
PLS Language Reference Manual

COMS W4115

Bennett Rummel
bwr2116@columbia.edu

July 2, 2014

Contents

1 Introduction 2

2 Lexical Conventions 3
2.1 Comments . 3
2.2 Identifiers . 3
2.3 Reserved Identifiers . 3
2.4 Constants . 3

2.4.1 Integers . 3
2.4.2 Floating Point Numbers . 3
2.4.3 Boolean Values . 3
2.4.4 Strings . 4
2.4.5 Lists . 4

3 Syntax Notation 4

4 Data Types and Conversions 4
4.1 Integers . 4
4.2 Floating Point Numbers . 4
4.3 Strings . 4
4.4 Boolean Values . 4
4.5 Lists . 5
4.6 null . 5

5 Variables and Objects 5

6 Expressions 5
6.1 Primary Expressions . 5

6.1.1 identifier . 5
6.1.2 constant . 5
6.1.3 (expression) . 5
6.1.4 primary − expression[expression] . 5
6.1.5 identifier(expressionopt(, expressionopt) ∗) . 6

6.2 Unary Operators . 6
6.2.1 −expression . 6
6.2.2 !expression . 6

1

6.3 Binary Operators . 6
6.3.1 expression + expression . 6
6.3.2 expression - expression . 6
6.3.3 expression * expression . 6
6.3.4 expression / expression . 6
6.3.5 expression % expression . 7
6.3.6 identifier or list subscript = expression . 7
6.3.7 expression == expression . 7
6.3.8 expression != expression . 7
6.3.9 expression < expression . 7
6.3.10 expression > expression . 7
6.3.11 expression <= expression . 7
6.3.12 expression >= expression . 7
6.3.13 expression && expression . 7
6.3.14 expression || expression . 8

7 Statements 8
7.1 Expressions . 8
7.2 Statement Lists . 8
7.3 Blocks . 8
7.4 if Statement . 8
7.5 while Loop Statement . 8
7.6 for Loop Statement . 9
7.7 foreach Loop Statement . 9
7.8 return Statement . 9

8 Functions 9
8.1 Function Definitions . 9
8.2 Special Functions . 10

8.2.1 print(x) . 10
8.2.2 len(l) . 10
8.2.3 append(l, x) . 10
8.2.4 read(c) . 10
8.2.5 write(c, x) . 10

9 Kernels 10
9.1 Kernel Definition . 10
9.2 Kernel Input and Output . 11

10 Scope 11

11 Pipelines 11

12 Programs 11

References 11

1 Introduction

PLS (PipeLine Script) is intended to be a small, imperative, dynamically typed, statically scoped, program-
ming language designed to process streams of data. It allows users to construct pipelines for processing data

2

based on the concept of Kahn processes [1]. A pipeline is made up of a sequence of discrete processes called
kernels. kernels communicate through single direction FIFO pipes. A program is made of a sequence of
one or more kernels.

2 Lexical Conventions

2.1 Comments

Comments begin with the characters “\\” and continue until the end of the current line.

2.2 Identifiers

An identifier is a sequence of letters, digits, and underscores (“ ”) beginning with a letter or an underscore.
Identifiers in PLS are case-sensitive and can be of any length greater than one character.

2.3 Reserved Identifiers

The following identifiers are reserved and may not be specified as identifiers otherwise:

if elseif else

for while foreach

true false null

return kernal main

print len append

read write in

out function

2.4 Constants

2.4.1 Integers

An integer constant is represented by one or more decimal ([0− 9]) digits.

2.4.2 Floating Point Numbers

A floating point number constant follows the same format as the C programming language in [2]:

A floating constant consists of an integer part, a decimal point, a fraction part, an e , and an
optionally signed integer exponent. The integer and fraction parts both consist of a sequence of
digits. Either the integer part or the fraction part (not both) may be missing; either the decimal
point or the e and the exponent (not both) may be missing.

