HOLLABACH
Final Report

COMS W4115: Programming Languages and Translators
Craig Darmetko (cd2698)
August 22, 2014

0 0 L 1) PPN 4
2. Language TULOTIAL....coeereeresree et essessessessssss s ssssssssssssssssssssssssssssssessessessssans 4
288 B & 021 Ca 070) o (e L PP 4
2.2. Compiling and FUNNING ..o ssssssssssssssssesssssssssssssssssssssssssssssssssssesssssssns 5
2.3. MOTE EXQAIMPIES ..ttt ssesssssssses st sssssssssssssssssssssssssssessessessessnses 6
3. Language ManUaL........oeneneereresressesssssssssssssesssssesssssssssssssssssssssssssssessesssssssssssssssssssssssessssssssses 6
3.1. LeXiCal CONVENTIONS ..cuueeieereeeesrereessessessesssessesssesssessssssessssssesssssesssessesssessssssessssssssssessssssessesssesasees 6
200 O 000 01 0 =) L 6
T8 0 6 1<) 4 U 1 () TSRO 6
3.1.3 ReSEIVEA KEYWOIAS .ottt sssss s sssssssssssssssssssssssssssesssssssssssnes 7
3.1.4 WHRIEESPACE ..coereeeereereieeeesesessesssssessesss s st sssssssnes 7
3.2. BaSiC Y PeS/ CONSLANTS: ..cueeeerereeeereesessssssssesessessesses s st ssesssssssnsns 7
20208 B 0 =Y o) TP 7
32,2 NOLE e 7
3.3. Complex types and EXPreSSIONSeneeresnesssssssssssssssssesessessessssssssssssssssssssssssessesssssesns 8
S 70 200 R 00 1) (o FFE NPT 8
TR 0 ST] DD 8
3.3.2.1 Declaring a Measure as @ Variable........esssssssssssssessesesessessesees 8
3.3.3 RESES i 9
3.3.4 INSEFUMENTE ...t s 9
3.3.5 TIME SIGNATUTE...coieriereerereresriresses et s s 9
T8 T 630 10 70) o 1P 10
3.3.7 Conditional Stat@MENTS........ccrercerrerrerreerer e ssssssssessesssesseeas 10
1O J0C 782 21 010) 001 0 0 1) 18 Uo) o 00T 10
3.4. Variable SCOPE ...t ssss s s ssessesns 10
3.4.1 MeaSUTIe [AENTIfIOr ...t s ssss s senssnssneas 10
2R 307/ 710 10) o ST 11
4. PTOJECE PlAN.uiiiiiiececrcresesstse s s et sssss s 11
4.1. Project TIMEINE. ...ttt sssssssssesesns 11
4.2. Programming STY1€ GUIAEcc.orereererreenserersseseessessessssssssssssssesssssessesssssssssssssssssssssessessesns 11
4.3. Development ENVIIONIMENT........oeneneneseesessesssssssssssssssssessessessessssssssssssssssssssssssessesns 11
44, PTOJECE LOu uieiurereerresresesssessesesssssssessssssessessss s sssse s sssss s ssessessssssssssssssssssessssssssssenssans 12
5. ArChiteCtural DESIGIN ..o ses s s snnns 12
5.1. Individual CONtrIDULIONS ...coueececeereeerseereeseeseeses s sssssssssessesssesseeas 13
5.2 CSVZMIDIoeeeeereeceseeses s sssessessses s s s s senas 13
TR T o 1 LT 13
6.1. TeSt FramMeWOTK.....ooecececeeemrereesesees s s sssesssssessses s sssssssssessssssesseeas 13
6.2. Example Program and OULPULccnerenenesneenesssssssssessssesessessessesssssssssssssssssssssessessesns 13
0.3 TOSES s 21
7. LeSSONS LEATNIEA ... iueereeeereeseeseseesesenssesesssesssessesssessesssssssss e ssssssessssssssssessessssssssssssssessssssesseens 22
B AP PENAIX ceeereerserseess e ses s AR 22
8.1. hollabaCh M. 22
LS 710721 0 4 1) 21 1 PP 23
8.3, PATSET.IMNY .ottt s s s s 24

8.5, COMPILE.MI ..o
B.6. CSVZ2MIDILJAVA weourerreneemsenseesseesssesssesssessssssssesssessssssssssssssssesssesssasssessssssssesssessssssssssssssssesssessssssses

1. Introduction

HOLLABACH is a language for composing MIDI based music. With
HOLLABACH, composers can create compositions similar to writing
programming code and utilize common programming tools and resources with
their compositions. The language also includes support for loops, conditional
statements and variables for the often repetitive or algorithmic nature of musical
compositions. HOLLABACH is designed to help composers create music
efficiently, compose music collaboratively and abstract away the semantics of the
MIDI specification.

1.1. MIDI

MIDI is a protocol and digital interface for digital music recording and playback. It
was published in 1983 and has been the most popular protocol for composing
and playing electronic music. MIDI is widely supported by most digital instrument
creators and most modern computers have built in software to play back
recorded MIDI music. HOLLABACH produces MIDI files as final compiled output.

2. Language Tutorial

A HOLLABACH composition is a group of instruments with a sequence of
musical statements for each instrument. These statements can be musical
measures, loop structures, conditional statements, variables or time signature
declarations.

2.1. Hello World!
inst Piano {

[C3/1]

}

This example program creates a composition that contains one instrument, a
Piano, and has that instrument play a C note for four beats (one measure). The
inst construct declares the instrument and the body of the construct is the
musical sequence to be played by the instrument.

