Review for the Final

Stephen A. Edwards

Columbia University

Summer 2014
Table of Contents

The Final

Structure of a Compiler

Scanning

- Languages and Regular Expressions
- NFAs
- Translating REs into NFAs
- Building a DFA from an NFA: Subset Construction

Parsing

- Resolving Ambiguity
Table of Contents II
Rightmost and Reverse-Rightmost Derivations

Building the LR(0) Automaton
Building an SLR Parsing Table
Shift/Reduce Parsing

Name, Scope, and Bindings

Activation Records
Static Links for Nested Functions

Types

C’s Types
Layout of Records and Unions
Arrays
Name vs. Structural Equivalence
Table of Contents III

Control Flow

Order of Evaluation
Structured Programming
Multi-Way Branching
Recursion vs. Iteration
Applicative vs. Normal-Order Evaluation
Nondeterminism

Code Generation

Intermediate Representations
Optimization and Basic Blocks
Separate Compilation and Linking
Shared Libraries and Dynamic Linking
Table of Contents IV

Logic Programming in Prolog

Prolog Execution

The Prolog Environment

Unification

The Searching Algorithm

Prolog as an Imperative Language
Table of Contents V
The Lambda Calculus

Lambda Expressions
Beta-reduction
Alpha-conversion
Reduction Order
Normal Form
The Y Combinator
The Final

70 minutes

4–5 problems

Closed book

One double-sided sheet of notes of your own devising

Comprehensive: Anything discussed in class is fair game, including things from before the midterm

Little, if any, programming

Details of O’Caml/C/C++/Java syntax not required

Broad knowledge of languages discussed
Compiling a Simple Program

```c
int gcd(int a, int b)
{
    while (a != b) {
        if (a > b) a -= b;
        else b -= a;
    }
    return a;
}
```
int gcd(int a, int b) {
 while (a != b) {
 if (a > b) a -= b;
 else b -= a;
 }
 return a;
}
Lexical Analysis Gives Tokens

int gcd(int a, int b) {
 while (a != b) {
 if (a > b) a -= b;
 else b -= a;
 }
 return a;
}

int gcd (int a , int b) { while (a
!= b) { if (a > b) a -= b ;
else b -= a ; } return a ; }
```c
int gcd(int a, int b) {
    while (a != b) {
        if (a > b) a -= b;
        else b -= a;
    }
    return a;
}
```
Semantic Analysis Resolves Symbols and Checks Types

```
int a
int b

func gcd(args arg a arg b)
  seq
    while a != b
      if a > b
        a -= b
      else
        b -= a
    return a
```
Translation into 3-Address Code

```
L0: sne $1, a, b
    seq $0, $1, 0
    btrue $0, L1  # while (a != b)
    sl $3, b, a
    seq $2, $3, 0
    btrue $2, L4  # if (a < b)
    sub a, a, b   # a -= b
    jmp L5
L4: sub b, b, a # b -= a
L5: jmp L0
L1: ret a
```

```
int gcd(int a, int b) {
    while (a != b) {
        if (a > b) a -= b;
        else b -= a;
    }
    return a;
}
```

Idealized assembly language w/ infinite registers
Generation of 80386 Assembly

gcd: pushl %ebp # Save BP
 movl %esp,%ebp
 movl 8(%ebp),%eax # Load a from stack
 movl 12(%ebp),%edx # Load b from stack
.L8: cmpl %edx,%eax
 je .L3 # while (a != b)
 jle .L5 # if (a < b)
 subl %edx,%eax # a -= b
 jmp .L8
.L5: subl %eax,%edx # b -= a
 jmp .L8
.L3: leave
 ret # Restore SP, BP
Describing Tokens

Alphabet: A finite set of symbols

Examples: \{ 0, 1 \}, \{ A, B, C, \ldots, Z \}, ASCII, Unicode

String: A finite sequence of symbols from an alphabet

Examples: \(\varepsilon\) (the empty string), Stephen, \(\alpha\beta\gamma\)

Language: A set of strings over an alphabet

Examples: \(\emptyset\) (the empty language), \{ 1, 11, 111, 1111 \}, all English words, strings that start with a letter followed by any sequence of letters and digits
Operations on Languages

Let \(L = \{ \epsilon, wo \} \), \(M = \{ \text{man, men} \} \)

Concatenation: Strings from one followed by the other

\(LM = \{ \text{man, men, woman, women} \} \)

Union: All strings from each language

\(L \cup M = \{ \epsilon, wo, \text{man, men} \} \)

Kleene Closure: Zero or more concatenations

\(M^* = \{ \epsilon \} \cup M \cup MM \cup MMM \cdots = \{ \epsilon, \text{man, men, manman, manmen, menman, menmen, manmanman, manmanmen, manmenman, ...} \} \)
Regular Expressions over an Alphabet Σ

A standard way to express languages for tokens.

1. ϵ is a regular expression that denotes $\{\epsilon\}$
2. If $a \in \Sigma$, a is an RE that denotes $\{a\}$
3. If r and s denote languages $L(r)$ and $L(s)$,
 - $(r) \mid (s)$ denotes $L(r) \cup L(s)$
 - $(r)(s)$ denotes $\{tu : t \in L(r), u \in L(s)\}$
 - $(r)^*$ denotes $\cup_{i=0}^{\infty} L^i$ ($L^0 = \{\epsilon\}$ and $L^i = LL^{i-1}$)
Nondeterministic Finite Automata

“All strings containing an even number of 0’s and 1’s”

1. Set of states
 \[S : \{ A, B, C, D \} \]

2. Set of input symbols \(\Sigma : \{0, 1\} \)

3. Transition function \(\sigma : S \times \Sigma \epsilon \rightarrow 2^S \)

\[
\begin{array}{c|ccc}
\text{state} & \epsilon & 0 & 1 \\
\hline
A & \emptyset & \{B\} & \{C\} \\
B & \emptyset & \{A\} & \{D\} \\
C & \emptyset & \{D\} & \{A\} \\
D & \emptyset & \{C\} & \{B\} \\
\end{array}
\]

4. Start state \(s_0 : A \)

5. Set of accepting states \(F : \{ A \} \)
The Language induced by an NFA

An NFA accepts an input string x iff there is a path from the start state to an accepting state that “spells out” x.

Show that the string “010010” is accepted.

Show that the string “010010” is accepted.
Translating REs into NFAs

Symbol

Sequence

Choice

Kleene Closure
Translating REs into NFAs

- **Symbol**: a
- **Sequence**: r_1r_2
- **Choice**: $r_1 | r_2$
- **Kleene Closure**: $(r)^*$
Example: Translate \((a | b)^* abb\) into an NFA. Answer:

\[
\begin{array}{c}
0 \xrightarrow{\epsilon} 1 \xrightarrow{\epsilon} 2 \xrightarrow{a} 3 \xrightarrow{\epsilon} 6 \xrightarrow{\epsilon} 7 \xrightarrow{a} 8 \xrightarrow{b} 9 \xrightarrow{b} 10
\end{array}
\]

Show that the string “aabb” is accepted. Answer:

\[
\begin{array}{c}
0 \xrightarrow{\epsilon} 1 \xrightarrow{\epsilon} 2 \xrightarrow{a} 3 \xrightarrow{\epsilon} 6 \xrightarrow{\epsilon} 7 \xrightarrow{a} 8 \xrightarrow{b} 9 \xrightarrow{b} 10
\end{array}
\]
Simulating NFAs

Problem: you must follow the “right” arcs to show that a string is accepted. How do you know which arc is right?

Solution: follow them all and sort it out later.

“Two-stack” NFA simulation algorithm:

1. Initial states: the ε-closure of the start state
2. For each character c,
 - New states: follow all transitions labeled c
 - Form the ε-closure of the current states
3. Accept if any final state is accepting
Simulating an NFA: \textit{aabb}, Start
Simulating an NFA: $a \cdot abb$
Simulating an NFA: $aa \cdot bb$
Simulating an NFA: $aab \cdot b$
Simulating an NFA: $aabb\cdot$, Done
Deterministic Finite Automata

Restricted form of NFAs:

- No state has a transition on ϵ
- For each state s and symbol a, there is at most one edge labeled a leaving s.

Differs subtly from the definition used in COMS W3261 (Sipser, *Introduction to the Theory of Computation*).

Very easy to check acceptance: simulate by maintaining current state. Accept if you end up on an accepting state. Reject if you end on a non-accepting state or if there is no transition from the current state for the next symbol.
Deterministic Finite Automata

```plaintext
{ 
    type token = ELSE | ELSEIF 
}

rule token =
    parse "else" { ELSE }
    | "elseif" { ELSEIF }
```

Diagram:
```
  ↓  e  ↓  l  ↓  s  ↓  e  ~  i  ↓  f  ↓  
```

Deterministic Finite Automata

{ type token = IF | ID of string | NUM of string }

rule token =
parse "if" { IF }
| ['a'-'z'] ['a'-'z' '0'-'9']* as lit { ID(lit) }
| ['0'-'9']+ as num { NUM(num) }
Building a DFA from an NFA

Subset construction algorithm
Simulate the NFA for all possible inputs and track the states that appear.
Each unique state during simulation becomes a state in the DFA.
Subset construction for $(a | b)^* abb$
Subset construction for \((a | b)^* abb\)
Subset construction for \((a \mid b)^* abb\)
Subset construction for \((a \mid b)^* abb\)
Subset construction for \((a \mid b)^* abb\)
Result of subset construction for \((a \mid b)^* abb\)

Is this minimal?
Ambiguity can be a problem in expressions. Consider parsing

\[3 - 4 \times 2 + 5 \]

with the grammar

\[e \rightarrow e + e \mid e - e \mid e \times e \mid e / e \mid N \]
Operator Precedence

Defines how “sticky” an operator is.

\[1 \times 2 + 3 \times 4 \]

* at higher precedence than +:
\[(1 \times 2) + (3 \times 4) \]

+ at higher precedence than *:
\[1 \times (2 + 3) \times 4 \]
Associativity

Whether to evaluate left-to-right or right-to-left

Most operators are left-associative

\[(1 - 2 - 3 - 4) \quad (1 - (2 - (3 - 4)))\]

left associative \quad right associative
A grammar specification:

```
expr :
    expr PLUS expr
  | expr MINUS expr
  | expr TIMES expr
  | expr DIVIDE expr
  | NUMBER
```

Ambiguous: no precedence or associativity.

