SEAL Final Report

COMS W4115 Spring 2014

Ten-Seng Guh tg2458
Contents
O) o o [F o1 d T o IS TP P PSPPI UUUPROPPRRPPR
2. LEXICAl CONVENTIONS. .. .tiiiitiietieeetee ettt e ettt et e st e e sate e sttt e sateesabeesabteesabeeeasteesabeesabeeesabeesabeeeanbeesabeeesabeesaseeennseesabeeesaseenn
2 T 0o 010 0= o) &3P PPPPPUPPN 4
2.2, TOKENS ettt ettt ettt ettt ettt et e st e a bt e s be e e b et e s bt e s hte e aabe e e beeeeabeesateesbbeesabeeebeean 4
2.2.1. LAENEIFIEIS ettt ettt e b e st e st e st e st e bt e bt e be e sbeesaeeenneeneen 4
2.2.2. AT AY o] o U UU RPN 5
2.2.3. CONSTANTS <.t s e s 5
2.2.3.1. TGO CONS ANTS . s
2.2.3.2. FIOating POiNt CONSLANTS ..uiiiiiiiiii ittt e et e e e et e e e st e e e e e sabee e e ssabeeeeseabeeeeesnseeessnnsens
2.2.3.3. CNaraCter CONSTANTS. . .eitiitieiieeiteet ettt sttt et s e st st e b e r e s b e e s be e s aeeeaneebeesbeesmeesanesanesaneeneennees
2.2.4. Y A g gV I A=Y | TSR 6
2.2.5. (@0 =] = o PPN 6
2.2.6. Y] oL |- L 0] £ PP P PP PP PP PPPPPPPPPPPPPPPPPPPRE 7
T {0 T =11 (o] o [T PP PP SPPTPPPPPPO
10 S ¥ [Tl o T o I || PP PP PR PSRRI 9
L ©] o 1T o1 3RS
e N I o 1= @ oY [Tt ol V7 o 9
4.1.1. 1] o 1< TSP US PR 9
4.2, The FUNAAmMENTal TYPES ...uiii ettt ettt eeee e e et e e e et e e e e sabaee s enabaeesenabeeeeennrees 10
e T N 1B {4 o= V] TSRS 10
I 1o = 1V Y/ 1 PRSP 10
T I [=T= T I Y7 o TSRS 10

N Y/ o =P TPOUPPPPTPPP 11
D S ATEMENTS e et sra e e e s era e e e s eans
5.1, EXPression Statements......ooo i, 11
LI N @] 4 oY o Yo 10T g o IE) = 1 (=] 4 =T oL (PSSR 11
T T |) =1 (10 0 1= o KO PO PP PR UPROTOPSPUPRTOPIINS 12
5.4, [Eeration StatemeENTSei i s e e e e e 12
ST 0 1= Tol = - o L3PPSO P PTTOUPPTPRRO
Lo T N = VN D L= ol - =1 d Lo [PPSR 12
6.2. FUNCLION DECIAratioN ..couiiiiiiiieee ettt st s re e 12
6.3, Thread DECIaration........cccouieieeiiieiiece ettt ettt st st st e b e sbe e saeesareereens 13
Lo | =Y A AU T o D= Tol - =Y o IO PSPPI 13
Lo T 1Y/ o -l L= Tol - [=Y o [PPSR 14
2 o o] 4 - | o 1 T PP PRSP PPPPPTPPPRRR
7.1 DEFINITIONS ottt st et b e b e sbe e saeesareeneen 14
2 Y, = 4 PP PP PP PP PPPRRPP 14
7.3, INCIUSION Of OTNEI FIlES ettt ettt st e s e st e s sate e sbeeesareeeas 14
S T oY 1Tt o =1 o PSPPI
8.l TIMEBIINE ittt ettt st e s e e be e st e e shbe e s be e e sabeesbteeanee e s beeenareenas 15
ATCRIEECTUIE <.ttt et h e st sttt e bt e bt e s he e saeeeate e beesbeesaeesabesabeeabeebeenneas 17
8.2, OVEIVIBW ittt ettt e s e e s e e s e e e s e e s b e e s e e s e e s e nres 17
8.3. Scanning, Parsing, AST ..o, 18
8.4, SEAL LIBIary...ee ettt sttt e r e nre e saeesaneereens 18
R =T B o = 1o DT P PO PTOPPTOPRTRPRRPRRPI
9.1, TeSt Case SEIECTIONcovuiiiiiiieeteet ettt ettt et st r e r e sre e seeesareenreens 18
9.2, DEMO PrOgrams oo, 18
10. [o] g I = [=T o PSP PU T OTO PR
11. AN] 01T e | USRS
11.1. ASTM e ettt st s s b e b st s et s r e e b b e rees 22
11.2. SCANNEI.MIL ettt et et et s e st st e e b e b e s reesaeeeaneereen 25
11.3. (07000 o1 =T o o o | 1S SRR 27
11.4. o LT 0 4 Y2 PSR 34
11.5. 7T | I 0 1 TP TOUP PR 39
11.6. MAKETIIE <.t sttt st r e ne e s 40