In this case we have one measure in the sequence, declared by the brackets,
with one note in the measure. The note is a C note, as specified by the starting
letter. The following digit specifies the octave and the trailing digit specifies
the inverse of the length. A value of one means 1 measure/ 1 = 1 measure. If

the value had been a 4, the length would be 1 measure / 4 = /4 measure, or a
quarter note. Valid note lengths are discussed in more detain the section 3.2.2.

To make this more interesting, we can add more notes and measures to our
original example:

inst Piano {
[C3/1]
[C3/4+G3/4 R C/3/4+G3/4 A3/4]

}

In this composition, we have the original measure, followed by a more complex
measure. During this new measure, we have two quarter note chords, denoted
by the + sign between the notes of the chord. We also have a rest note, denoted
by the single character ‘R’. The notes in the measure are played left to right and
the starting beat in the measure is denoted by

Position / (total note positions in the measure)

In this case, the second measure has four positions, so the second chord(in
position 3) would be played on beat 3 of the measure.

2.2. Compiling and running

Compiling a HOLLABACH program uses the executable hollabach. Hollabach
generates the .holla bytecode by running:

$./hollabach —c mycomp.holla < mycomp.bach
From here, the bytecode can be translated into a MIDI file by running

$ cd CSV2JAVA; java ../mycomp.holla ../mycomp.midi;
cd

From here, the composition can be played using any MIDI compatible playback
device or program.

2.3. More Examples

In this example, we create a simple composition of the folk song, Hot Cross
Buns:

inst Piano {
loop 2 {

hcb

[C3/4 B3/4 A3/4 R]
}

[A3/4 A3/4 B3/4 B3/4]

hcb

}

We see two new language features here, the loop and the variable. The loop
allows us to repeat a section of code a set amount of times before continuing. In
this case we repeat the enclosing measure twice. The enclosing measure is also
declared bound to the variable hcb. We can then use heb in the last line of the
composition to insert that measure without having to retype it.

3. Language Manual

3.1. Lexical Conventions

3.1.1 Comments

A comment is preceded by /*’ and ended with */‘. These comments may span
several lines but cannot be embedded in another comment.

3.1.2 Identifiers

Identifiers are a sequence of letters, digits, and underscores. Identifiers cannot
begin with a digit and cannot be a reserved keyword.

Identifier -> letter(letter | digit | underscore)

3.1.3 Reserved Keywords

The group of keywords that exist for defining language related function
functionality are:

loop, timesig, inst, if, else

These keywords cannot be used for identifiers.

3.1.4 Whitespace

A whitespace character is used to separate tokens and is otherwise ignored.
Whitespace characters include the space, tab and newline characters.

3.2. Basic types/constants:

3.2.1 Integers:

Integer Constants are a sequence of digits separated by whitespace. Some uses
for integers include representing Time Signature declarations, If statement
conditionals and loop iteration counts.

Constant -> digit+

3.2.2 Note

A Note is a single contiguous musical sound. An example note is:
A#3/4

This defines a note of pitch A# in octave 3 with a length of a quarter note (1/4).
The backslash denotes the beginning of the declaration of note length. Length is
determined by the denominator of the fraction of a measure it lasts, such as 4 for
quarter note, 2 for half note, 8 for eigth note. A sixteenth note is specified with
just ‘6’ to make note length consistent. Valid lengths include:

1 - whole note

2 - half note

4 - quarter note

8 - eighth note

6 - sixteenth note.

The available pitches include A-G and an additional # or b character to represent
sharp or flat notes. The octave section can contain a single digit between 0 and

6. A rest note is declared with just the letter R. The overall lexical pattern for
identifying a note is

Note -> [A-'G’, ‘RI[#|b]?[0-'6][7]['112]'41816]

3.3. Complex types and Expressions

3.3.1 Chord

A chord is one or more notes that will be played simultaneously. An example
chord:

C2/4+G3/4+A3/4+C3/4
This defines a chord of four notes that lasts for a quarter beat. Notes in the chord
may end at different time. The goal is that all of the notes in a chord start at the

same time.

chord -> note | note + chord

3.3.2 Measure

A Measure is a musical unit in a composition. It contains an array of chords and
Rests. The position in the array indicates when the chord is played based on the
length of the array. The array can be up to 32 units in length and it subdivides the
measure into as many note start positions as there are entries. Valid lengths are
0,1,2,3,4,8, 16, 32. For example,

[A2/8 A2/8 A2/8 A2/8]

will play an eighth note every quarter beat for the measure. The array is declared
using an open bracket (‘') and finished using a closed bracket (‘]’) and split using
whitespace.

Measure -> chord *

3.3.2.1 Declaring a Measure as a Variable

Measures may also optionally be declared with an identifier for reuse in later
lines in a composition. For example:

aEveryFour = [A2/8 A2/8 A2/8 A2/8]

It can then be used in later lines with simply:

aEveryFour

If a measure identifier is redefined the compiler will override the current definition
with the new definition, but all previous uses of it will remain unchanged.

3.3.3 Rests

A rest can be declared in a measure using the token ‘R’ in place of a note. No
notes will be started at that position, although a previous note may sustain
through the rest. Whole measure rests can be declared by omitting the body of
the measure like so:

[1]

3.3.4 Instrument

An Instrument creates a musical ‘thread’, a tone and series of notes that will be
attributed to one musical instrument in a composition. The optional body contains
a list of sequential measures and optional loop, conditional and time signature
statements. Multiple Instruments are allowed per file. Each can be thought of as
a different musician. Instruments are declared using the ‘inst’ tag.

inst Piano{
timesig =4
[G2/8 A2/8 B2/8 C2/8 D2/8 E2/8 F2/8 G3/8]
loop 2 {
[G2/4+C2/4+G3/4 R G2/4+C2/4+G3/4 R]
}

}

The Instrument tone is declared after the inst tag and the Instrument definition
appears between the {' and }’ characters. Each measure, time signature change
or loop is separated by a newline character and proceed sequentially.