Ocamlyacc’s complaint: “16 shift/reduce conflicts.”
Assigning Precedence Levels

Split into multiple rules, one per level

```
expr  :  expr  PLUS  expr  
 |  expr  MINUS  expr  
 |  term

term  :  term  TIMES  term  
 |  term  DIVIDE  term  
 |  atom

atom  :  NUMBER
```

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “8 shift/reduce conflicts.”
Assigning Associativity

Make one side the next level of precedence

\[
\begin{align*}
\text{expr} & : \text{expr} \ \text{PLUS} \ \text{term} \\
& \quad | \ \text{expr} \ \text{MINUS} \ \text{term} \\
& \quad | \ \text{term} \\
\text{term} & : \text{term} \ \text{TIMES} \ \text{atom} \\
& \quad | \ \text{term} \ \text{DIVIDE} \ \text{atom} \\
& \quad | \ \text{atom} \\
\text{atom} & : \text{NUMBER}
\end{align*}
\]

This is left-associative.

No shift/reduce conflicts.
Rightmost Derivation of $\text{Id} \ast \text{Id} + \text{Id}$

1: $e \rightarrow t + e$
2: $e \rightarrow t$
3: $t \rightarrow \text{Id} \ast t$
4: $t \rightarrow \text{Id}$

At each step, expand the rightmost nonterminal.

“handle”: The right side of a production

Fun and interesting fact: there is exactly one rightmost expansion if the grammar is unambiguous.
Rightmost Derivation: What to Expand

1: $e \rightarrow t + e$
2: $e \rightarrow t$
3: $t \rightarrow \text{Id} \ast t$
4: $t \rightarrow \text{Id}$

e
$t + e$
$t + t$
$t + \text{Id}$
$\text{Id} \ast t + \text{Id}$
$\text{Id} \ast \text{Id} + \text{Id}$

Expand here \uparrow
Terminals only
Reverse Rightmost Derivation

1: $e \rightarrow t + e$
2: $e \rightarrow t$
3: $t \rightarrow \text{Id} \ast t$
4: $t \rightarrow \text{Id}$

Viable prefixes:
- e
- $t + e$
- $t + t$
- $t + \text{Id}$
- $\text{Id} \ast t + \text{Id}$
- $\text{Id} \ast \text{Id} + \text{Id}$

Terminals:
- e
- t
- Id

Wild cards:

\ast
Shift/Reduce Parsing Using an Oracle

1: \(e \rightarrow t + e \)
2: \(e \rightarrow t \)
3: \(t \rightarrow \text{Id} \ast t \)
4: \(t \rightarrow \text{Id} \)

Input:
\[
\text{Id} \ast \text{Id} + \text{Id}
\]

Stack:
\[
\begin{array}{c}
\text{Id} \ast \text{Id} + \text{Id} \\
\end{array}
\]

Actions:
- Shift
- Shift
- Shift
- Reduce 4
- Reduce 3
- Shift
- Shift
- Reduce 4
- Reduce 2
- Reduce 1
- Accept
Handle Hunting

Right Sentential Form: any step in a rightmost derivation

Handle: in a sentential form, a RHS of a rule that, when rewritten, yields the previous step in a rightmost derivation.

The big question in shift/reduce parsing:

When is there a handle on the top of the stack?

Enumerate all the right-sentential forms and pattern-match against them? *Usually infinite in number, but let’s try anyway.*
The Handle-Identifying Automaton

Magical result, due to Knuth: An automaton suffices to locate a handle in a right-sentential form.
Building the Initial State of the LR(0) Automaton

1: \(e \rightarrow t + e \)
2: \(e \rightarrow t \)
3: \(t \rightarrow \text{Id} \ast t \)
4: \(t \rightarrow \text{Id} \)

Key idea: automata identify viable prefixes of right sentential forms. Each state is an equivalence class of possible places in productions.

At the beginning, any viable prefix must be at the beginning of a string expanded from \(e \). We write this condition “\(e' \rightarrow \cdot e \)"
Building the Initial State of the LR(0) Automaton

1: \(e \rightarrow t + e\)
2: \(e \rightarrow t\)
3: \(t \rightarrow \text{Id} \ast t\)
4: \(t \rightarrow \text{Id}\)

Key idea: automata identify viable prefixes of right sentential forms. Each state is an equivalence class of possible places in productions.

At the beginning, any viable prefix must be at the beginning of a string expanded from \(e\). We write this condition “\(e' \rightarrow \cdot e\)”. There are two choices for what an \(e\) may expand to: \(t + e\) and \(t\). So when \(e' \rightarrow \cdot e\), \(e \rightarrow \cdot t + e\) and \(e \rightarrow \cdot t\) are also true, i.e., it must start with a string expanded from \(t\).
Building the Initial State of the LR(0) Automaton

1 : \(e \rightarrow t + e \)
2 : \(e \rightarrow t \)
3 : \(t \rightarrow \text{Id} \ast t \)
4 : \(t \rightarrow \text{Id} \)

Key idea: automata identify viable prefixes of right sentential forms. Each state is an equivalence class of possible places in productions.

At the beginning, any viable prefix must be at the beginning of a string expanded from \(e \). We write this condition “\(e' \rightarrow \cdot e \)”

There are two choices for what an \(e \) may expand to: \(t + e \) and \(t \). So when \(e' \rightarrow \cdot e \), \(e \rightarrow \cdot t + e \) and \(e \rightarrow \cdot t \) are also true, i.e., it must start with a string expanded from \(t \).

Similarly, \(t \) must be either \(\text{Id} \ast t \) or \(\text{Id} \), so \(t \rightarrow \cdot \text{Id} \ast t \) and \(t \rightarrow \cdot \text{Id} \).

This reasoning is a closure operation like \(\epsilon \)-closure in subset construction.
Building the LR(0) Automaton

The first state suggests a viable prefix can start as any string derived from e, any string derived from t, or Id.

\[
\begin{align*}
e' & \rightarrow \cdot e \\
e & \rightarrow \cdot t + e \\
S0 : e & \rightarrow \cdot t \\
t & \rightarrow \cdot \text{Id} \ast t \\
t & \rightarrow \cdot \text{Id}
\end{align*}
\]
Building the LR(0) Automaton

“Just passed a string derived from e”

$S_7 : e' \rightarrow e\cdot$

“Just passed a prefix ending in a string derived from t”

$S_0 : e \rightarrow t$
$t \rightarrow \cdot \text{Id} \ast t$
$t \rightarrow \cdot \text{Id}$

$e' \rightarrow \cdot e$
$e \rightarrow \cdot t + e$

$S_1 : t \rightarrow \text{Id} \cdot \ast t$
$t \rightarrow \text{Id} \cdot$

$S_2 : e \rightarrow t \cdot + e$
$e \rightarrow t \cdot$

“The first state suggests a viable prefix can start as any string derived from e, any string derived from t, or Id.

The items for these three states come from advancing the \cdot across each thing, then performing the closure operation (vacuous here).
Building the LR(0) Automaton

In S2, a + may be next. This gives \(t + \cdot e \).

In S1, * may be next, giving \(\text{Id} \cdot \cdot t \).
Building the LR(0) Automaton

In S2, a + may be next. This gives \(t + \cdot e \). Closure adds 4 more items.

In S1, * may be next, giving \(\text{Id} \star \cdot t \) and two others.
Building the LR(0) Automaton

\[S_0 : e \rightarrow t \]
\[e \rightarrow \cdot t \]
\[t \rightarrow \cdot \text{Id} * t \]
\[t \rightarrow \cdot \text{Id} \]

\[S_1 : t \rightarrow \text{Id} * t \]
\[t \rightarrow \text{Id} . \]

\[S_2 : e \rightarrow t . + e \]
\[e \rightarrow \cdot t + e \]
\[e \rightarrow t \]
\[e \rightarrow \cdot t + e \]
\[t \rightarrow \cdot \text{Id} * t \]
\[t \rightarrow \cdot \text{Id} \]

\[S_3 : t \rightarrow \text{Id} * t \]
\[t \rightarrow \cdot \text{Id} \]

\[S_4 : e \rightarrow t \cdot \]
\[e \rightarrow \cdot t + e \]
\[e \rightarrow \cdot t + e \]
\[t \rightarrow \cdot \text{Id} * t \]
\[t \rightarrow \cdot \text{Id} \]

\[S_5 : t \rightarrow \text{Id} * t . \]

\[S_6 : e \rightarrow t + e \cdot \]

\[S_7 : e' \rightarrow e . \]
From S0, shift an \textbf{Id} and go to S1; or cross a \textit{t} and go to S2; or cross an \textit{e} and go to S7.
From S1, shift a * and go to S3; or, if the next input could follow a t, reduce by rule 4. According to rule 1, + could follow t; from rule 2, $ could.
Converting the LR(0) Automaton to an SLR Parsing Table

From S2, shift a + and go to S4; or, if the next input could follow an e (only the end-of-input $), reduce by rule 2.
From S3, shift an Id and go to S1; or cross a t and go to S5.
Converting the LR(0) Automaton to an SLR Parsing Table

From S4, shift an **Id** and go to S1; or cross an **e** or a **t**.