2.4.3 Boolean Values

Boolean constants are either true or false.

3

2.4.4 Strings

Strings are represented by any sequence of characters surrounded by double quotes (“"”). A double-quote
character in a string must be escaped by a preceding backslash (“\”). Strings may not contain new line
characters - instead the character sequence “\n” should be used.

2.4.5 Lists

A list is declared using the follow syntax:

identifier = {expressionsopt}

where elements is an optional comma-separated sequence of expressions. The new list will be bound to
identifier and will contain copies of the values in expressions (if any).

3 Syntax Notation

In the following portion of this manual depicting syntax, non-terminal symbols are displayed in italics while
terminal symbols are displayed in fixed width. Optional symbols are indicated by a following subscript
“opt”.

4 Data Types and Conversions

4.1 Integers

Integers are represented by the platform’s signed 64-bit integer types. Integers may be converted to a floating
point number without loss of precision.

4.2 Floating Point Numbers

Floating point values (hereafter “floats”) are represented by the platform’s double precision IEEE-754 type
(e.g. double). Converting a floating point value to an integer will cause it be truncated towards 0. If a
floating point value is outside the range of values able to be represented by an integer, the result of the
conversion is undefined.

4.3 Strings

Strings are represented by a sequence of characters of an arbitrary length. Strings may not be converted to
other data types.

4.4 Boolean Values

Simple true/false type. Integers and floats will be evaluated as true in a boolean context if they are non-zero,
and false otherwise. All other types are always converted to boolean false.

4

4.5 Lists

A list is a composite type representing an ordered sequence of 0 or more elements of heterogenous types.
Elements in a list are referred to by integer indices starting at zero. Items can be modified in place or added
to a list but not removed. Lists can also be nested to allow for multi-dimensional lists.

4.6 null

null represents the abscence of a value.

5 Variables and Objects

Variables in PLS are dynamically typed and are declared by assigning them a value (see below). A variable’s
value can be changed (including the data type) by assigning a new value. Functions, kernels, and pipelines
can not be assigned to a variable unless otherwise indicated.

6 Expressions

6.1 Primary Expressions

Primary expressions are the basic “building blocks” of other expressions. That is, only a primary expression
can result in a primary expression.

6.1.1 identifier

An identifier can be used as an expression if it exists in a scope visible from the current scope (see below).
The expression results in the type and value of identifier.

6.1.2 constant

A constant can be used as an expression and its type is the most appropriate given how the exact string
specified in the source code is parsed (see above).

6.1.3 (expression)

Simply yields expression.

6.1.4 primary − expression[expression]

A primary expression followed by an integer expression surrounded by square brackets is used to refer to a
specific element in a list. The result of expression is used to retrieve the n’element of primary−expression,
counting from zero. The result of the expression is a reference to the element, meaning the list can be
changed by assigning a new value to the result of the expression (see below). It is an error if expression is
not an integer, is less than 0, or is greater than or equal to the length of the list.

5

6.1.5 identifier(expressionopt(, expressionopt) ∗)

An identifier followed by a pair of parentheses containing an optional comma-separated list of expressions is
used to call a function named identifier with the results of the specified expressions as arguments, assuming
it has been previously declared. The result of the expression is the return value of the function or null if
the function does not return a value. See below for more information.

6.2 Unary Operators

6.2.1 −expression

If expression is an integer or a float, the expression computes the negative of expression. It is an error for
expression to be of any other type.

6.2.2 !expression

If expression is a boolean, the expression computes the logical negation of expression. It is an error for
expression to be of any other type.

6.3 Binary Operators

In the following operations, an expression in which one operand is an integer and the other is a float will
invoke an implicit conversion of the integer to a float (see above) before the operation is performed unless
otherwise indicated. Additionally, if any expression would result in a value outside the range able to be
represented by its type, the result in undefined. Finally, the following operators are left-associative unless
otherwise indicated.