Instrument -> ‘inst’ string_lit {* stmt * *}’

3.3.5 Time Signature

Time Signature is an attribute that determines how many beats occur in a

measure. Dividing this value by the beats per minute gives you the absolute time

length of a single measure. Time Signature is declared with the tag ‘timesig=" and

defined with a positive integer that follows. An example declaration is:
timesig=4

After declaring a Time Signature value, all measures that follow it until another

time signature is declared will inherit this value. If no value is declared in the

instrument, the value is assumed to be 4.

3.3.6 Loops

A loop statement allows a measure or set of measures to be repeated a given
amount of times. A loop is declared with the keyword ‘loop’ and followed by an
integer representing the number of repetitions. Following the integer, the loop

contents are declared with a leading {* and a trailing ‘}’. For example:

loop 2 {
[G2/4+C2/4+G3/4 R G2/4+C2/4+G3/4 R]
}

A loop contents can include any combination of measures, if statements,
variables or embedded loops.

Loop -> ‘loop’ literal {* stmt * *}’

3.3.7 Conditional Statements

A composer can use an conditional statement to change the behavior of certain
loop iterations in a loop. The composer declares the conditional using an If
statement, followed by the loop iteration number that the If statement should
trigger. The iteration starts at 0 and increments until it is equal to the specified
number. This means an if statement meant to trigger on the first iteration should
use 0 as it’s conditional. The composer can also use an else statement after an If
to trigger on the negation case of the If statement. The If body is declared after
the conditional between brackets. The body can contain measures or additional
loops.

If -> “if literal {' stmt* } ‘else’ {' stmt* *} | ‘if literal {' stmt* }

3.3.8 Composition

A composition a single "program’ in HOLLABACH. It is essentially a list of Instrument
declarations and their definitions. The order of Instruments does not matter outside
of the track ordering in the final MIDI output.

Comp -> inst *

3.4. Variable Scope

3.4.1 Measure ldentifier

The scope of a measure identifier in HOLLABACH is global to the composition once
it is defined. Any references before it is defined in the composition will cause

compiler errors. If the same identifier is declared twice in a composition, the second
value will override the original value for all uses after the second declaration.

3.4.2 Loop

A loop has an implicit variable, the loop iteration number. The scope of this
variable is inside the loop (between the brackets) and is exclusively used in if
statements. An if statement conditional always refers to the lowest loop. For
example, if we have loop B embedded in loop A and an if statement in loop B,
the conditional will refer to the iteration number of loop B. If an If statement is
declared not inside a loop, it will only trigger if the conditional is 0, as the loop
iteration number not inside a loop is always 0.

4. Project Plan

4.1. Project Timeline

The following time periods were set for major development objectives:

Date Task

6/2-6/11 Language Proposal
6/12-7/2 Language Design and Reference Manual
7/3-8/8 Environment set up and development of

End to End execution, completed
Scanner and Parser

8/9-8/22 Feature expansion, Testing Framework
development, composing Final Report

4.2. Programming Style Guide

Effort was made to document as much of the code as possible and try to
adhere to the programming style guide created by the maintainers of Ocaml at:

http://caml.inria.fr/resources/doc/guides/guidelines.en.html

4.3. Development Environment

The project was developed on OSX using Git and Github for version control
and Make for building. The compiler was built in Ocaml and the
translator/interpreter was built in Java. Ocamllex was used for lexing and

ocamlyacc was used to create the grammar for the language. Shell scripting
was used for executing automated tests.

4.4. Project Log

Date Progress

6/2? Project Start

6/11 Language Proposal finished

6/24 1st draft of Language Grammar

7/2 Language Reference Manual submitted

7/14 Revised Language Grammar based on
feedback

7/18 Development Environment and Code
Repository set up

8/11 End to End execution and first test
programs created

8/12 MIDI output

8/19 Automated Test Suite working

8/something Added features and stuff

8/22 Submitted final code and Report

5. Architectural Design

scanner H parser %

hollabach

A

compiler

CSvamiDl

HOLLABACH follows a similar pattern to most compilers, using lexical
analysis, a parser and a compiler to translate source code into bytecode. The
system takes input of a .bach file of HOLLABACH source code and the
scanner uses Ocamllex, a version of lex for Ocaml, to generate tokens. The
parser then converts these tokens into an Abstract Syntax tree by rules defined
using Ocamlyacc, a version of yacc for Ocaml. This AST is used as input to the
compiler, which converts the data into bytecode that is easy for the interpreter
to handle and then writes this data out to a .holla file. The holla file is

essentially a CSV file consisting of track and note information. This file is then
passed into the interpreter, CSV2MIDI, which generates a MIDI file from the
data.

5.1. Individual Contributions

Component Contributors

Scanner Craig Darmetko, Stephen Edwards
Parser Craig Darmetko, Stephen Edwards
Compiler Craig Darmetko

Interpreter (CSV2MIDI) Craig Darmetko, Stephen Steffes
Testing Craig Darmetko, Stephen Edwards
5.2 CSV2MIDI

The Interpreter and bytecode representation for HOLLABACH is largely based on
CSV2MIDI, a java program written by Stephen Steffes to translate data in a CSV file
to a MIDI file. HOLLABACH extended the original functionality to support some of
the unique features in the HOLLABACH language.