T o Yol Y/ o YT SRR 11

11.7. SBALSI ettt —— 41

12.

11.8.) o N I g - 1V o T EURR 41
11.9. R3] = I - 1Y X o PPN 42
12,00, SEAL_LOCK.N cenieeeee ettt ettt et b e st s nnees 43
L1000 SEAL LOCK.C ettt ettt ettt b e st st st et e bt e bt e sbeesane st e sab e e b e ebeennees 43
12,120 SEAL_SIZNALN et st beenrees 44
11.13. SEAL SIBNAICarriieeieeeeeeeee ettt s e e s ee e es e e es e eneee e en e e eneeeeneenen 44
5 0 S = 1Y I 1 1 =Y Vo 1o TSRS 45
3 I T = 1Y I 1 1 =T o o URUURPNS 46
12,06, SEAL_URILN ottt sttt ettt e b e s st st st e b nnees 47
122070 SEAL _URILC ettt sttt sttt e b e bt sae e st s et e b e nnees 47
< T Ty Y= o T O UPSPNE 48
11.20. TeSt-SEMANTICEITON.S] . .uiiiiiiiiiie ettt ettt ettt e s bt e e st e sbt e e sateesabeeesareesaees 49
11,21, TeSt-EhrEad.sl et sttt e sb e e sar e sanes 49
REFEIENCES .ttt b e s bttt et e bt e bt e s bt e s bt e s a e e s ae e st e e bt e b e e bt e abeesaeeeabeeabeenbeenbeesheesaeesane

1. Introduction

This is a language reference manual for Simple Embedded Avionics Language (SEAL). SEAL is a
programming language that simplifies the tasks most commonly found in embedded systems development,
particularly avionics software development. It borrows a lot of its syntax from C, but also borrows
characteristics from the object-oriented nature of languages such as Ada, Java and C#. Still other aspects
of the language are unique only to itself. The goal of SEAL is to describe low-level tasks in a high-level way.
The format of this manual is largely based on Appendix A of the C Programming Language, 2" Edition by
Kernighan and Ritchie.

2. Lexical Conventions
A SEAL program shall consist of three parts: the definitions, the set-up, and the Main. These parts can all
be in one file, or they can span multiple files. Definitions refer to the defining of types and their functions,
as well as stand-alone functions. Set-up refers to the assigning and mapping of registers, the declaration
and initialization of hardware resources such as timers, 1/0 ports, interrupts, and the declaring and
latching interrupt service routines to their respective interrupt signals. Main refers to the block of code
that begins execution in the main loop of the program, once everything else is set up. When the program
counter is initialized, it shall point to the entry point of Main.

2.1.Comments
SEAL shall use either “/*” and “*/” or “//” and newline to enclose a comment. Comments shall be stripped
out by the scanner. Some examples below:

/* this is a valid comment */
// this is also a valid comment
/* this is not a valid comment //

/* this is not a valid comment either */ */

2.2. Tokens

A SEAL program shall be comprised of tokens. There are six classes of tokens: identifiers, keywords,
constants, string literals, operators, and separators. White space shall be used only to tokenize the
program. A token shall constitute the longest string of characters. For example, if the scanner scans “Int”,
it will not stop and will attempt to find “Interrupt”. If the string does not follow with “errupt”, only then
will it tokenize the string as an “Int”.