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>t</td>
<td></td>
</tr>
</tbody>
</table>
Converting the LR(0) Automaton to an SLR Parsing Table

1: $e \rightarrow t + e$
2: $e \rightarrow t$
3: $t \rightarrow \text{Id} \ast t$
4: $t \rightarrow \text{Id}$

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Id</td>
<td>$+$</td>
</tr>
<tr>
<td>0</td>
<td>s1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>r4</td>
<td>s3</td>
</tr>
<tr>
<td>2</td>
<td>s4</td>
<td>r2</td>
</tr>
<tr>
<td>3</td>
<td>s1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>s1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>r3</td>
<td></td>
</tr>
</tbody>
</table>

From S5, reduce using rule 3 if the next symbol could follow a t (again, $+$ and $\$$).
Converting the LR(0) Automaton to an SLR Parsing Table

1: $e \rightarrow t + e$
2: $e \rightarrow t$
3: $t \rightarrow \text{Id} \ast t$
4: $t \rightarrow \text{Id}$

S7: $e' \rightarrow e$

From S6, reduce using rule 1 if the next symbol could follow an e ($\$\$ only).
Converting the LR(0) Automaton to an SLR Parsing Table

If, in S7, we just crossed an e, accept if we are at the end of the input.
Shift/Reduce Parsing with an SLR Table

\[1 : e \rightarrow t + e \]
\[2 : e \rightarrow t \]
\[3 : t \rightarrow \text{Id} \ast t \]
\[4 : t \rightarrow \text{Id} \]

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\text{Id} \ast \text{Id} + \text{Id}$</td>
<td>Shift, goto 1</td>
</tr>
</tbody>
</table>

Look at the state on top of the stack and the next input token.

Find the action (shift, reduce, or error) in the table.

In this case, shift the token onto the stack and mark it with state 1.
Shift/Reduce Parsing with an SLR Table

1: \(e \rightarrow t + e \)
2: \(e \rightarrow t \)
3: \(t \rightarrow \text{Id} \ast t \)
4: \(t \rightarrow \text{Id} \)

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>+</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>t</td>
</tr>
<tr>
<td>0</td>
<td>s1</td>
<td>7 2</td>
</tr>
<tr>
<td>1</td>
<td>r4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>s3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>s4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>s1</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>s1</td>
<td>6 2</td>
</tr>
<tr>
<td>5</td>
<td>r3</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>r1</td>
<td></td>
</tr>
</tbody>
</table>

Here, the state is 1, the next symbol is \(\ast \), so shift and mark it with state 3.
Shift/Reduce Parsing with an SLR Table

1: \(e \rightarrow t + e \)
2: \(e \rightarrow t \)
3: \(t \rightarrow \text{Id} \ast t \)
4: \(t \rightarrow \text{Id} \)

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>+</td>
<td>e t</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>s1</td>
<td>7 2</td>
</tr>
<tr>
<td>1</td>
<td>r4 s3 r4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>s4 r2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>s1</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>s1</td>
<td>6 2</td>
</tr>
<tr>
<td>5</td>
<td>r3 r3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>r1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Id * Id + Id$</td>
<td>Shift, goto 1</td>
</tr>
<tr>
<td>1 Id</td>
<td>* Id + Id$</td>
<td>Shift, goto 3</td>
</tr>
<tr>
<td>1 Id</td>
<td>Id + Id$</td>
<td>Shift, goto 1</td>
</tr>
<tr>
<td>1 Id</td>
<td>+ Id$</td>
<td>Reduce 4</td>
</tr>
</tbody>
</table>

Here, the state is 1, the next symbol is +. The table says reduce using rule 4.
Shift/Reduce Parsing with an SLR Table

1: $e \rightarrow t + e$

2: $e \rightarrow t$

3: $t \rightarrow \text{Id} \ast t$

4: $t \rightarrow \text{Id}$

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>s1</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>r4</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>s4</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>s1</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>s1</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>r3</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>r1</td>
<td>✓</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Stack	Input	Action
0 | \text{Id} \ast \text{Id} + \text{Id}$ | Shift, goto 1
0 | * \text{Id} + \text{Id}$ | Shift, goto 3
0 | \text{Id} + \text{Id}$ | Shift, goto 1
0 | + \text{Id}$ | Reduce 4
Remove the RHS of the rule (here, just \text{Id}), observe the state on the top of the stack, and consult the “goto” portion of the table.
Shift/Reduce Parsing with an SLR Table

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 \ Id</td>
<td>Id * Id + Id $</td>
<td>Shift, goto 1</td>
</tr>
<tr>
<td>1 \ Id</td>
<td>* Id + Id $</td>
<td>Shift, goto 3</td>
</tr>
<tr>
<td>0 \ Id</td>
<td>Id + Id $</td>
<td>Shift, goto 1</td>
</tr>
<tr>
<td>0 \ Id</td>
<td>+ Id $</td>
<td>Reduce 4</td>
</tr>
<tr>
<td>0 \ Id</td>
<td>+ Id $</td>
<td>Reduce 3</td>
</tr>
<tr>
<td>1 \ Id</td>
<td>+ Id $</td>
<td>Reduce 2</td>
</tr>
<tr>
<td>2 \ Id</td>
<td>+ Id $</td>
<td>Reduce 1</td>
</tr>
<tr>
<td>3 \ Id</td>
<td>+ Id $</td>
<td>Accept</td>
</tr>
</tbody>
</table>

Here, we push a t with state 5. This effectively “backs up” the LR(0) automaton and runs it over the newly added nonterminal.

In state 5 with an upcoming +, the action is “reduce 3.”
Shift/Reduce Parsing with an SLR Table

1: $e \rightarrow t + e$
2: $e \rightarrow t$
3: $t \rightarrow \text{Id} \ast t$
4: $t \rightarrow \text{Id}$

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
<td>+</td>
<td>e</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>t</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td></td>
</tr>
</tbody>
</table>

0 | s1 | 7 2 |
1 | r4 | 4 3 |
2 | s4 | 5 2 |
3 | s1 | 6 5 |
4 | s1 | 6 2 |
5 | r3 | 5 5 |
6 | r1 | 7 7 |
7 | $ | ✓ |

This time, we strip off the RHS for rule 3, \text{Id} \ast t, exposing state 0, so we push a t with state 2.
Shift/Reduce Parsing with an SLR Table

1: \(e \rightarrow t + e \)
2: \(e \rightarrow t \)
3: \(t \rightarrow \text{Id} \ast t \)
4: \(t \rightarrow \text{Id} \)

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Goto</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Id})</td>
<td>+ \ast $</td>
<td>(e) (t)</td>
</tr>
<tr>
<td>0</td>
<td>s1</td>
<td>7 2</td>
</tr>
<tr>
<td>1</td>
<td>r4 s3</td>
<td>r4</td>
</tr>
<tr>
<td>2</td>
<td>s4</td>
<td>r2</td>
</tr>
<tr>
<td>3</td>
<td>s1</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>s1</td>
<td>6 2</td>
</tr>
<tr>
<td>5</td>
<td>r3</td>
<td>r3</td>
</tr>
<tr>
<td>6</td>
<td>r1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\text{Id} \ast \text{Id} + \text{Id} $</td>
<td>Shift, goto 1</td>
</tr>
<tr>
<td>0 1</td>
<td>(\ast \text{Id} + \text{Id} $</td>
<td>Shift, goto 3</td>
</tr>
<tr>
<td>0 1 3</td>
<td>(\text{Id} + \text{Id} $</td>
<td>Shift, goto 1</td>
</tr>
<tr>
<td>0 1 3</td>
<td>(\ast \text{Id} $</td>
<td>Reduce 4</td>
</tr>
<tr>
<td>0 1 3 1</td>
<td>(+ \text{Id} $</td>
<td>Reduce 3</td>
</tr>
<tr>
<td>0 1 3 5 2</td>
<td>(+ \text{Id} $</td>
<td>Shift, goto 4</td>
</tr>
<tr>
<td>0 1 3 1 2</td>
<td>(\text{Id} $</td>
<td>Shift, goto 1</td>
</tr>
<tr>
<td>0 1 3 1 2 4</td>
<td>$</td>
<td>Reduce 4</td>
</tr>
<tr>
<td>0 1 3 1 2 4 2</td>
<td>$</td>
<td>Reduce 2</td>
</tr>
<tr>
<td>0 1 3 1 2 4 6</td>
<td>$</td>
<td>Reduce 1</td>
</tr>
<tr>
<td>0 1 3 1 2 4 6 7</td>
<td>$</td>
<td>Accept</td>
</tr>
</tbody>
</table>
Names, Objects, and Bindings

Object 3

Object 4

Object 1

Object 2

Name 1

Name 2

Name 3

Name 4
Typical Stack Layout

↑ higher addresses

<table>
<thead>
<tr>
<th>argument 2</th>
<th>← frame pointer</th>
</tr>
</thead>
<tbody>
<tr>
<td>argument 1</td>
<td>← stack pointer</td>
</tr>
<tr>
<td>return address</td>
<td></td>
</tr>
<tr>
<td>old frame pointer</td>
<td></td>
</tr>
<tr>
<td>saved registers</td>
<td></td>
</tr>
<tr>
<td>local variables</td>
<td></td>
</tr>
<tr>
<td>temporaries/arguments</td>
<td></td>
</tr>
</tbody>
</table>

