

All That Matrix Language Design Proposal

Stefanie Zhou (sz2475)

Introduction

All That Matrix (ATM) is a programming language targeted at matrix manipulations with

emphasize on concise syntax and lightweight compiler. Applications of matrix are very common

across scientific fields. In statistics, matrices are used for probability calculations. In computer

graphics, matrices are used to project and transform images. And you won’t get through a lecture

of linear algebra without encountering matrices.

While there are many applications that involve matrix computations, ATM was designed

for image processing and filtering. Instead of performing complex calculations on each pixel of

an image to get a certain effect one wants, black and white for example, ATM can produce the

same result using compact matrix operations, making the computation simpler and code easier to

read.

Another feature of ATM is that the built-in types, operators, and keywords are kept to a

minimal set, with Matrix being the fundamental data type. Color and Image make up the rest of

the built-in types for easy image processing purposes. Other applications of matrix can later be

constructed either in the form of standard library or customized classed written by programmers.

Built-in data types

Integer, Double

Integers and doubles are defined in the conventional way with basic arithmetic operators

including addition, subtraction, multiplication, division, greater than, less than, equals, greater

than or equal to, and less than or equal to.

Color

Standard RGB colors for image processing.

Matrix

Matrices are defined with square brackets with vertical bar separating the rows and spaces

separating the columns. The built-in operators for matrix include scaling, transpose, inverse, etc.

Image

Image is made up of a collection of matrices and its own RGB channel. Built-in functions for

reading in an image file and converting it to the Image object and vice versa will come in handy.

Reserved

[] | = // + - * / ; () == :=

Keywords

if else return print

Sample Code

// define a 3 by 2 matrix

Matrix myMatrix = [1 2 | 3 4 | 5 6];

// define a function called demoFunction

Matrix demoFunction (Matrix x, Matrix y) {

 // check if x and y are the same size

if (x := y){

 return Matrix[x[0] | y[0]];

 }

 else {

 return Matrix[0];

}

}

// read in an image with built-in function read

Image myImage = read (“sameImage.jpg”);

// give myImage a soft blur with softBlur, which can be either a built-in or user-defined function

Image newImage = softBlur(myImage)

// output the image

write(newImage , ‘blurry_effect.jpg’)