2.2.1. Identifiers

An identifier (id) shall be composed of a letter, optionally followed by letters and/or digits. An
underscore counts as a letter. Identifiers are case sensitive. Besides for keywords, identifiers shall also
be used for naming variables, types, and functions. Some examples below:

a //valid token

A //valid token (different than “a”)

12
123

@

2.2

//valid token

3 //valid token
//invalid token
//invalid token

.2. Keywords

The following identifiers shall be keywords reserved for use by SEAL and may not be used otherwise.

They all start with a capital letter:

Bool Int Double Thread
Byte Interrupt Else Type
Address Lock String If

For Swap Return While
Void Source Map
2.2.3. Constants

A constant shall be a representation of a value. There shall be three types of constants: integer

con

stant, floating point constant, and character constant.

2.2.3.1. Integer Constants

An integer constant may be in decimal form, binary, octal, or hex form. If in binary form, it shall be
suffixed with “b” and contain only Os or 1s. If in octal form, it shall be suffixed with “0” and can
only contain Os through 7s. If in hex form, it shall be prefixed with “Ox” or suffixed with “H”/”h”
and shall use the traditional hex characters. An integer constant may be positive or negative. If

o n

negative and in decimal form, it shall be prefixed with a “-”-sign and cannot be assigned to Uint or

Ulong. Integer constants shall be assignable to Int and Long. Below are examples:
00111b // valid integer constant

3710 //valid integer constant

01234 //valid integer constant

0xABCD //valid integer constant

AcDdh //valid integer constant

OxabcdH //invalid integer constant

Ulong i = -1234; //invalid assignment

2.2.3.2. Floating Point Constants

A floating point constant shall consist of an integer part, a decimal point, a fraction, followed by an
optional “E”/”e” with an exponent part. This is slightly stricter than C floating point constant rules.
If negative, it shall be prefixed with a ‘-’-sign. Below are examples:

1.0 //valid
1.34e4 //valid

1. //invalid

led //invalid

2.2.3.3. Character Constants

A character constant shall consist of a ‘\” followed by any of the following characters:

Character Meaning

n Newline

t Tab

\ Backslash

! Single Quote
“ Double Quote
0 Null byte

2.2.4. String Literals
A string literal shall consist of a sequence of characters enclosed by double quotes. A string literal
containing 0 characters shall be equivalent to the Null byte.

2.2.5. Operators
An operator shall allow an operation to be performed between one or two expressions. The following
are two tables of operators, the first one for unary.

Operator | Purpose Associativity | Precedence
++ Increment Left 1%
-- Decrement Left 2"
! Negation Right 3"
~ One’s complement Right 3"
- Negative Right 3"
Operator | Purpose Associativity | Precedence
* Multiplication Left 1%
/ Division Left 1%
% Modulus Left 1%
+ Addition Left 2"
- Subtraction Left 2"
<< Bit Shift Left Left 3"
>> Bit Shift Right Left 3"
< Less Than Left 4t
> Greater Than Left 4™
<= Less Than or Equalto | Left 4"
>= Greater Than or Equal | Left 4"
to
== Equal to Left 5t
I= Not equal to Left 5t
A Bitwise XOR Left 6"
& Bitwise AND Left 6"
| Bitwise OR Left 6"

&& Logical AND Left 7"
[Logical OR Left 7"
= Assignment Right gth
, Comma separator Left gth
2.2.6. Separators
A separator shall be one of the following:
Separator Purpose
; Ending statement
{..} Type, Function, thread, or interrupt service
routine definition
, Separating arguments
Label access of an object

3. Expressions
An expression (exp) shall be composed of identifiers, constants, or string literals, and can be enclosed in
parentheses. An integer-expression (int) shall denote an expression composed of an integer constant. A
floating-point-expression (flt) shall denote an expression composed of a floating-point constant. A
variable-name-expression (var) shall denote an expression composed of identifiers and optionally the “.”
separator. A string-expression (str) shall denote an expression composed of string literals. A numerical-
expression (num) shall denote an expression that is either an integer-expression or floating-point
expression. A non-string-expression (nse) shall denote an expression that is not a string-expression. A
variable-integer-expression (vfe) shall denote an expression that is either a variable-name-expression or an
integer-expression. These basic expressions can then act as operands for use with operators to become

more complex expressions (expr).