6.3.1 expression + expression

If both expressions are numeric types (i.e. integers or floats), the expression yields the sum of the two values.
If both expressions are strings, the expression yields the concatenation of the first string with the second
string.

6.3.2 expression - expression

Computes the difference of the two operands if both are numeric types. Otherwise, it is an error.

6.3.3 expression * expression

Computes the product of the two operands if both are numeric types. Otherwise, it is an error.

6.3.4 expression / expression

Computes the quotient of the two operands. If both operands are integers, the fractional part of the result
may be truncated towards 0. It is an error if the types of any operand is not numeric.

6

6.3.5 expression % expression

Computes the remainder of dividing the first expression by the second (i.e. the value of the first expression
modulo the value of the second). It is an error unless both operands are numeric types.

6.3.6 identifier or list subscript = expression

Assign to the variable or list subscript as the left operand the result of the right operand expression. This
operator is right-associative. If the left operand is an identifier that is not bound, a new one is allocated and
set to the value of expression. If the identifier is bound, its value is replaced. The result of the expression
is that of expression.

6.3.7 expression == expression

Comparison operator – yields true if both operands represent the same value (after necessary type conver-
sions), and false otherwise.

6.3.8 expression != expression

Yields true of the operands do not represent the same value, false otherwise.

6.3.9 expression < expression

Yields true if both operands are numeric types and the value of the first is strictly less than the value of
the second. It is an error if either type is not numeric.

6.3.10 expression > expression

Yields true if both operands are numeric types and the value of the first is strictly greater than the value
of the second. It is an error if either type is not numeric.

6.3.11 expression <= expression

Yields true if both operands are numeric types and the value of the first is less than or equal to the value
of the second. It is an error if either type is not numeric.

6.3.12 expression >= expression

Yields true if both operands are numeric types and the value of the first is greater than or equal to the
value of the second. It is an error if either type is not numeric.

6.3.13 expression && expression

Computes the logical “and” of both expressions. It is an error if either expression is not a boolean.

7

6.3.14 expression || expression

Computes the logical “or” of both expressions. It is an error if either expression is not a boolean.

7 Statements

7.1 Expressions

A statement may have the form:

expression;

7.2 Statement Lists

Statements may be placed back-to-back and will be executed sequentially.

7.3 Blocks

Statements may also take the form:

{statementopt}

Such a statement may be useful for improving code readability or limiting the scope of a variable (see below).

7.4 if Statement

A if statement has the form:

if(expression){statementopt} (elseif(expression) {statementopt}) ∗ (else {statementopt})?

In any case, if the first expression evaluates to true than the first statement is executed, otherwise it
falls through to the next group in the statement. This continues for each (optional) elseif, expression,
and statement group. If none of the expressions evaluate to true, then the statement following the (also
optional) else is executed. It is important to note that only the expressions up to the first one that results
in true will be evaluated.

7.5 while Loop Statement

The while statement has the form:

while(expression){statementopt}

If the expression evaluates to true, then statement is executed once. Then the cycle repeats until expression
evaluates to false.

8

7.6 for Loop Statement

The for statement has the form:

for(expressionopt;expressionopt;expressionopt){statementopt}

In this statement, the first expression is executed once before anything else. Any new variables are local
to the statement (see below). The second expression is the termination test – if it evaluates to true, then
the statement is executed once. The third expression specifies an operation to be performed after each
execution of statement. After statement and the third expression are executed and evaluated once, the
test is checked again and the cycle repeats. Any of the expressions may be omitted.

7.7 foreach Loop Statement

The foreach statement has the form:

foreach(identifier:expression){statement}

In this statement, expression must produce a list. identifier is bound to a copy of each element of the list
starting with index 0 and proceeding in order to the final element. statement is executed once for element
in the list.

7.8 return Statement

The return statement has the form:

return(expression);

It is valid only in a function definition (see below). When a return statement is executed, the value of
expression is used as the result of the function call expression (see above) and control is returned to the
caller.