↓ growth of stack
Executing fib(3)

```c
int fib(int n) {
    int tmp1, tmp2, tmp3;
    tmp1 = n < 2;
    if (!tmp1) goto L1;
    return 1;
L1: tmp1 = n - 1;
    tmp2 = fib(tmp1);
L2: tmp1 = n - 2;
    tmp3 = fib(tmp1);
L3: tmp1 = tmp2 + tmp3;
    return tmp1;
}
```
int fib(int n) {
 int tmp1, tmp2, tmp3;
 tmp1 = n < 2;
 if (!tmp1) goto L1;
 return 1;
L1: tmp1 = n - 1;
 tmp2 = fib(tmp1);
L2: tmp1 = n - 2;
 tmp3 = fib(tmp1);
L3: tmp1 = tmp2 + tmp3;
 return tmp1;
}
int fib(int n) {
 int tmp1, tmp2, tmp3;
 tmp1 = n < 2;
 if (!tmp1) goto L1;
 return 1;
L1: tmp1 = n - 1;
 tmp2 = fib(tmp1);
L2: tmp1 = n - 2;
 tmp3 = fib(tmp1);
L3: tmp1 = tmp2 + tmp3;
 return tmp1;
}
int fib(int n) {
 int tmp1, tmp2, tmp3;
 tmp1 = n < 2;
 if (!tmp1) goto L1;
 return 1;
 L1: tmp1 = n - 1;
 tmp2 = fib(tmp1);
 L2: tmp1 = n - 2;
 tmp3 = fib(tmp1);
 L3: tmp1 = tmp2 + tmp3;
 return tmp1;
}
int fib(int n) {
 int tmp1, tmp2, tmp3;
 tmp1 = n < 2;
 if (!tmp1) goto L1;
 return 1;
L1: tmp1 = n - 1;
 tmp2 = fib(tmp1);
L2: tmp1 = n - 2;
 tmp3 = fib(tmp1);
L3: tmp1 = tmp2 + tmp3;
 return tmp1;
}
Executing fib(3)

```c
int fib(int n) {
    int tmp1, tmp2, tmp3;
    tmp1 = n < 2;
    if (!tmp1) goto L1;
    return 1;
L1: tmp1 = n - 1;
    tmp2 = fib(tmp1);
L2: tmp1 = n - 2;
    tmp3 = fib(tmp1);
L3: tmp1 = tmp2 + tmp3;
    return tmp1;
}
```

n = 3
return address
last frame pointer
tmp1 = 2
tmp2 =
tmp3 =
n = 2
return address
last frame pointer
tmp1 = 0
tmp2 = 1
tmp3 =
n = 0
return address
last frame pointer
tmp1 = 1
tmp2 =
tmp3 =
```
int fib(int n) {
    int tmp1, tmp2, tmp3;
    tmp1 = n < 2;
    if (!tmp1) goto L1;
    return 1;
L1: tmp1 = n - 1;
    tmp2 = fib(tmp1);
L2: tmp1 = n - 2;
    tmp3 = fib(tmp1);
L3: tmp1 = tmp2 + tmp3;
    return tmp1;
}
Executing fib(3)

```c
int fib(int n) {
 int tmp1, tmp2, tmp3;
 tmp1 = n < 2;
 if (!tmp1) goto L1;
 return 1;
L1: tmp1 = n - 1;
 tmp2 = fib(tmp1);
L2: tmp1 = n - 2;
 tmp3 = fib(tmp1);
L3: tmp1 = tmp2 + tmp3;
 return tmp1;
}
```

FP: n = 3
    return address
    last frame pointer
    tmp1 = 1
    tmp2 = 2
    tmp3 =
    n = 1

SP: FP
```
Executing fib(3)

```c
int fib(int n) {
    int tmp1, tmp2, tmp3;
    tmp1 = n < 2;
    if (!tmp1) goto L1;
    return 1;
    L1: tmp1 = n - 1;
    tmp2 = fib(tmp1);
    L2: tmp1 = n - 2;
    tmp3 = fib(tmp1);
    L3: tmp1 = tmp2 + tmp3;
    return tmp1;
}
```
Executing fib(3)

```c
int fib(int n) {
    int tmp1, tmp2, tmp3;
    tmp1 = n < 2;
    if (!tmp1) goto L1;
    return 1;
    L1: tmp1 = n - 1;
    tmp2 = fib(tmp1);
    L2: tmp1 = n - 2;
    tmp3 = fib(tmp1);
    L3: tmp1 = tmp2 + tmp3;
    return tmp1;
}
```

```
| SP         | n = 3
| FP         | return address
|            | last frame pointer
|            | tmp1 = 3 ← result
|            | tmp2 = 2
|            | tmp3 = 1
```

\[\text{tmp1} = 3 \]
\[\text{tmp2} = 2 \]
\[\text{tmp3} = 1 \]
Implementing Nested Functions with Static Links

```
let a x s =
  let b y =
    let c z = z + s in
    let d w = c (w+1) in
    d (y+1) in (* b *)
  in
  let e q = b (q+1) in
  e (x+1) (* a *)
```

What does “a 5 42” evaluate to?
What does “a 5 42” evaluate to?

```
let a x s =
    let b y =
        let c z = z + s in
        let d w = c (w+1) in
        d (y+1) (* b *)
    in
    let e q = b (q+1) in
    e (x+1) (* a *)
```
Implementing Nested Functions with Static Links

```
let a x s =
  let b y =
    let c z = z + s in
    let d w = c (w+1) in
    d (y+1) (* b *)
  in
  let e q = b (q+1) in
  e (x+1) (* a * )
```

What does “a 5 42” evaluate to?

a: x = 5
s = 42

b: (static link)
y = 7

(Static link)
e: q = 6

(Static link)
a: (* a *)
Implementing Nested Functions with Static Links

```haskell
let a x s =
  let b y =
    let c z = z + s in
    let d w = c (w+1) in
    d (y+1) in (* b *)
  in
  let e q = b (q+1) in
  e (x+1) in (* a *)

What does “a 5 42” evaluate to?
```

(a static link)

<table>
<thead>
<tr>
<th>a:</th>
<th>b:</th>
<th>c:</th>
<th>d:</th>
<th>e:</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 5</td>
<td>y = 7</td>
<td>z = 42</td>
<td>w = 8</td>
<td>q = 6</td>
</tr>
<tr>
<td>s = 42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What does “a 5 42” evaluate to?
Implementing Nested Functions with Static Links

```
let a x s =
  let b y =
    let c z = z + s in
    let d w = c (w+1) in
    d (y+1) in (* b *)
  in
  let e q = b (q+1) in
  e (x+1) (* a *)
```

What does “a 5 42” evaluate to?

- `x = 5` (static link)
- `s = 42` (static link)
- `q = 6` (static link)
- `y = 7` (static link)
- `w = 8` (static link)
- `z = 9` (static link)
program example;
var a : integer; (* Outer a *)

procedure seta;
begin
 a := 1 (* Which a does this change? *)
end

procedure locala;
var a : integer; (* Inner a *)
begin
 seta
end

begin
 a := 2;
 if (readln() = 'b')
 locala
 else
 seta;
 writeln(a)
end
C’s Types: Base Types/Pointers

Base types match typical processor

Typical sizes:

<table>
<thead>
<tr>
<th>char</th>
<th>short</th>
<th>int</th>
<th>long</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
</tr>
</tbody>
</table>

Pointers (addresses)

```c
int *i;  /* i is a pointer to an int */
char **j; /* j is a pointer to a pointer to a char */
```
C’s Types: Arrays, Functions

Arrays

```c
char c[10]; /* c[0] ... c[9] are chars */
double a[10][3][2]; /* array of 10 arrays of 3 arrays of 2 doubles */
```

Functions

```c
/* function of two arguments returning a char */
char foo(int, double);
```
C’s Types: Structs and Unions

Structures: each field has own storage

```c
struct box {
    int x, y, h, w;
    char *name;
};
```

Unions: fields share same memory

```c
union token {
    int i;
    double d;
    char *s;
};
```
A record is an object with a collection of fields, each with a potentially different type. In C,

```c
struct rectangle {  
    int n, s, e, w;  
    char *label;  
    color col;  
    struct rectangle *next;  
};

struct rectangle r;  
r.n = 10;  
r.label = "Rectangle";
```
Records are the precursors of objects:

Group and restrict what can be stored in an object, but not what operations they permit.

Can fake object-oriented programming:

```c
struct poly { ... };

struct poly *poly_create();
void poly_destroy(struct poly *p);
void poly_draw(struct poly *p);
void poly_move(struct poly *p, int x, int y);
int poly_area(struct poly *p);
```
A record object holds all of its fields. A variant record holds only one of its fields at once. In C,

```c
union token {
    int i;
    float f;
    char *string;
};

union token t;
t.i = 10;
t.f = 3.14159;    /* overwrites t.i */
char *s = t.string;    /* returns gibberish */
```
A primitive form of polymorphism:

```c
struct poly {
    int x, y;
    int type;
    union {
        int radius;
        int size;
        float angle;
    } d;
};
```

If `poly.type == CIRCLE`, use `poly.d.radius`.

If `poly.type == SQUARE`, use `poly.d.size`.

If `poly.type == LINE`, use `poly.d.angle`.
Modern processors have byte-addressable memory.

The IBM 360 (c. 1964) helped to popularize byte-addressable memory.

Many data types (integers, addresses, floating-point numbers) are wider than a byte.

16-bit integer: 1 0
32-bit integer: 3 2 1 0
Modern memory systems read data in 32-, 64-, or 128-bit chunks:

```
<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>
```

Reading an aligned 32-bit value is fast: a single operation.

```
<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>
```

It is harder to read an unaligned value: two reads plus shifting

```
<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>
```

SPARC prohibits unaligned accesses.

MIPS has special unaligned load/store instructions.

x86, 68k run more slowly with unaligned accesses.
Padding

To avoid unaligned accesses, the C compiler pads the layout of unions and records.