6. Test Plan

6.1. Test Framework

Although not exhaustive, the test plan for HOLLABACH is meant to exercise
important features in a simple and repeatable manner. HOLLABACH uses a series of
test programs, detailed in Section 6.3, and a shell script that compiles the program
and compares it against ground truth to report any discrepancies. Each test program
exercises a certain feature or the composition of features. Having multiple separate
test programs isolates errors and speeds up resolution of bugs. Tests can be run by
executing the program testall.sh.

6.2. Example Program and Output

Below is an example program that plays the first verse of the song Chopstix with
two instruments, a Piano and an Acoustic Bass.

inst Piano{
timesig=3
loop 2{
loop 2{

[G3/4+4F3/4 G3/4+F3/4 G3/4+4F3/4]

}
loop 2{

[G3/4+E3/4 G3/4+E3/4 G3/4+E3/4]
}

[B3/4+D3/4 B3/4+D3/4 B3/4+D3/4]

[B3/4+D3/4 A3/4+E3/4 B3/4+D3/4]

[C3/4+C4/4 R C3/4+C4/4]
if 1 {

[C3/24C4/2 R]

}

else{

[C3/4+C4/4 B3/4+D3/4 A3/4+E3/4]

}

inst AcousticBass{
timesig=3
loop 2{

loop 2{

beg [C3/8 G3/4+F3/4 G3/4+F3/4]

}
loop 2{
[C3/8 G3/4+E3/4 G3/4+F3/4]
}
[D3/8 G3/4+F3/4 G3/4+F3/4]
[D3/8 G3/4+E3/4 G3/4+E3/4]
beg
if 1 {
[C3/2 R]
}
else({

beg

This program generates the bytecode output below:

Timing Resolution (

pulses per quarter note

4

Instrument 0 | Piano Instrument | 32 | AcousticBass

Tick Note | Velocity | Length Tick | Note | Velocity | Length
0 53 80 4
0 55 80 4
4 53 80 4
4 55 80 4
8 53 80 4
8 55 80 4
12 53 80 4
12 55 80 4
16 53 80 4
16 55 80 4
20 53 80 4
20 55 80 4
24 52 80 4
24 55 80 4
28 52 80 4
28 55 80 4
32 52 80 4
32 55 80 4
36 52 80 4
36 55 80 4
40 52 80 4
40 55 80 4
44 52 80 4
44 55 80 4
48 50 80 4
48 59 80 4
52 50 80 4
52 59 80 4
56 50 80 4
56 59 80 4
60 50 80 4
60 59 80 4
64 52 80 4

80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80

57
50
59
60
48

60
48

60
48

50
59
52
57
53
55
53
55
53
55
53
55
53
55
53
55
52
55
52

55
52
55
52
55
52
55
52
55
50
59
50
59

64
68
68
72
72
80
80
84
84
88

88

92

92

96

96
100
100
104
104
108
108
112
112
116
116
120
120

124

124
128
128
132
132

136
136
140

140

144

144

148

148

80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80

48

53
55
53
55
48

53
55
53
55
48

52
55
53
55
48

52
55
53
55
50
53
55
53
55
50
52

12
16
16
20
20
24
28
28
32
32
36
40

40

44
44
48

52
52

56
56
60
64

80
80
80
80
80
80
80
80
80
80
80
80
80
80

50
59
50
59
52
57

50
59
60
48

60
48

60
48

152
152
156
156
160
160

164
164
168
168
176
176
180
180

80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80

55
52
55
48

53
55
53
55
48

53
55
53
55
48

53
55
53
55
48

53
55

53
55
48

52
55
53
55
48

52
55
53
55
50
53
55
53
55
50
52
55

64
68
68
72
76
76
80
80
84
88

88

92

92

96
100
100
104
104
108
112
112

116
116
120
124
124
128
128
132

136
136
140

140

144

148

148
152
152

156
160
160

164 52 80 4
164 55 80 4
168 48 80 2
172 53 80 4
172 55 80 4
176 53 80 4
176 55 80 4
180 48 80 8

The first section of the bytecode is a static value representing the subdivision of
a quarter note into 4 ‘pulses’. Thus, all length and offset(tick) values are 4 * the
quarter note position.

The next section declares the instruments and their order in the note declaration
body.

In the note declaration, each instrument gets four columns. For example,
column 1 denotes the offset position for notes played by the first instrument
and column 5 denotes offsets for the second instrument. Each note is given a
row and allowed to specify an offset, pitch, loudness and length.

The bytecode is then compiled into a MIDI file. As MIDI files are not readable
in binary form, I have not included the raw output, but a screenshot of the file
executing in Garage Band can be found below:

S0

| Untitle

O acks
E2feé % - 33 4108 120 Cmaj Ya

1 2 3 4
v,
Y MIDI Region
Steinway Grand Piano [1] -
W (ze) &

Volume
= MIDI Region +12
Upright Studio Bass

Volume

6.3. Tests

test-hello.bach

Tests composition and
measures generation.

A single instrument
composition with one
measure and one note.

test-empty.bach

Tests an empty
instrument.

A valid composition
with no notes.

Test-chord.bach

Tests use of chords in a
measure

A composition with a
two note chord

Test-chord-big.bach

Tests use of larger
chords

A composition with a
four note chord

Test-empty-meas.bach

Tests use of measures
with no notes

A valid composition
with two measures with
notes and one measure
without any.