8 Functions

8.1 Function Definitions

A function definition has the form:

function identifier(arglistopt){statement}

where arglist is the optional comma-separated list of identifiers representing the parameters to the function.
The function name identifier is bound to the function. Functions cannot carry state from one invocation
to the next. Functions can optionally contain one or more return statements to return a value to the caller
(see above). If control reaches a return statement, then control is returned to the caller. If control reaches
the end of the body of the function, null is returned (i.e. there is an implicit “return(null);” at the end
of each function definition). Function arguments are passed by value, meaning a function can not directly
affect the value of its parameters when called (except if the function is passed a global variable, see below).

Functions cannot be nested (they must be defined in global scope), preventing constructs such as closures.
Additionally, they are not first-class types and can therefore not be assigned or passed to other functions.

9

8.2 Special Functions

There are several builtin functions defined.

8.2.1 print(x)

print is simply prints an ASCII representation of its single argument to stdout and returns null.

8.2.2 len(l)

len returns an integer containing the number of elements in l if l is a list, or null otherwise.

8.2.3 append(l, x)

Append x to the end of list l. Returns l.

8.2.4 read(c)

read is a special function used to pop a single token from a kernel’s input pipe c. If no tokens are available,
the call will block until one is available. Calling read from anywhere but a kernel definition is an error.

8.2.5 write(c, x)

write is a special function used to push a single token x to a kernel’s output pipe c. write will not block.
Calling write from any context but a kernel definition is an error.

9 Kernels

A kernel is a discrete processing unit. It communicates with other kernels via single direction FIFO queues.
kernels appear similar but have different semantics than functions.

9.1 Kernel Definition

A kernel definition has the form:

kernel identifier(arglist){statement}

Where identifier is the name of the kernel. The arglist is a comma separated list of input and output
channels. An single argument in the arglist has the form:

direction identifier

where direction is either in for an input channel or out for an output channel. Currently a kernel must
have exactly one of each. A kernel must also have a body, statement, that is executed once in parallel with
the other kernels in the program.

10

9.2 Kernel Input and Output

There are two special functions available for use inside of a kernel body: read and write (see above). It
is important to note that kernel inputs and outputs need not be symmetric, e.g. a kernel could read two
tokens for every one that it outputs. Additionally, the communication pipes are unbounded. Finally, there
is no way for a kernel to check if a pipe has any tokens or is empty.

10 Scope

Variables are lexically scoped, meaning they are valid within the scope in which they are first declared,
including “child” scopes. Variables can also be declared in the global scope and are visible in every subsequent
scope. Function parameters have the scope of the function and will hide any other variable or function with
the same name.

11 Pipelines

A pipeline is a chain of kernel instances where the output of one is connected to the input of the next, and
so on. A pipeline is built from left to right using the “|” operator:

kernel | kernel

This means the output of the first kernel is fed in to tho input of the second kernel. This expression returns
a pipeline.

Pipelines can be assigned to variables in the global scope for ease of construction. the “|” operator can be
used to connects pipelines in the same way it connects kernels.

Recursion is prohibited in pipelines, meaning no cycles are allowed in the flow of data.

12 Programs

A program is simply a pipeline or kernel assigned to the special identifier main. ASICC input from stdin is
fed in to the pipeline, and the output is printed to stdout. Tokens from the input are parsed one at a time
according to the same rules as in the “Constants” section above and pushed in to the pipe at the head of
main.

Because PLS is designed around the concept of Kahn processes, programs are deterministic, meaning a
program will always produce the same sequence of output values given the same input. However, the exact
order of operations within a program is unspecified to allow for parallel computation.

References

[1] G. Kahn. The semantics of a simple language for parallel programming. In J. L. Rosenfeld, editor,
Information Processing 74 : proceedings of IFIP Congress 74. North-Holland American Elsevier, 1974.

[2] B. W. Kernighan. The C Programming Language. Prentice Hall Professional Technical Reference, 2nd
edition, 1988.

11