Rules:

- Each n-byte object must start on a multiple of n bytes (no unaligned accesses).
- Any object containing an n-byte object must be of size mn for some integer m (aligned even when arrayed).

```c
struct padded {
    int x;  /* 4 bytes */
    char z; /* 1 byte */
    short y; /* 2 bytes */
    char w; /* 1 byte */
};
```

```c
struct padded {
    char a; /* 1 byte */
    short b; /* 2 bytes */
    short c; /* 2 bytes */
};
```
Most languages provide array types:

```plaintext
char i[10]; /* C */
character(10) i ! FORTRAN
i : array (0..9) of character; -- Ada
var i : array [0 .. 9] of char; { Pascal }
```
Array Address Calculation

In C,

```c
struct foo a[10];
a[i] is at a + i * sizeof(struct foo)
```

```c
struct foo a[10][20];
a[i][j] is at a + (j + 20 * i) * sizeof(struct foo)
```

⇒ Array bounds must be known to access 2D+ arrays
Allocating Arrays in C++

```cpp
int a[10]; // static

void foo(int n)
{
    int b[15]; // stacked
    int c[n]; // stacked: tricky
    int d[]; // on heap
    vector<int> e; // on heap

    d = new int[n*2]; // fixes size
    e.append(1); // may resize
    e.append(2); // may resize
}
```
Allocating Fixed-Size Arrays

Local arrays with fixed size are easy to stack.

```c
void foo()
{
    int a;
    int b[10];
    int c;
}
```

<table>
<thead>
<tr>
<th>return address</th>
<th>← FP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>b[9]</td>
</tr>
<tr>
<td></td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>b[0]</td>
</tr>
<tr>
<td></td>
<td>c</td>
</tr>
</tbody>
</table>
Allocating Variable-Sized Arrays

Variable-sized local arrays aren’t as easy.

```c
void foo(int n)
{
    int a;
    int b[n];
    int c;
}
```

Doesn’t work: generated code expects a fixed offset for `c`. Even worse for multi-dimensional arrays.
Allocating Variable-Sized Arrays

As always:
add a level of indirection

```c
void foo(int n)
{
    int a;
    int b[n];
    int c;
}
```

Variables remain constant offset from frame pointer.
Name vs. Structural Equivalence

```c
struct f {
    int x, y;
} foo = { 0, 1 };

struct b {
    int x, y;
} bar;

bar = foo;
```

Is this legal in C?
Name vs. Structural Equivalence

```c
struct f {
    int x, y;
} foo = {0, 1};

typedef struct f f_t;

f_t baz;
baz = foo;
```

Legal because `f_t` is an alias for `struct f`.
What code does a compiler generate for

\[a = b + c + d; \]

Most likely something like

\[
\begin{align*}
\text{tmp} &= b + c; \\
a &= \text{tmp} + d;
\end{align*}
\]

(Assumes left-to-right evaluation of expressions.)
Order of Evaluation

Why would you care?

Expression evaluation can have side-effects.

Floating-point numbers don’t behave like numbers.
Side-effects

```c
int x = 0;

int foo() {
    x += 5;
    return x;
}

int bar() {
    int a = foo() + x + foo();
    return a;
}
```

What does `bar()` return?
Side-effects

```c
int x = 0;

int foo() {
    x += 5;
    return x;
}

int bar() {
    int a = foo() + x + foo();
    return a;
}
```

What does `bar()` return?

GCC returned 25.

Sun’s C compiler returned 20.

C says expression evaluation order is implementation-dependent.
Side-effects

Java prescribes left-to-right evaluation.

class Foo {

 static int x;

 static int foo() {
 x += 5;
 return x;
 }

 public static void main(String args[]) {
 int a = foo() + x + foo();
 System.out.println(a);
 }

}

Always prints 20.
When you write

```java
if (disaster_could_happen)
  avoid_it();
else
  cause_a_disaster();
```

`cause_a_disaster()` is not called when `disaster_could_happen` is true.

The `if` statement evaluates its bodies lazily: only when necessary.

The section operator `? :` does this, too.

```java
cost = disaster_possible ? avoid_it() : cause_it();
```
Logical Operators

In Java and C, Boolean logical operators “short-circuit” to provide this facility:

```java
if (disaster_possible || case_it()) { ... }
```

`cause_it()` only called if `disaster_possible` is false.

The `&&` operator does the same thing.

Useful when a later test could cause an error:

```java
int a[10];
if (i => 0 && i < 10 && a[i] == 0) { ... }
```
Assembly languages usually provide three types of instructions:

Pass control to next instruction:
- add, sub, mov, cmp

Pass control to another instruction:
- jmp rts

Conditionally pass control next or elsewhere:
- beq bne blt
Unstructured Control-Flow

BEQ A
B:
JMP C
A:
BEQ D
C:
BEQ B
D:
BNE B
RTS
Structured Control-Flow

The “object-oriented languages” of the 1960s and 70s.

Structured programming replaces the evil goto with structured (nested) constructs such as

 for
 while
 break
 return
 continue
 do .. while
 if .. then .. else
Gotos vs. Structured Programming

A typical use of a goto is building a loop. In BASIC:

```
10 PRINT I
20 I = I + 1
30 IF I < 10 GOTO 10
```

A cleaner version in C using structured control flow:

```
do {
    printf("%d\n", i);
    i = i + 1;
} while (i < 10)
```

An even better version

```
for (i = 0 ; i < 10 ; i++)
    printf("%d\n", i);
```
Gotos vs. Structured Programming

Break and continue leave loops prematurely:

```plaintext
for ( i = 0 ; i < 10 ; i++ ) {
    if ( i == 5 ) continue;
    if ( i == 8 ) break;
    printf("%d\n", i);
}
```

```plaintext
i = 0;
Again:
    if (! (i < 10)) goto Break;
    if ( i == 5 ) goto Continue;
    if ( i == 8 ) goto Break;
    printf("%d\n", i);
Continue: i++; goto Again;
Break:
```
Escaping from Loops

Java allows you to escape from labeled loops:

```java
a: for (int i = 0; i < 10; i++)
    for (int j = 0; j < 10; j++) {
        System.out.println(i + "\," + j);
        if (i == 2 && j == 8) continue a;
        if (i == 8 && j == 4) break a;
    }
```
Gotos vs. Structured Programming

Pascal has no “return” statement for escaping from functions/procedures early, so goto was necessary:

```
procedure consume_line(var line : string);
begin
  if line[i] = '%' then goto 100;
  (* .... *)
100:
end
```

In C and many others, return does this for you:

```
void consume_line(char *line) {
  if (line[0] == '%') return;
}
```
Switch sends control to one of the case labels. Break terminates the statement. Really just a multi-way goto:
Implementing multi-way branches

`switch (s) {
 case 1: one(); break;
 case 2: two(); break;
 case 3: three(); break;
 case 4: four(); break;
}

Obvious way:

`if (s == 1) { one(); }
else if (s == 2) { two(); }
else if (s == 3) { three(); }
else if (s == 4) { four(); }
`

Reasonable, but we can sometimes do better.
Implementing multi-way branches

If the cases are *dense*, a branch table is more efficient:

```c
switch (s) {
    case 1: one(); break;
    case 2: two(); break;
    case 3: three(); break;
    case 4: four(); break;
}
```

A branch table written using a GCC extension:

```c
/* Array of addresses of labels */
static void *l[] = { &&L1, &&L2, &&L3, &&L4 };

if (s >= 1 && s <= 4)
    goto *l[s-1];
goto Break;
L1: one(); goto Break;
L2: two(); goto Break;
L3: three(); goto Break;
L4: four(); goto Break;
Break:
```
Recursion and Iteration

To compute $\sum_{i=0}^{10} f(i)$ in C, the most obvious technique is iteration:

```c
double total = 0;
for ( i = 0 ; i <= 10 ; i++ )
    total += f(i);
```
Tail-Recursion and Iteration

```c
int gcd(int a, int b) {
    if (a == b) return a;
    else if (a > b) return gcd(a - b, b);
    else return gcd(a, b - a);
}
```

Notice: no computation follows any recursive calls.

Stack is not necessary: all variables “dead” after the call.

Local variable space can be reused. Trivial since the collection of variables is the same.

Works in O’Caml, too

```ocaml
let rec gcd a b =
    if a = b then a
    else if a > b then gcd (a - b) b
    else gcd a (b - a)
```
Tail-Recursion and Iteration

```c
int gcd(int a, int b) {
    if ( a==b ) return a;
    else if ( a > b ) return gcd(a-b,b); 
    else return gcd(a,b-a);
}
```

Can be rewritten into:

```c
int gcd(int a, int b) {
    start:
    if ( a==b ) return a;
    else if ( a > b ) a = a-b; goto start;
    else b = b-a; goto start;
}
```

Good compilers, especially those for functional languages, identify and optimize tail recursive functions.

Less common for imperative languages, but gcc -O was able to handle this example.
Applicative- and Normal-Order Evaluation

```c
int p(int i) {
    printf("%d ", i);
    return i;
}

void q(int a, int b, int c) {
    int total = a;
    printf("%d ", b);
    total += c;
}

q( p(1), 2, p(3) );
```

What does this print?
Applicative- vs. and Normal-Order

Most languages use applicative order.

Macro-like languages often use normal order.

```
#define p(x) (printf("%d ",x), x)
#define q(a,b,c) total = (a), \n    printf("%d ", (b)), \n    total += (c)
q( p(1), 2, p(3) );
```

Prints 1 2 3.

Some functional languages also use normal order evaluation to avoid doing work. “Lazy Evaluation”
C does not define argument evaluation order:

```c
int p(int i) {
    printf("%d ", i);
    return i;
}

int q(int a, int b, int c) {}  
q( p(1), p(2), p(3) );
```

Might print 1 2 3, 3 2 1, or something else.