Test-if .bach

Tests use of if statements

A valid composition
based on input program

Test-inst.bach

Tests use of a different
instrument

A composition with a
Tenor Sax instrument

Test-len.bach

Tests changing the time
signature

A composition with a
measure length and time
signature of 2 beats.

Test-loop.bach

Tests the loop construct

A composition with a
measure repeated 4
times

Test-loop-rec.bach

Tests an embedded loop

A composition that
repeats a measure
progression 4 times. This
progression also contains
a measure that is
repeated twice.

Test-mult.bach

Tests multiple measures

A composition that
contains a sequence of
two measures

Test-rest.bach

Tests rest notes

A composition with a
measure that contains
two one beat rests and
two one beat notes.

Test-var.bach

Tests measure variable

A compositon with two

declaration and use measures that are

identical
Test-prog.bach Tests the composition of A valid complex
features composition that adhears
to all of the constructs
used.
Test-chopstix.bach Tests the composition of A valid composition that
features reflects the original song

7. Lessons Learned

Because this was my first time working with Ocaml and it has many philosophical
differences from my most used languages, it often took longer to write the code and
get it running than I expected. Getting started earlier would have allowed me to
work at a more reasonable pace by giving me a buffer to handle the Ocaml issues I
ran into related to errors and debugging without running into deadlines. I found
many of the error messages from Ocaml opaque and misleading, but this may be
because of my inexperience with the language.

Also, looking at the lessons learned of future projects would be very helpful to do
near the start of the project, rather than when you are writing your final report.

8. Appendix

Code listing of all the Ocaml files and the main CSV2MIDI.java file. The whole code
repository and commit log is also available at:

https://github.com/sinflood/HOLLABACH

8.1. hollabach.ml

open Printf

type action = Ast | Compile
exception LexErr of string
let =

let action = if Array.length Sys.argv > then

List.assoc Sys.argv.(l) [("-a", Ast);
("-c", Compile) 1]
else Compile in

let outfile = Sys.argv.(?) in
(*remove the output file if it exists as it is likely a past
version¥*)
let delIfExists o =
if Sys.file exists o then Sys.remove(o) else ()
in

let lexbuf = Lexing.from channel stdin in
let program =
List.rev (Parser.program Scanner.token lexbuf) in
match action with
Ast -> let listing = Ast.string of program program
in print string listing
| Compile =-> dellIfExists outfile;Compile.compile program outfile; ()

8.2. scanner.mll

{ open Parser }

rule token = parse

[" " "\t'" "\r" '"\n'] { token lexbuf } (* Whitespace *)
|/ { comment lexbuf } (* Comments *)
| '[! { LBRACK }
| '] { RBRACK }
|t {! { LBRACE }
[{ RBRACE }
| { SEMI }
|, { COMMA }
| 4 { PLUS }
|- { MINUS }
| T { TIMES }
|/ { DIVIDE }
| =" { ASSIGN }
| == { EQ }
| e { NEO }
| < { LT }
| e { LEO }
| "> { GT }
| e { GEO }
R { IF }
| "else" { ELSE }
| "loop" { LOOP }
| "inst" { INST }
|

"timesig" { TIMESIG }
I ['Rl] I (['A'_'Gl]['#V VbV]?[VOV_V6V][V/V]([V1V V2V |4| |8| |6|]))
as 1xm {

NOTE (1xm) }

| ['0'="9"1+ as 1lxm { LITERAL(int of string lxm) }

I ['a'—'z' vAv_vzv][vav_va TA'T=T70 vov_v9v '7']* as le { ID(le) }

| eof { EOF }

| _ as char { raise (Failure("illegal character " % Char.escaped char))
}

and comment = parse
"x/" { token lexbuf }
| { comment lexbuf }

8.3. parser.mly

%{ open Ast %}

%${ open Printf %}

%${ open Parsing %}

%${ open Lexing %}

$token SEMI LBRACK RBRACK LBRACE RBRACE COMMA LPAREN RPAREN
$token PLUS MINUS TIMES DIVIDE ASSIGN
$token EQ NEQ LT LEQ GT GEQ
$token IF ELSE LOOP

$token INST BPM TIMESIG
$token <string> NOTE

$token <int> LITERAL

$token <string> ID

$token EOF

$nonassoc NOELSE

$nonassoc ELSE

$right ASSIGN

$left EQ NEQ

$left LT GT LEQ GEQ

$left PLUS MINUS

$left TIMES DIVIDE

$left TIMESIG

$start program
$type <Ast.program> program

%%
program:
| inst { [$1] }
| program inst { $2 :: $1 }
inst:
INST ID LBRACE stmt list RBRACE {{instStr=$2; body=(List.rev
$4)} }
mdecl:

LBRACK note list RBRACK { { id = "none";
body = List.rev $2; timesig = 4; } }
| ID ASSIGN LBRACK note_list RBRACK { { id = $1;
body = List.rev $4; timesig = 4; } }
| LBRACK RBRACK {{ id="none"; body=[]; timesig=4;}}
| ID ASSIGN LBRACK RBRACK {{id=$1;body=[1; timesig=4}}
| error { raise(Failure("Malformed measure")); }

note list:
chord { [Chord($1)1}
| note list chord { Chord($2) :: $1 }
| error { raise(Failure("Malformed note™)) 1}
note plus:
NOTE { [Note($1)] }

| note plus PLUS NOTE { Note($3) :: $1 }
chord:
note plus { $1 }
stmt_list:
/* nothing */ { [] }
| stmt list stmt { $2 :: $1 }
stmt:

