
CSEE W3827

Fundamentals of Computer Systems

Homework Assignment 3
Solutions

Prof. Stephen A. Edwards

Columbia University

Due June 30, 2015 at 5:30 PM

Write your name and UNI on your solutions

Show your work for each problem; we are more interested in how you
get the answer than whether you get the right answer.

1. (20 pts.) In MIPS assembly, implement the strncat function from
the C standard library, i.e.,
char *strncat(char *dest, const char *src, size_t n)

This appends at most n characters from the src string to the end of
the dest string, overwriting dest’s terminating 0 and returning
dest. The returned string is always 0-terminated. Assume src and
dest do not overlap. Assume dest, src, and n are each 32 bits.
Start from the strncat.s template on the class website.
Your function must obey MIPS calling conventions.
Implement your function in the SPIM simulator.
Turn in your solution on paper with evidence that it works. Add at
least one test case.
On the supplied test harness, your code should print

Hello World!
Hello World!

Hello Wo
3827 sucks you in with wonderful ideas
3827 sucks you in with wonderful ideas

3827 sucks you in

$a0 : dest
$a1 : src
$a2 : n

strncat:
move $v0, $a0 # return dest
b .L2 # Find the end of dest

.L1: addiu $a0, $a0, 1

.L2: lbu $t0, 0($a0)
bnez $t0, .L1
b .L4 # Start copying src to dest

.L3: sb $t0, 0($a0) # Store character
addiu $a0, $a0, 1 # Next dest
addiu $a1, $a1, 1 # Next src
addiu $a2, $a2, -1 # n--

.L4: beqz $a2, .L5 # already copied n?
lbu $t0, 0($a1) # Read source character
bnez $t0, .L3 # Hit the end of the string?

.L5: li $t0, 0 # Write terminator
sb $t0, 0($a0)
jr $ra

2. (30 pts.) In MIPS assembly, implement a function that returns the
maximum sum of node values from the root of a tree. Each node is
represented by the consecutive words in memory: the value of the
node (unsigned), the address of the left child, and the address of
the right child. At each node, consider the maximum sum returned
from the left and the right child and return it plus the node’s value.

Start from the maxpath.s template on the class website.

Your function must obey MIPS calling conventions. Use the stack to
implement the recursion.

Implement your function in the SPIM simulator.

Turn in your solution on paper with evidence that it produces the
desired result. Add at least one test case.

On the supplied test harness, your code should print

(42)
42
(39 (3) (2))
42
(31 (42 (23) (31)) (57 (1)))
104
(6 (5 (3) (4 (1) (2))) (4 (1) (2)))
17

maxpath:
bnez $a0, .L1 # Return 0 at a null pointer
li $v0, 0
jr $ra

.L1: addi $sp, $sp, -12
sw $ra, 0($sp)
sw $s0, 4($sp)
sw $s1, 8($sp)

move $s0, $a0 # Save the tree pointer
lw $a0, 4($s0) # Recurse on left child
jal maxpath
move $s1, $v0 # Save left result in $s1
lw $a0, 8($s0) # Recurse on right child
jal maxpath
slt $t0, $v0, $s1 # Pick the larger of the two
beqz $t0, .L2
move $v0, $s1

.L2: lw $t0, 0($s0)
addu $v0, $v0, $t0 # add our node’s value

lw $ra, 0($sp)
lw $s0, 4($sp)
lw $s1, 8($sp)
addi $sp, $sp, 12
jr $ra

3. (25 pts.) Extend the single-cycle MIPS processor to support the ori
instruction (i-type, OP=001101).

4. (10 pts.) Assuming the following dynamic instruction frequency for
a program running on the single-cycle MIPS processor

add 25%
addi 25%
beq 10%
lw 25%
sw 15%

(a) (5 pts.) In what fraction of all cycles is the data memory
accessed (either read or written)?

Only for loads and stores, so 25% (lw) + 15% (sw) = 40%.

(b) (5 pts.) In what fraction of cycles is the sign extend circuit
used?
addi uses it for the immediate operand
beq uses it to compute the PC-relative address
lw uses it to compute the offset address
sw uses it to compute the offset address
So, 25% + 10% + 25% + 15% = 75%.

5. (15 pts.) For each of the caches listed below, show how a 32-bit
addresses breaks into tag, set index, and byte offset fields.

Cache A: 4096B, 4-way set-associative, 8B lines
32B per set, so 128 sets in cache

0 0
tag (22
bits)

set index
(7 bits)

byte offset
(3 bits)

Cache B: 2048B, direct-mapped, 16B lines
16B per set, so 128 sets in cache

0 0
tag (21
bits)

set index
(7 bits)

byte offset
(4 bits)