This is an example of *nondeterminism*.
Nondeterminism

Nondeterminism is not the same as random:
Compiler usually chooses an order when generating code.
Optimization, exact expressions, or run-time values may affect behavior.
Bottom line: don’t know what code will do, but often know set of possibilities.

```c
int p(int i) { printf("%d ", i); return i; }
int q(int a, int b, int c) {}
q( p(1), p(2), p(3) );
```

Will *not* print 5 6 7. It will print one of
1 2 3, 1 3 2, 2 1 3, 2 3 1, 3 1 2, 3 2 1
Stack-Based IR: Java Bytecode

```
int gcd(int a, int b) {
    while (a != b) {
        if (a > b) {
            a -= b;
        } else {
            b -= a;
        }
    }
    return a;
}
```

```java
# javap -c Gcd

Method int gcd(int, int)
0 goto 19

3 iload_1  // Push a
4 iload_2  // Push b
5 if_icmple 15 // if a <= b goto 15

8 iload_1  // Push a
9 iload_2  // Push b
10 isub    // a - b
11 istore_1 // Store new a
12 goto 19

15 iload_2  // Push b
16 iload_1  // Push a
17 isub    // b - a
18 istore_2 // Store new b

19 iload_1  // Push a
20 iload_2  // Push b
21 if_icmpne 3 // if a != b goto 3

24 iload_1  // Push a
25 ireturn  // Return a
```
Stack-Based IRs

Advantages:

- Trivial translation of expressions
- Trivial interpreters
- No problems with exhausting registers
- Often compact

Disadvantages:

- Semantic gap between stack operations and modern register machines
- Hard to see what communicates with what
- Difficult representation for optimization
int gcd(int a, int b) {
 while (a != b) {
 if (a > b)
 a -= b;
 else
 b -= a;
 }
 return a;
}

gcd:
gcd._gcdTmp0:
 sne $vr1.s32 <- gcd.a,gcd.b
 seq $vr0.s32 <- $vr1.s32,0
 btrue $vr0.s32,gcd._gcdTmp1 // if!(a!=b) goto Tmp1

 sl $vr3.s32 <- gcd.b,gcd.a
 seq $vr2.s32 <- $vr3.s32,0
 btrue $vr2.s32,gcd._gcdTmp4 // if!(a<b) goto Tmp4

 mrk 2, 4 // Line number 4
 sub $vr4.s32 <- gcd.a,gcd.b
 mov gcd._gcdTmp2 <- $vr4.s32
 mov gcd.a <- gcd._gcdTmp2 // a = a - b
 jmp gcd._gcdTmp5

gcd._gcdTmp4:
 mrk 2, 6
 sub $vr5.s32 <- gcd.b,gcd.a
 mov gcd._gcdTmp3 <- $vr5.s32
 mov gcd.b <- gcd._gcdTmp3 // b = b - a

gcd._gcdTmp5:
 jmp gcd._gcdTmp0

gcd._gcdTmp1:
 mrk 2, 8
 ret gcd.a // Return a
Register-Based IRs

Most common type of IR

Advantages:

- Better representation for register machines
- Dataflow is usually clear

Disadvantages:

- Slightly harder to synthesize from code
- Less compact
- More complicated to interpret
int gcd(int a, int b) {
 while (a != b) {
 if (a < b) b -= a;
 else a -= b;
 }
 return a;
}

GCC on SPARC

gcd: save %sp, -112, %sp
st %i0, [%fp+68]
st %i1, [%fp+72]
.LL2: ld [%fp+68], %i1
 ld [%fp+72], %i0
cmp %i1, %i0
 bne .LL4
 nop
 b .LL3
 nop
.LL4: ld [%fp+68], %i1
 ld [%fp+72], %i0
cmp %i1, %i0
 bge .LL5
 nop
 ld [%fp+72], %i0
 ld [%fp+68], %i1
sub %i0, %i1, %i0
 st %i0, [%fp+72]
b .LL2
 nop
.LL5: ld [%fp+68], %i0
 ld [%fp+72], %i1
sub %i0, %i1, %i0
 st %i0, [%fp+68]
b .LL2
 nop
.LL3: ld [%fp+68], %i0
 ret
 restore

GCC -O7 on SPARC

gcd: cmp %o0, %o1
 be .LL8
 nop
.LL9: bge,a .LL2
 sub %o0, %o1, %o0
sub %o1, %o0, %o1
.LL2: cmp %o0, %o1
 bne .LL9
 nop
.LL8: retl
 nop
Typical Optimizations

- Folding constant expressions
 \[1 + 3 \rightarrow 4\]

- Removing dead code
 \[\text{if (0) \{ \ldots \}} \rightarrow \text{nothing}\]

- Moving variables from memory to registers
 \[
 \text{ld} \quad [\%fp+68], \%i1 \\
 \text{sub} \quad \%i0, \%i1, \%i0 \rightarrow \text{sub} \quad \%o1, \%o0, \%o1 \\
 \text{st} \quad \%i0, [\%fp+72]
 \]

- Removing unnecessary data movement

- Filling branch delay slots (Pipelined RISC processors)

- Common subexpression elimination
No matter what the machine is, folding constants and eliminating dead code is always a good idea.

```plaintext
a = c + 5 + 3;
if (0 + 3) {
    b = c + 8;
} → b = a = c + 8;
}
```

However, many optimizations are processor-specific:

- Register allocation depends on how many registers the machine has
- Not all processors have branch delay slots to fill
- Each processor's pipeline is a little different
Basic Blocks

The statements in a basic block all run if the first one does.

Starts with a statement following a conditional branch or is a branch target.

Usually ends with a control-transfer statement.
Control-Flow Graphs

A CFG illustrates the flow of control among basic blocks.

A:
sne t, a, b
bz E, t

slt t, a, b
bnz B, t

sub b, b, a
jmp C

B:
sub a, a, b

C:
jmp A

E:
ret a

E:
ret a
Separate Compilation and Linking

- foo.c
- bar.c
- foo.s
- bar.s
- printf.o
- fopen.o
- malloc.o
- foo.o
- bar.o
- libc.a
- ld
- cc
- as
- ar
- Compiler
- Assembler
- Linker
- Archiver
Linking

Goal of the linker is to combine the disparate pieces of the program into a coherent whole.

file1.c:

```c
#include <stdio.h>
char a[] = "Hello";
extern void bar();

int main() {
    bar();
}

void baz(char *s) {
    printf("%s", s);
}
```

file2.c:

```c
#include <stdio.h>
extern char a[];
static char b[6];

void bar() {
    strcpy(b, a);
    baz(b);
}
```

libc.a:

```c
int printf(char *s, ...) {
    /* ... */
}

char *strcpy(char *d, char *s) {
    /* ... */
}
```
Linking

Goal of the linker is to combine the disparate pieces of the program into a coherent whole.

file1.c:

```c
#include <stdio.h>
char a[] = "Hello";
extern void bar();

int main() {
    bar();
}

void baz(char *s) {
    printf("%s", s);
}
```

file2.c:

```c
#include <stdio.h>
extern char a[];
static char b[6];

void bar() {
    strcpy(b, a);
    baz(b);
}
```

libc.a:

```c
int printf(char *s, ...) {
    /* ... */
}
```

```c
char *strcpy(char *d, char *s) {
    /* ... */
}
```
Linking

file1.o
a="Hello"
main()
baz()

file2.o
char b[6]
bar()

code of program
.data
Initialized data
.code
.Uninitialized data
"Block Started by Symbol"
Linking

file1.o
a=“Hello"
main()
baz()

file2.o
char b[6]
baz()

.a.out
.text segment
main()
baz()
bar()

.data segment
a=“Hello”

.bss segment
char b[6]

.text
Code of program
.data
Initialized data
.bss
Uninitialized data
“Block Started by Symbol”
Relocatable: Many need to be pasted together. Final in-memory address of code not known when program is compiled

Object files contain

- imported symbols (unresolved “external” symbols)
- relocation information (what needs to change)
- exported symbols (what other files may refer to)
file1.c:

```c
#include <stdio.h>
char a[] = "Hello";
extern void bar();

int main() {
    bar();
}

void baz(char *s) {
    printf("%s", s);
}
```
Object Files

file1.c:

```c
#include <stdio.h>
char a[] = "Hello";
extern void bar();

int main() {
    bar();
}

void baz(char *s) {
    printf("%s", s);
}
```

```
# objdump -x file1.o
Sections:
Idx Name Size VMA LMA Offset Algn
 0 .text 038 0 0 034 2**2
 1 .data 008 0 0 070 2**3
 2 .bss 000 0 0 078 2**0
 3 .rodata 008 0 0 078 2**3

SYMBOL TABLE:
0000 g O .data 006 a
0000 g F .text 014 main
0000 *UND* 000 bar
0014 g F .text 024 baz
0000 *UND* 000 printf

RELOCATION RECORDS FOR [.text]:
OFFSET TYPE VALUE
0004 R_SPARC_WDISP30 bar
001c R_SPARC_HI22 .rodata
0020 R_SPARC_LO10 .rodata
0028 R_SPARC_WDISP30 printf
```
file1.c:

```c
#include <stdio.h>
char a[] = "Hello";
extern void bar();

int main() {
    bar();
}

void baz(char *s) {
    printf("%s", s);
}
```

objdump -d file1.o

0000 <main>:
 0: 9d e3 bf 90 save %sp, -112, %sp
 4: 40 00 00 00 call 4 <main+0x4>
 4: R_SPARC_WDISP30 bar
 8: 01 00 00 00 nop
 c: 81 c7 e0 08 ret
 10: 81 e8 00 00 restore

0014 <baz>:
 14: 9d e3 bf 90 save %sp, -112, %sp
 18: f0 27 a0 44 st %i0, [%fp + 0x44]
 1c: 11 00 00 00 sethi %hi(0), %o0
 1c: R_SPARC_HI22 .rodata
 20: 90 12 20 00 mov %o0, %o0
 20: R_SPARC_LO10 .rodata
 24: d2 07 a0 44 ld [%fp + 0x44], %o1
 28: 40 00 00 00 call 28 <baz+0x14>
 28: R_SPARC_WDISP30 printf
 2c: 01 00 00 00 nop
 30: 81 c7 e0 08 ret
 34: 81 e8 00 00 restore
Before and After Linking

- Combine object files
- Relocate each function's code
- Resolve previously unresolved symbols

```c
int main() {
    bar();
}

void baz(char *s) {
    printf("%s", s);
}
```
Linking Resolves Symbols

file1.c:

```c
#include <stdio.h>
char a[] = "Hello";
extern void bar();

int main() {
    bar();
}

void baz(char *s) {
    printf("%s", s);
}
```

file2.c:

```c
#include <stdio.h>
extern char a[];
static char b[6];

void bar() {
    strcpy(b, a);
    baz(b);
}
```
Shared Libraries and Dynamic Linking

The 1980s GUI/WIMP revolution required many large libraries (the Athena widgets, Motif, etc.)