IF expr LBRACE stmt list RBRACE $%prec NOELSE { If($2,
(List.rev $4), [1) }
| IF expr LBRACE Stmt_list RBRACE ELSE LBRACE Stmt_list RBRACE
{ I£f($2, (List.rev $4), (List.rev $8)) 1}
| LOOP LITERAL LBRACE stmt list RBRACE { Loop(Literal($?), (List.rev
$4)) 1}

| mdecl { Measure($1) }

| TIMESIG ASSIGN LITERAL { TimeSig($3)}

| ID { Td(s$1) }
expr:

LITERAL { Literal($1) }

| expr PLUS expr { Binop($1, Add, $3) 1}

| expr MINUS expr { Binop($1, Sub, $3) 1}

| expr TIMES expr { Binop($1, Mult, $3) }

| expr DIVIDE expr { Binop($1, Div, $3) 1}

| expr EQ expr { Binop($1, Equal, $3) }

| expr NEQ expr { Binop($1, Neq, $3) 1}

| expr LT expr { Binop($1, Less, $3) }

| expr LEQ expr { Binop($1, Leq, $3) 1}

| expr GT expr { Binop($1, Greater, $3) 1}

| expr GEQ expr { Binop($1, Geq, $3) 1}
8.4. ast.ml

open Lexing

open Parsing

type op = Add | Sub | Mult | Div | Equal | Neq | Less | Legq | Greater |
Geqg

type note =
Note of string
type expr =
Literal of int
Chord of note list
Binop of expr * op * expr
Assign of string * expr
Noexpr

type meas decl = {

id : string;

body : expr list;
mutable timesig : int;
}
type stmt =

| Expr of expr

| If of expr * stmt list * stmt list
| Measure of meas decl

| Loop of expr * stmt list

| TimeSig of int

| Id of string

type inst = {
instStr : string;
body: stmt list;
}
type program = inst list

let rec string of note = function
Note(n) -> n
let rec string of expr = function
Literal(l) -> string of int 1
| Chord(c) -> String.concat "+" (List.map string of note c)
| Binop(el, o, e2) =->
string of expr el *~ "
(match o with

n"nooA

Add -> "+" | Sub => "-" | Mult => "*" | Div =-> "/"
| Equal => "==" | Neqg =-> "!="
| Less => "<" | Leqg =-> "<=" | Greater =-> ">" | Geqg =-> ">=") A"

string of expr e2
| Assign(v, e) -> v A~ " = " A
l Noexpr -> nn

string of expr e

let string of meas decl md =

md.id * "[" * String.concat "," (List.map string of expr

md.body) ~ "]"
let rec string of stmt = function

Expr(expr) -> string of expr expr *~ ";\n'";

| Id(s) -> s

| TimeSig(m) -> "timesig = " % string of int m
(* | If(e, s, [1) -> "if (" 7~ string of expr e ") \n" *
string of stmt s¥*)

| If(e, s1, s2) -> "if (" ~ string of expr e * ")\n" %

String.concat "\n" (List.map string of stmt sl) * "else\n"
String.concat "\n" (List.map string of stmt s2)
| Loop(e, s) -> "loop " * string of expr e ~ " { " A String.concat
n\nn
(List.map string of stmt s)
| Measure(m) -> string of meas decl m

A }H

let string of comp (stmts) =
String.concat "" (List.map string of stmt stmts.body) #* "\n"

A

let string of program comps =
String.concat "\n" (List.map string of comp comps)

8.5. compile.ml

open Ast
open Printf

module StringMap = Map.Make (String)
let header = "Timing Resolution (pulses per quarter note) \nd4\n\n"

(* creates the CSV header*)
let writeHeader fname insts = let oc= open out gen [Open creat;
Open _wronly; Open_ append;

Open_text] 00666 fname in
fprintf oc "%s%s" header insts; close out oc

(*writes out the measure contents to the CSV out file. Expects the
input to be a
* list of measures, the outfile name and an integer representing the
* instrument's position. *)
let writeOutput k fname trackNum= let oc = open out gen [Open creat;
Open wronly;
Open_append; Open text] 00666 fname in
(* returns the duration of the note in ticks*)
let getlen notestr =
match notestr.[(String.length notestr) -1] with
'1'" => 16 (* whole note*)
| 2" =>8
| T4 =>4
| '8" => 2
| '6' => 1 (*l6th note*)
| _ -> raise (Failure("Invalid note length on " % notestr))
in
(*adjusts pitch for sharps and flats*)
let getMod noter =
match noter.[1] with
bt => =1
| TET -> 1
| _->0
in
(* returns the modifier for the note octave *)
let getOctave noter =
if getMod noter '= 0 then
((int_of char noter.[2] -48)* 12 + 12)
else
(int_of char noter.[l] -48)%* 12 + 12
in
(*translates the letter note to the integer value expected by CSV2MIDI.
Includes
* Octave. *)
let getNote noter =
match noter.[0] with
'A" => 9 4+ getOctave noter

'B' => 11 4+ getOctave noter

|

| 'C'" => 0 + getOctave noter

| 'D'" => 2 + getOctave noter

| '"E' => 4 4 getOctave noter

| "F' => 5 4 getOctave noter

| 'G'" => 7 4+ getOctave noter

| -> raise (Failure ("Not a note value! Note: " ~ noter))

in
(*Adds empty columns for previous tracks to the row*)
let rec getPrefix k =
if k = 0 then""
else ",,,,"” getPrefix (k-1)
in
(* Returns the CSV line for a note*)
let getNoteString no offset =
match no with

