

All That Matrix Language
Reference Manual
[Type the document subtitle]

7/2/2014

Columbia University COMS W4115

Stefanie Zhou (sz2475)

Page 1

1 All That Matrix Language Reference Manual

Contents
1. Introduction ... 2

2. Lexical Elements ... 2

2.1 Comments ... 2

2.2 Identifiers .. 2

2.3 Keywords .. 2

2.4 Constants ... 3

2.4.1 Numeric Constants ... 3

2.4.2 String Literal Constants ... 3

2.4.3 Boolean Constants ... 3

2.4.4 Vector Constants .. 3

2.4.5 Matrix Constants .. 3

3. Types ... 4

3.1 Atomic Types .. 4

3.2 Compound Types .. 4

4. Expressions and Operators .. 4

4.1 Expressions ... 4

4.2 Unary Operators .. 4

4.3 Binary Operators ... 5

4.4 Logical Operators.. 5

4.5 I/O Expressions ... 5

4.6 Other Functions ... 5

5. Statements ... 6

6. Declarations .. 6

6.1 Program Definition ... 6

6.2 Function Declarations ... 6

7. Scope ... 6

8. Example .. 7

References ... 8

Page 2

2 All That Matrix Language Reference Manual

1. Introduction

All That Matrix is a programming language targeted at matrix manipulations with emphasize on

the clear syntax and a lightweight compiler. All That Matrix provides intuitive matrix related

operators with the goal of avoiding as many built-ins as possible and making it easy to write

custom functions in the language itself. This language reference manual is inspired by the C

reference manual [1].

2. Lexical Elements

2.1 Comments
Comments are delineated with an opening /* and closing */. The compiler will ignore comments.

Nesting of comments is not allowed.

/* This is a comment */

2.2 Identifiers
Identifiers are sequences of characters that must start with a lower case letter and can be

followed by any number of upper-case letter, lower-case letters, digits, and underscores, used for

naming variables and functions. Identifiers are case sensitive, so “foo” and “Foo” are distinct.

Identifier -> [a-z][a-zA-Z_0-9]*

2.3 Keywords
Keywords are reserved for use as part of the programming language and therefore, cannot be

used for any other purposes.

int float boolean char

cvector rvector matrix fun

if else for return

true false import export

 print

Page 3

3 All That Matrix Language Reference Manual

2.4 Constants
There are a total of five constants in All That Matrix: numeric, string literal, boolean, vector, and

matrix.

2.4.1 Numeric Constants
A numeric constant can be either an integer constant or a float constant. An integer constant is a

sequence of digits. A float constant is composed of an integer part, a decimal point, and a trailing

character ‘f’.

Numeric Constant -> Integer Constant | Float Constant

Integer Constant -> [0-9]+

Float Constant -> [0-9]+.[0-9]*f

2.4.2 String Literal Constants
String literal constants are delineated by double quotation marks and can contain any character.

String Literal Constant -> “[any character]”

2.4.3 Boolean Constants
Boolean constant can either be true or false

Boolean -> true | false

2.4.4 Vector Constants
The two types of vector constants are row vector and column vector. Vector constants are

enclosed within square brackets with whitespaces separating the elements, and a trailing ‘r’ for

row vector or a trailing ‘c’ for column vector.

[1 2 3]r is a row vector

[4 5 6]c is a column vector

2.4.5 Matrix Constants
Matrix constant are enclosed in square brackets with vertical bars separating the rows and

whitespaces separating the columns. Matrix constants can be filled with vector or numeric

constants.

[1 2 3 | 4 5 6] is a matrix defined by numeric constants

Page 4

4 All That Matrix Language Reference Manual

[c1 c2] is a matrix defined by two column vectors

[r1 | r2 | r3] is a matrix defined by three row vectors

3. Types

3.1 Atomic Types
Atomic types are basic types that are used to build compound types. The four supported atomic

types are

int float

Boolean char

3.2 Compound Types
The three supported compound types are

rvector

cvector

matrix

4. Expressions and Operators

4.1 Expressions
An expression consists of at least one operand and zero or more operators. Operands are one of

the typed objects such as matrix and can be an identifier, a constant, or a function call that

returns a value.

4.2 Unary Operators
x’ transposes a matrix

x| returns the determinant of the matrix x

x! returns the inverse of the matrix x

Page 5

5 All That Matrix Language Reference Manual

4.3 Binary Operators
These are the binary operators that follow the standard arithmetic and matrix operation rules.

These operators are valid between two objects of the same type for integers and floats, and the

result is of the same type. However, for vectors and matrices, the types between the two

expressions can differ.

For example, multiplication between an integer and a matrix is equivalent to scaling the matrix

by the integer, whereas multiplication between two matrices follows the standard matrix

multiplication rules.

In other words, the behavior of the operators depends on the type of the operands provided. For

example, when adding two integers: 5 +10, the result is 15. When adding two row vectors [x1

x2]r + [y1 y2]r, the result is the row vector [x1+y1 x2+y2]r.

expression + expression

expression - expression

expression * expression

expression / expression

4.4 Logical Operators
Logical operators between two boolean expressions can be used in control flow.

expression && expression

expression || expression

expression == expression

4.5 I/O Expressions
All That Matrix can read in inputs and produce outputs with the I/O expressions defined within

the language.

identifier = import(filename)

export(filename, identifer)

4.6 Other Functions
All That Matrix also provides a limited set of built-in functions for type matrix to retrieve

information about the object such as col_count(matrix) and row_count(matrix).

Page 6

6 All That Matrix Language Reference Manual

5. Statements

All statements must end with a semi-colon. All statements either declare a variable or modify an

existing variable. If and for statements are supported for flow control and curly brackets can

group statements together. The rules are the same as the C language.

6. Declarations

6.1 Program Definition
A program in All That Matrix consists of a sequence of statements, which are executed in order.

6.2 Function Declarations
A function declaration must start with the keyword fun, followed by the name of the function,

and a list of zero or more parameters separated by commas and enclosed in parenthesis.

Functions in All That Matrix must be declared and implemented simultaneously. The return type

for functions are not explicitly declared.

Here is an example of a function declaration with two parameters.

fun foo (matrix a, matrix b) {

return a+b;

}

7. Scope

A declared object is only visible in the scope enclosed by the nearest curly bracket pair.

Declarations made within functions are visible only within those functions. A declaration is not

visible to declarations that came before it. An identifier declared outside of any curly bracket

pairs is a global variable, and thus, is accessible from anywhere of the program.

Page 7

7 All That Matrix Language Reference Manual

8. Example

/* A example program in All That Matrix that divides two matrices without using the binary

division operator */

r1 = [1 2]r;

r2 = [2 1]r;

matrix_a = [r1 r2];

matrix_b = import(myMatrix.txt);

a_cols = col_count(matrix_a);

b_rows = row_count(matrix_b);

if (a_cols == b_rows){

b_inverse = b!;

result = a * b;

export(output.txt, result);

}

Page 8

8 All That Matrix Language Reference Manual

References

[1] B. W. Kernighan and D. Ritchie. The C Programming Language, Second Edition. Precentice-

Hall, 1988.