Under a *static linking* model, each executable using a library gets a copy of that library’s code.

Address 0:

```
<table>
<thead>
<tr>
<th>libXaw.a</th>
<th>libXaw.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>libX11.a</td>
<td>libX11.a</td>
</tr>
<tr>
<td>xeyes</td>
<td>xterm</td>
</tr>
</tbody>
</table>
```

Wasteful: running many GUI programs at once fills memory with nearly identical copies of each library. Something had to be done: another level of indirection.
Shared Libraries and Dynamic Linking

The 1980s GUI/WIMP revolution required many large libraries (the Athena widgets, Motif, etc.)

Under a static linking model, each executable using a library gets a copy of that library’s code.

Address 0:

<table>
<thead>
<tr>
<th>libXaw.a</th>
<th>libX11.a</th>
</tr>
</thead>
<tbody>
<tr>
<td>xterm</td>
<td></td>
</tr>
<tr>
<td>libXaw.a</td>
<td>libX11.a</td>
</tr>
<tr>
<td>xeyes</td>
<td></td>
</tr>
</tbody>
</table>

Wasteful: running many GUI programs at once fills memory with nearly identical copies of each library.

Something had to be done: another level of indirection.
Shared Libraries: First Attempt

Most code makes assumptions about its location.

First solution (early Unix System V R3) required each shared library to be located at a unique address:

```
<table>
<thead>
<tr>
<th>libXaw.so</th>
<th>libXaw.so</th>
<th>libXm.so</th>
</tr>
</thead>
<tbody>
<tr>
<td>libX11.so</td>
<td>libX11.so</td>
<td>libX11.so</td>
</tr>
<tr>
<td>xeyes</td>
<td>xterm</td>
<td>netscape</td>
</tr>
</tbody>
</table>
```

Address 0: xeyes xterm

Obvious disadvantage: must ensure each new shared library located at a new address. Works fine if there are only a few libraries; tended to discourage their use.
Shared Libraries: First Attempt

Most code makes assumptions about its location.

First solution (early Unix System V R3) required each shared library to be located at a unique address:

```
libXm.so  libXaw.so  libXaw.so  libX11.so  libX11.so  libX11.so
libXaw.so libX11.so  libX11.so  netscape
libX11.so
```

Address 0: xeyes xterm

Obvious disadvantage: must ensure each new shared library located at a new address.

Works fine if there are only a few libraries; tended to discourage their use.
Problem fundamentally is that each program may need to see different libraries each at a different address.
Solution: Require the code for libraries to be position-independent. Make it so they can run anywhere in memory.

As always, add another level of indirection:

- All branching is PC-relative
- All data must be addressed relative to a base register.
- All branching to and from this code must go through a jump table.
Position-Independent Code for bar()

Normal unlinked code

```asm
save %sp, -112, %sp
sethi %hi(0), %o0
  R_SPARC_HI22 .bss
mov %o0, %o0
  R_SPARC_LO10 .bss
sethi %hi(0), %o1
  R_SPARC_HI22 a
mov %o1, %o1
  R_SPARC_LO10 a
call 14
  R_SPARC_WDISP30 strcpy
nop
sethi %hi(0), %o0
  R_SPARC_HI22 .bss
mov %o0, %o0
  R_SPARC_LO10 .bss
call 24
  R_SPARC_WDISP30 baz
nop
ret
restore
```

gcc -fpic -shared

```asm
save %sp, -112, %sp
sethi %hi(0x10000), %l7
call 8e0 ! add PC to %l7
add %l7, 0x198, %l7
ld [ %l7 + 0x20 ], %o0
ld [ %l7 + 0x24 ], %o1
  Actually just a stub
call 10a24 ! strcpy
nop
ld [ %l7 + 0x20 ], %o0
  call is PC-relative
call 10a3c ! baz
nop
ret
restore
```
Facts

nerd(X) :- techer(X).
techer(stephen).

Query

?- nerd(stephen).

Search (Execution)

Result

yes
Starts with the query:

?- nerd(stephen).

Can we convince ourselves that \textit{nerd}(\textit{stephen}) \textit{is true given the facts we have?*}

\texttt{techer}(\textit{stephen}).
\texttt{nerd}(X) :- techer(X).

First says \texttt{techer}(\textit{stephen}) is true. Not helpful.

Second says that we can conclude \texttt{nerd}(X) is true if we can conclude \texttt{techer}(X) is true. More promising.
Simple Searching

`techer(stephen).`
`nerd(X) :- techer(X).`

`?- nerd(stephen).`

Unifying `nerd(stephen)` with the head of the second rule, `nerd(X)`, we conclude that `X = stephen`.

We’re not done: for the rule to be true, we must find that all its conditions are true. `X = stephen`, so we want `techer(stephen)` to hold.

This is exactly the first clause in the database; we’re satisfied. The query is simply true.
“Tell me about everybody who’s provably a nerd.”

As before, start with query. Rule only interesting thing.

Unifying `nerd(X)` with `nerd(X)` is vacuously true, so we need to establish `techer(X)`.

Unifying `techer(X)` with `techer(stephen)` succeeds, setting `X = stephen`, but we’re not done yet.

Unifying `techer(X)` with `techer(todd)` also succeeds, setting `X = todd`, but we’re still not done.

Unifying `techer(X)` with `nerd(X)` fails, returning no.
Database consists of Horn clauses. ("If a is true and b is true and ... and y is true then z is true").

Each clause consists of terms, which may be constants, variables, or structures.

Constants: foo my_Const + 1.43

Variables: X Y Everybody My_var

Structures: rainy(rochester)
 teaches(edwards, cs4115)
A structure consists of a **functor** followed by an open parenthesis, a list of comma-separated terms, and a close parenthesis:

```
"Functor"
paren must follow immediately

bin_tree( foo, bin_tree(bar, glarch) )
```

What’s a structure? Whatever you like.

A predicate `nerd(stephen)`
A relationship `teaches(edwards, cs4115)`
A data structure `bin(+, bin(-, 1, 3), 4)`
Unification

Part of the search procedure that matches patterns.
The search attempts to match a goal with a rule in the database by unifying them.

Recursive rules:

- A constant only unifies with itself
- Two structures unify if they have the same functor, the same number of arguments, and the corresponding arguments unify
- A variable unifies with anything but forces an equivalence
Unification Examples

The = operator checks whether two structures unify:

?- a = a.
yes % Constant unifies with itself

?- a = b.
no % Mismatched constants

?- 5.3 = a.
no % Mismatched constants

?- 5.3 = X.
X = 5.3 ? ;
yes % Variables unify

?- foo(a,X) = foo(X,b).
no % X=a required, but inconsistent

?- foo(a,X) = foo(X,a).
X = a % X=a is consistent
 yes

?- foo(X,b) = foo(a,Y).
X = a
Y = b % X=a, then b=Y
 yes

?- foo(X,a,X) = foo(b,a,c).
no % X=b required, but inconsistent
The Searching Algorithm

search(goal g, variables e)
 for each clause \(h : - t_1, \ldots, t_n \) in the database
 \(e = \text{unify}(g, h, e) \)
 if successful,
 for each term \(t_1, \ldots, t_n \),
 \(e = \text{search}(t_k, e) \)
 if all successful, return e
 return no

Note: This pseudo-code ignores one very important part of the searching process!
Order Affects Efficiency

```
edge(a, b). edge(b, c).
edge(c, d). edge(d, e).
edge(b, e). edge(d, f).

path(X, X).

path(X, Y) :-
    edge(X, Z), path(Z, Y).
```

Consider the query
```
| ?- path(a, a).
```

```
path(a,a)=path(X,X)
|   
X=a
|   yes
```

Good programming practice: Put the easily-satisfied clauses first.
Order Affects Efficiency

\[
\begin{align*}
\text{path}(X, Y) & :\ - \\
& \quad \text{edge}(X, Z), \ \text{path}(Z, Y).
\end{align*}
\]

Consider the query
\begin{verbatim}
?- path(a, a).
\end{verbatim}

Will eventually produce the right answer, but will spend much more time doing so.
Order Can Cause Infinite Recursion

\[\text{edge}(a, b). \text{edge}(b, c). \text{edge}(c, d). \text{edge}(d, e). \text{edge}(b, e). \text{edge}(d, f). \]

\[\text{path}(X, Y) := \text{path}(X, Z), \text{edge}(Z, Y). \]

\[\text{path}(X, X). \]

Consider the query
\[?- \text{path}(a, a). \]
A declarative statement such as

\[P \text{ if } Q \text{ and } R \text{ and } S \]

can also be interpreted procedurally as

To solve \(P \), solve \(Q \), then \(R \), then \(S \).