Note(n) -> getPrefix trackNum # string of int offset ~ "," #
string of int ((getNote n) +

(getMod n)) #~ "," %~ string of int 80 #~ "," %~ string of int
(getLen n)
in

(*prints a note to the CSV filex)
let printNote naw offset=
match naw with
Note(n) -> if n.[0] '= 'R' then
fprintf oc "%s\n" (getNoteString naw offset)
in
(* prints a whole measure to the CSV file¥*)
let printMeasure off n =
match n with
Measure (m) ->
let noteOff = (float of int m.timesig /. float of int
(List.length m.body)) *. 4.0 in
List.fold left (fun note num naw ->
match naw with
(*Note (n) —-> fprintf oc "%s\n" (getNoteString
naw (off+note num)); note num + noteOff
|*) Chord(cr) -> List.iter (fun nat ->
printNote nat
(off+note num)) cr; note num + int of float
noteOff
| _ -> raise(Failure("Trying to print something
that
isn't a measure!"))
) O m.body; off + (m.timesig * 4)
| _ -> raise (Failure("ERROR, NOT A MEASURE! value:" #
string of stmt n))
in
List.fold left printMeasure 0 k ;
close out oc

(*contains all of the encountered varables and values for them *)
let wvars = ref StringMap.empty

(*This function is the main compiler and is called by hollabach.ml. It
will

* evaluate/expand the input stmts and write out the bytecode to the
output file
* outfile*)
let compile stmts outfile =
(*evaluates expressions*)
let rec eval env = match env with
Literal (1) -> 1
(* | Note(n) -> Note(n), env¥*)
| _ -> raise (Failure("Currently only handles literals
for
conditionals."))
in
(*returns the integer representation expected by CSV2Midi for
an instrument*)
let getInstr 1 =
match i with
"Banjo" -=-> "105"
| "Clarinet"™ => "71"
| "AcousticBass" => "32"
| "AltoSax" => "65"
| "BagPipe" => "109"
| "Flute" => "73"
| "Piano™ => "Q0"
| "TenorSax" => "66"
| "Trombone" => "77"
| "Trumpet" => "56"
| "Violin"™ => "40"
| _ =>"o"
in
(*returns the line for declaring instruments in CSV2MIDI *)
let getInstrumentLine tracks =
List.fold left (fun s c ->
("Instrument," * (getInstr c.instStr) »~ "," 4
c.instStr &~ ",") A~ s) "" tracks
in
(*returns the string for the column names in the note declaration
section of
* CSV2MIDI *)
let rec getColumnNames inst count =
if inst count > 0 then
"Tick,Note (0-127),Velocity (0-127),Length,"
“getColumnNames (inst count -1)
else

nn

in

(* the current time signature value during execution. This can be
modified by

* encoutering TimeSig statements *)
let currTimeSig = ref 4
in

(*helper function for validating and processing a Measure statement.
Will check

* if the length is wvalid. If true, it will add itself to the variable
list,

* alter it's Time Signature and append itself to the output *)
let processMeasure me outp =

let meas = Measure(me) in
match meas with
Measure(m) -> if (List.mem (List.length m.body) [0;1; 2; 3;
8; 16; 321) then
((vars := StringMap.add m.id m !'vars); m.timesig<-
lcurrTimeSig;
Measure(m) :: outp) else raise(Failure("Malformed
measure. Incorrect number of notes/chords
in the measure. Count:" % string of int (List.length m.body)))

|_ -> outp
in
(*evaluate a statement and return the updated measure
progression *)
let rec exec ite out env = match env with
Measure (m) -> (processMeasure m out)
| TimeSig(m) -> currTimeSig := m; out
| Loop(c, b) -> let rec callloop 1 body =
if i>=0 then
(List.fold left (exec i) [] body) @
(callLoop (i-1)

body)
else []
in (callLoop ((eval c)-1) b) @ out
| Id(i) -> Measure((StringMap.find i !'vars)) :: out

| If(i,b,eb) -> if (eval i) = ite then
(List.fold left (exec ite) [] b) @ out
else (List.fold left (exec ite) [] eb) @ out
| a =-> out
in
writeHeader outfile ((getInstrumentLine (List.rev stmts))
"\n\n" * getColumnNames
(List.length stmts) ~ "\n");
List.fold left (fun i c ->
let comped = List.fold left (exec 0) [] c.body
in
writeOutput (List.rev comped) outfile i; i+1) 0 stmts; ()

A

8.6. CSV2MIDl.java

/‘k‘k

* CSV2MIDI.java

* June 11, 2003

* @author: Stephen Steffes

* Purpose: Converts a .csv file to a MIDI file according to
ExampleMIDI.csv

*/

import java.io.*;
import javax.sound.midi.*;
import java.lang.¥*;

public class CSV2MIDI{

public static void main(String[] args) throws
InvalidMidiDataException {

//***** Get Inputs * Kk Kk Kk Kk
if (args.length !'= 2)
printUsageAndExit () ;

File outputFile = new File(args[1]);
Sequence sequence = null;

//Open and save the CSV file
CSV csvFile=new CSV (args[0])
csvFile.fillVector () ;

//figure out how many channels there are
//nChannels=number of integers in the first line containing any
numbers, skipping the first number encountered
int nChannels=0,temp=0;
for(int i=0;i<csvFile.data.size () ;i++) {
try{
//check i1if this is an integer
Integer.parselnt (csvFile.data.elementAt (i) .toString())
temp++;
//counts number of instruments
}catch (NumberFormatException e) {
//not a number
if (temp>1) {
//1if other than first number

if (csvFile.data.elementAt (i) .toString() .compareTo (" \n")==0) {
//1if a new line
nChannels=temp-1;
break;
//found nChannels, so stop for loop. this is the number of instruments
counted

