
PLS

COMS W4115

Bennett Rummel, bwr2116

June 11, 2014

1 Introduction

PLS (PipeLine Script) is intended to be a small, imperative, dynamically typed, statically scoped, program-
ming language designed to process streams of data. It will allow the user to construct pipelines for filtering or
otherwise transforming sequences of data. It is intended to be embedded in a larger program (development
time permitting) but we will provide a command line utility for simple use cases and demos. Programs will
be compiled to bytecode instead of machine language.

2 Motivation

Many common programming tasks involve applying a sequence of operations or analytics on a stream of data.
For example, imagine a server process that writes log data about every request it receives from users into a
text file. If a programmer wanted to analyze this log data and calculate some statistics about a specific user,
he or she has a few common options. However, a common solution in one-off cases is to construct a sequence
of commands in a shell to filter (e.g. “grep”), transform (e.g. “awk”, “sed”, etc.), or otherwise prepare a
set of data before passing it to some sort of script in another language to perform the actual business logic.
Such a scheme requires knowledge of many different tools but is often simpler than implementing the entire
sequence in a single language (e.g. “python” or “perl”). One of the goals of PLS is to provide a similar
programming model in a unified package.

3 Language Overview

3.1 Kernels and Pipelines

The main component of a PLS program is the pipeline type. A pipeline is made of a sequence of one or
more processing kernels. A kernel consumes values of arbitrary types from a source stream (output from
the preceding kernel in the pipeline) and optionally emits a value to the sink stream. kernels can access
(but not create) global data, create local-scope variables that will be destroyed after the scope in which they
are defined is left, and static local variables that are preserved across processing instances of the kernel.

A program in PLS is simply a special user-defined pipeline called main. Values will be pushed through the
pipeline one-by-one until a special “end” value is processed, after which the program is terminated.

1

3.2 Data Types and Expressions

PLS should support common scalar types (integer, float, string, bool) as well as heteregenous containers
(tuples) and homogeneous arrays. A none type will also be provided to represent the abscence of a value.

Both arrays and tuples will be indexed using square brackets and zero-indexed indices, e.g. my array[0].
Additionally, both array and tuple types are mutable but not extendable (i.e. elements can be changed
but not added or removed).

Expressions will use infix notation. Common C arithmetic and boolean operators (+, -, *, /, %, !, ==, ! =,
>, <, >=, <=, ++, −−) will be supported with similar semantics. Assignment will use the = operator.
Data types will also be implicitly convertible following similar rules to C, e.g. floats can be truncated
integers, integers can be converted to boolean “true” if non-zero, etc. Strings will have to be explicity
converted to other types.

3.3 Control Structures

Control structures will also follow C (the astute reader will have detected a pattern):

i f (boo l ean cond i t i on) {
// do something i f boo l ean cond i t i on == true

} e l s e i f (. . .) {
// . . .

} e l s e {
// f i n a l l y , do something e l s e

}

whi le (cond i t i on) {
// . . .

}

f o r (i = 0 ; i < 10 ; ++i) {
// . . .

}

Additionally, the foreach construct will be offered for iterating over arrays:

f o r each (value : some array) {
// do something with value

}

3.4 Functions

User defined functions are also supported and can be called from with in processing kernels. Functions in
PLS take zero or more parameters and return a single value. Like kernels, functions can access global data,
local data, and static local variables. For simplicity, parameters are passed by value.

2

4 Syntax and Examples

Statements in PLS are terminated by a semicolon. Whitespace is not significant beyond separating identifiers
(C-style). Comments begin with a two consecutive forward slashes and continue until the next newline (C++
style). Blocks consist of one or more statements surrounded by curly brackets. Variables also follow similar
scoping and rules as in C. Further details are probably better illustrated in the examples below.

A simple program that simply copies its input to its output could be written as follows:

k e rne l i d e n t i t y (x) {
emit (x) ;

}

main = i d e n t i t y ;

Here we define the “identity” kernel; it consumes a single value from its source (called x in this case) and
emits it, pushing it to the next kernel in the pipeline. Since there is no further kernel, it simply outputs
the value.

For a more illustrative example, consider the following program:

func t i on avg (x , y) { // Function d e f i n i t i o n s look a l o t l i k e ‘ kerne l ’ s
r e turn (x + y) / 2 ; // Note they return a value in s t ead o f emit t ing one

}

ke rne l a v e r a g e k e r n e l (x) {
emit (avg (x [0] , x [1])) ; // Emit the r e s u l t o f c a l l i n g ‘ avg ’ with the va lue s

// in the f i r s t two i n d i c e s o f ‘ x ’
}

ke rne l f i l t e r (x) {
s t a t i c index = 0 ; // ‘ index ’ i n i t i a l l y has va lue 0
index = index + 1 ; // Increment index
i f (index % 3 == 0) { // Only emit every t h i rd record

emit (x) ;
} // ‘ e l s e ’ c ond i t i on not s p e c i f i e d

// Note that t h i s k e rne l may not emit any value
}

main = f i l t e r | a v e r a g e k e r n e l ;

The input for this program would be a sequence of records consisting of two numeric values in a tuple or
array. The program will output a sequence of numeric values representing the average of every third pair of
values. Here we use two kernels: first, the filter kernel emits every third value it consumes. Second, the
average kernel kernel averages the two numeric values in its source value by calling the user defined avg

function. Finally, we construct a pipeline consisting of the two kernels using the “pipe” operator.

5 Stretch Goals

The reader may have noticed that kernels are not much different than traditional functions. However, we
believe that this language could (and should) be extended to support much more complicated pipelines,

3

e.g. those with multiple output and input streams to split and merge input streams. Such a system could be
used perform much more complicated tasks than those mentioned above, for example processing heterogenous
streams of time-series data in and event-driven architecture. However, such a language and the infrastructure
it would require to be useful would likely be outside the scope of this project. Every effort will be made to
implement this functionality should time permit and the language has thus far been designed with this kind
of eventual extension in mind.

Other features not illustrated above, such as passing function arguments by reference and supporting func-
tions as first-class types (for closures and the like) may possibly prove easier to implement and will be
included if at all possible. Finally, some sort of associative type (hashes, maps, etc.) would likely prove
useful and will also be implemented if time permits.

4