This is the problem with the last path example.

\[path(X, Y) :- path(X, Z), edge(Z, Y). \]

“To solve \(P \), solve \(P \)...”
Cuts

Ways to shape the behavior of the search:

- Modify clause and term order.
 Can affect efficiency, termination.

- “Cuts”
 Explicitly forbidding further backtracking.

When the search reaches a cut (!), it does no more backtracking.

```prolog
teacher(stephen) :- !.
teacher(todd).
nerd(X) :- teacher(X).

?- nerd(X).
X = stephen
yes
```
Lambda Expressions

Function application written in prefix form. “Add four and five” is

\[(+ \ 4 \ 5)\]

Evaluation: select a redex and evaluate it:

\[(+ \ (* \ 5 \ 6) \ (* \ 8 \ 3)) \rightarrow (+ \ 30 \ (* \ 8 \ 3)) \]
\[\rightarrow (+ \ 30 \ 24) \]
\[\rightarrow 54 \]

Often more than one way to proceed:

\[(+ \ (* \ 5 \ 6) \ (* \ 8 \ 3)) \rightarrow (+ \ (* \ 5 \ 6) \ 24) \]
\[\rightarrow (+ \ 30 \ 24) \]
\[\rightarrow 54 \]

Function Application and Currying

Function application is written as juxtaposition:

\[f \ x \]

Every function has exactly one argument. Multiple-argument functions, e.g., +, are represented by *currying*, named after Haskell Brooks Curry (1900–1982). So,

\[(\ + \ x) \]

is the function that adds \(x \) to its argument.

Function application associates left-to-right:

\[(+ 3 4) = ((+ 3) 4) \rightarrow 7 \]
Lambda Abstraction

The only other thing in the lambda calculus is *lambda abstraction*: a notation for defining unnamed functions.

\[(\lambda x . + x 1)\]

That function of \(x\) that adds \(x\) to 1
The Syntax of the Lambda Calculus

\[
\text{expr} ::= \text{expr} \text{ expr} \\
| \lambda \text{variable} . \text{expr} \\
| \text{constant} \\
| \text{variable} \\
| (\text{expr})
\]

Constants are numbers and built-in functions; variables are identifiers.
Beta-Reduction

Evaluation of a lambda abstraction—*beta-reduction*—is just substitution:

\[
(\lambda x. + x 1) 4 \rightarrow (+ 4 1) \\
\rightarrow 5
\]

The argument may appear more than once

\[
(\lambda x. + x x) 4 \rightarrow (+ 4 4) \\
\rightarrow 8
\]

or not at all

\[
(\lambda x. 3) 5 \rightarrow 3
\]
Free and Bound Variables

Here, x is like a function argument but y is like a global variable. Technically, x occurs bound and y occurs free in

$$\lambda x. + x y$$

However, both x and y occur free in

$$+ x y$$
Beta-Reduction More Formally

$$(\lambda x . E) F \rightarrow_\beta E'$$

where E' is obtained from E by replacing every instance of x that appears free in E with F.

The definition of free and bound mean variables have scopes. Only the rightmost x appears free in

$$(\lambda x . + (\neg x 1)) x 3$$

so

$$(\lambda x . (\lambda x . + (\neg x 1)) x 3) 9 \rightarrow (\lambda x . + (\neg x 1)) 9 3$$
$$\rightarrow + (\neg 9 1) 3$$
$$\rightarrow + 8 3$$
$$\rightarrow 11$$
One way to confuse yourself less is to do \(\alpha \)-conversion: renaming a \(\lambda \) argument and its bound variables.

Formal parameters are only names: they are correct if they are consistent.

\[
(\lambda x . (\lambda x . + (\neg x 1)) x 3)
\leftrightarrow
(\lambda x . (\lambda y . + (\neg y 1)) x 3)
9
\rightarrow
((\lambda y . + (\neg y 1)) 9 3)
\rightarrow
(+ (\neg 9 1) 3)
\rightarrow
(+ 8 3)
\rightarrow
11
\]
Beta-Abstraction and Eta-Conversion

Running β-reduction in reverse, leaving the “meaning” of a lambda expression unchanged, is called *beta abstraction*:

$$ + 4 \ 1 \leftarrow (\lambda x . + \ x \ 1) \ 4 $$

Eta-conversion is another type of conversion that leaves “meaning” unchanged:

$$(\lambda x . + \ 1 \ x) \leftrightarrow_\eta (+ \ 1)$$

Formally, if F is a function in which x does not occur free,

$$(\lambda x . F \ x) \leftrightarrow_\eta F$$
Reduction Order

The order in which you reduce things can matter.

\[(\lambda x. \lambda y. y) \left((\lambda z. z \ z) \ (\lambda z. z \ z)\right)\]

Two things can be reduced:

\[(\lambda z. z \ z) \ (\lambda z. z \ z)\]

\[(\lambda x. \lambda y. y) \ (\cdots)\]

However,

\[(\lambda z. z \ z) \ (\lambda z. z \ z) \rightarrow (\lambda z. z \ z) \ (\lambda z. z \ z)\]

\[(\lambda x. \lambda y. y) \ (\cdots) \rightarrow (\lambda y. y)\]
A lambda expression that cannot be β-reduced is in *normal form*. Thus,

$$\lambda y . y$$

is the normal form of

$$\left(\lambda x . \lambda y . y \right) \left(\left(\lambda z . z z \right) \left(\lambda z . z z \right) \right)$$

Not everything has a normal form. E.g.,

$$\left(\lambda z . z z \right) \left(\lambda z . z z \right)$$

can only be reduced to itself, so it never produces an non-reducible expression.
Normal Form

Can a lambda expression have more than one normal form?

Church-Rosser Theorem I: If $E_1 \leftrightarrow E_2$, then there exists an expression E such that $E_1 \rightarrow E$ and $E_2 \rightarrow E$.

Corollary. No expression may have two distinct normal forms.

Proof. Assume E_1 and E_2 are distinct normal forms for E: $E \leftrightarrow E_1$ and $E \leftrightarrow E_2$. So $E_1 \leftrightarrow E_2$ and by the Church-Rosser Theorem I, there must exist an F such that $E_1 \rightarrow F$ and $E_2 \rightarrow F$. However, since E_1 and E_2 are in normal form, $E_1 = F = E_2$, a contradiction.
Normal-Order Reduction

Not all expressions have normal forms, but is there a reliable way to find the normal form if it exists?

Church-Rosser Theorem II: If $E_1 \rightarrow E_2$ and E_2 is in normal form, then there exists a normal order reduction sequence from E_1 to E_2.

Normal order reduction: reduce the leftmost outermost redex.
Normal-Order Reduction

\[
\left(\left(\lambda x . (\lambda w . \lambda z . \, + \, w \, z) \, 1 \right)\right) \left((\lambda x . x \, x) \, (\lambda x . x \, x) \right) \left((\lambda y . \, + \, y \, 1) \, (+ \, 2 \, 3) \right)
\]
Recursion

Where is recursion in the lambda calculus?

$$FAC = \left(\lambda n \cdot IF \left(= n \, 0 \right) 1 \left(\ast n \left(FAC \left(- n \, 1 \right) \right) \right) \right)$$

This does not work: functions are unnamed in the lambda calculus. But it is possible to express recursion \textit{as a function}.

$$FAC = \left(\lambda n \ldots FAC \ldots \right)
\leftarrow \beta \left(\lambda f \cdot \left(\lambda n \ldots f \ldots \right) \right) FAC
= H \, FAC$$

That is, the factorial function, FAC, is a \textit{fixed point} of the (non-recursive) function H:

$$H = \lambda f \cdot \lambda n \cdot IF \left(= n \, 0 \right) 1 \left(\ast n \left(f \left(- n \, 1 \right) \right) \right)$$
Recursion

Let's invent a function Y that computes FAC from H, i.e.,

$FAC = YH$:

\[
FAC = H \text{FAC} \\
YH = H(YH) \\
\]

$FAC 1 = YH 1$

\[
= H(YH) 1 \\
= (\lambda f. \lambda n. IF (= n 0) 1 (* n (f (\neg n 1)))) (YH) 1 \\
\rightarrow (\lambda n. IF (= n 0) 1 (* n ((YH) (\neg n 1)))) 1 \\
\rightarrow IF (= 1 0) 1 (* 1 ((YH) (\neg 1 1))) \\
\rightarrow * 1 (YH 0) \\
= * 1 (H(YH) 0) \\
= * 1 ((\lambda f. \lambda n. IF (= n 0) 1 (* n (f (\neg n 1)))) (YH) 0) \\
\rightarrow * 1 ((\lambda n. IF (= n 0) 1 (* n (YH (\neg n 1)))) 0) \\
\rightarrow * 1 (IF (= 0 0) 1 (* 0 (YH (\neg 0 1)))) \\
\rightarrow * 1 1 \\
\rightarrow 1
\]
The Y Combinator

Here's the eye-popping part: Y can be a simple lambda expression.

\[Y = \lambda f \cdot (\lambda x . f (x x)) (\lambda x . f (x x)) \]

\[Y H = \left(\lambda f \cdot (\lambda x . f (x x)) (\lambda x . f (x x)) \right) H \]
\[\quad \rightarrow (\lambda x . H (x x)) (\lambda x . H (x x)) \]
\[\quad \rightarrow H \left((\lambda x . H (x x)) (\lambda x . H (x x)) \right) \]
\[\quad \rightarrow H \left(\left(\lambda f . (\lambda x . f (x x)) (\lambda x . f (x x)) \right) H \right) \]
\[\quad = H (Y H) \]

“Y: The function that takes a function f and returns \(f(f(f(f(\cdots)))) \)”