cover_map;
56.  map<uint,uint> function_cover_map;
57. 
58.  list<uint> call_context;
59.}
60. 
61.@terminate
62.function terminate {
63.  //Empty functions are allowed.
64.}

This example program demonstrates the desired syntax of the GBIL language. This proposal does not 
go into detail to discuss the exact syntax for the GBIL language but the important parts of the syntax 
are demonstrated in the above program.

“{}” are used to create blocks and bodies for functions. Each statement other than function definitions 
must be followed by a semicolon. Whitespace is unimportant. Function definitions must be attributed 
with the @type and preceded by the “function” keyword before the body is declared. For polymorphic 
types, such as list and map the type of the object are specified in templated syntax using the “<.,.>” 
syntax which is similar to C++ templates. Nested blocks are not allowed. 

Complete syntax and more fine grained details regarding operators and types will be discussed in the 
language reference manual.
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