}

/* for (int i1=0;i<csvFile.data.size () ;i++)
System.out.println(csvFile.data.elementAt (i));
*/

//***** Read in timing resolution and instruments *****
int currentCSVPos=0, timingRes=1, instrument[]=new
int [nChannels];

//read in timing resolution
for(;currentCSVPos<csvFile.data.size() ;currentCSVPos++)

tryf
//check i1if this is an integer

timingRes=Integer.parselnt (csvFile.data.elementAt (currentCSVPos) .toStri

ng()); //this is the first number, therefore, it's the timing

resolution
System.out.println("\nTiming Resolution set to

"+timingRes+" PPO\n");

currentCSVPos++;
break;
}catch (NumberFormatException e) {
}
//read in instrument numbers
temp=0;
for (;currentCSVPos<csvFile.data.size () ;currentCSVPos++)
try{

//check i1if this is an integer

instrument [temp]=Integer.parselnt(csvFile.data.elementAt (currentCSVPos)
.toString()); //this is a number, it has to be an intrument
System.out.println("Instrument set to
"+instrument[temp]+" on channel "+temp);
temp++;
if (temp>=nChannels) {
//collect numbers until you've reached the number of channels
currentCSVPos++;
break;
}

}catch (NumberFormatException e) {

}

//*****x Tnitialize Sequencer *****
try{
sequence = new Sequence (Sequence.PPQ, timingRes) ;
//initialize sequencer with timingRes
}catch (InvalidMidiDataException e){
e.printStackTrace() ;
System.exit (1) ;

//***** Create tracks and notes *****
/* Track objects cannot be created by invoking their
constructor
directly. Instead, the Sequence object does the job. So we
obtain the Track there. This links the Track to the Sequence
automatically.
*/
Track track[] = new Track[nChannels];
for (int i=0;i<nChannels;i++) {
track[i]l=sequence.createTrack() ;
//create tracks

ShortMessage sm = new ShortMessage();
sm.setMessage (ShortMessage.PROGRAM CHANGE, i,
instrument[i], 0); //put in instrument[i] in this track
track[i] .add (new MidiEvent (sm, 0));

}

int channel=0,note=0,tick=0,velocity=90,column=0,length=0;

//go through each of the following lines and add notes
for (;currentCSVPos<csvFile.data.size();){
//loop through rest of CSV file
try{
//check that the current CSV position is an integer

tick=Integer.parselnt(csvFile.data.elementAt (currentCSVPos) .toString())
; //first number is tick
currentCSVPos+=2;

note=Integer.parselnt (csvFile.data.elementAt (currentCSVPos) .toString())
; //next number 1is note
currentCSVPos+=2;

velocity=Integer.parselnt (csvFile.data.elementAt (currentCSVPos) .toStrin
g()); //next number is velocity
currentCSVPos+=2;

length=Integer.parselnt (csvFile.data.elementAt (currentCSVPos) .toString(
)

currentCSVPos++;

channel=column/4;

column+=2;

track[channel].add(createNoteOnEvent (note,tick,channel,velocity));
//add note to this track

track[channel].add(createNoteOffEvent (note,tick+length,channel));
}catch (NumberFormatException e) {
//current CSV position not an integer

if (csvFile.data.elementAt (currentCSVPos) .toString () .compareTo("\n")==0)
{ //if it's a new line

column=0;
//go back to 1lst column

}else

if(csvFile.data.elementAt (currentCSVPos) .toString() .compareTo (", ")==0) {
//if it's just a comma

column++;

}
currentCSVPos++;

// Print track information
System.out.println() ;

if (track '= null) {
for (int i = 0; i < track.length; i++) {
System.out.println("Track " 4+ i + ":");

for (int j = 0; j < track[i].size(); j++) {
MidiEvent event = track[i]l.get(j)
System.out.println(" tick "+event.getTick()+",
"+MessageInfo.toString(event.getMessage())) ;

} // for
} // for
} // if

/* Now we just save the Sequence to the file we specified.
The '0' (second parameter) means saving as SMF type 0.
(type 1 is for multiple tracks).

*/

try{

MidiSystem.write (sequence, 1, outputFile);

}catch (IOException e) {

e.printStackTrace() ;
System.exit (1) ;

//turns note on
private static MidiEvent createNoteOnEvent (int nKey, long 1Tick,int
channel,int velocity) {
return
createNoteEvent (ShortMessage.NOTE ON,nKey,velocity,1Tick,channel);

}

//turns note off
private static MidiEvent createNoteOffEvent (int nKey, long
1Tick,int channel) {
return
createNoteEvent (ShortMessage.NOTE OFF,nKey,0,1Tick,channel); //set
note to 0 velocity

}

//turns note on or off
private static MidiEvent createNoteEvent (int nCommand,int nKey,int
nVelocity,long 1Tick,int channel) {
ShortMessage message = new ShortMessage() ;
try{
message.setMessage (nCommand,channel ,nKey,nVelocity);
}catch (InvalidMidiDataException e){
e.printStackTrace() ;
System.exit (1) ;
}
MidiEvent event = new MidiEvent (message,1Tick);
return event;

}

private static void printUsageAndExit () {
out ("usage:");
out ("java CSV2MIDI <infile.csv> <outfile.midi>");
System.exit (1) ;

private static void out(String strMessage) {
System.out.println(strMessage) ;

}