Throughout the rest of the document, there will be symbols used to describe the grammar. The ‘/’ means
“or”, ‘?” means “zero or one”, and ‘* means “zero or more”. The following are the basic rules for the

expressions mentioned above.

var: id [id".’var
num: int [flt

exp: var [num [str
nse: var | num
vfe:var [int

Below are the various expressions for each grammar. Each row denotes a level of precedence.

expr: num | exp [nse | vfe
expr: inc

expr: dec

expr: not [inv | neg

expr: mult | div | mod
expr: add | sub

expr: bsl | bsr

expr: Ith | gth [Ite | gte
expr: equ [neq

expr: xor | and | or
expr: andl [orl

expr: asn

expr: com

expr: ‘(“expr ‘)

The table below contains the expression rules for the operators. They are all valid expressions:

Operator | Expression rule
++ inc: exp“++”

-- dec: exp“--”

! not: ‘lexp

~ inv: ™~ exp

- (unary) | neg: “-exp

mult: exp

mult: exp ¥ exp
/ div: nse

div: div %/’ div

% mod: int

mod: mod ‘%’ mod
+ add: exp

add: add ‘+" add

- (binary) | sub: nse

sub: sub —’ sub
<< bsl: vfe

bsl: bsl “<<” bsl
>> bsr: vfe

bsr: bsr “>>" bsr

< Ith: nse

Ith: Ith “<” Ith

> gth: nse

gth: gth “>” gth
<= Ite: nse

Ite: Ite “<="Ite

>= gte: nse

gte “>=" gte

== equ: vfe

equ: equ “=="equ
I= neq: vfe
neq: neq
A xor: vfe
xor: xor “N xor

“j_”

neq

& and: vfe

and: and ‘&’ and
| or: vfe

or:or ‘|’ or

&& and!: vfe

andl: andl “&&” andl
[orl: vfe

orl: orl “[|” orl

= asn: var ‘=" exp

, com: exp

com: com ‘,’ com

3.1.Function Calls
A function call (fun) is a postfix expression. It shall consist of a variable-expression, followed by a pair
of parentheses containing an optional list of expressions as arguments. The following is the rule for
function calls.

fun:var“()”

fun: var(’ expr (‘" expr)*‘)’

4. Objects
In SEAL, an object is a piece of memory that the programmer can use. It is a way to make a piece of data
useful and accessible to the programmer. It shall be identified with a variable-name-expression. SEAL is
object-oriented, so all variables are objects. In SEAL, Type can be used interchangeably with the object-
oriented concept of a class. The Type keyword shall define a class describing the object. The scope for all
objects in SEAL shall be global.

4.1.The Object Type
The most fundamental type, in which all other types are derived from, shall be the Object type. All
Objects shall have an address or range of addresses associated with it.

4.1.1. Labels
An Object shall have Labels. Labels allow viewing the object through various other aspects. Some
Labels are global and static functions compiled in. Others act as monikers for different aspects of
the object. Yet others are objects themselves. To access an object’s label, the label shall be
prefixed with the Object name followed by a “.". All objects shall have the following Labels:

Label Name Return Type Purpose
Address Int Gets or sets the address of the object.
Swap() Object Swaps the contents of the object. Good for

sending/receiving contents from a system with an
endianness that is opposite of yours.

4.2.The Fundamental Types
There shall be four fundamental Types. They are meant to store numerical-expressions and so represent
floating point numbers as well as integers. The following are the four fundamental types.

Type Description

Byte Represents one byte of data, 8-bits unsigned.

Int Represents an signed 32-bit integer.

Double Represents a 64-bit floating point number, unsigned by default.

String Represents a string of characters. See below for more
information.

4.3. The String Type
The String type shall be composed of string-expressions. The addition “+” operator shall be available
for String, allowing concatenation.

4.4. The Array Type

Arrays shall be a 1-dimensional representation of a collection of objects of the same Type. Arrays shall be
fixed size, indexable, and mutable. Arrays shall allow access to an item via an index, represented by an
unsigned integer-expression enclosed by ‘[and ’]’. Arrays are only available for the fundamental types.
In addition to the standard Object Labels, they shall have the following powerful Label:

Label Return Type Description
Map(Function()) Object Iterates through the array to apply the given
function to each element in the array.

4.5. Thread Type

The Thread Type shall allow code to run autonomously separate from the Main loop. Anything enclosed
in a thread block shall execute in its own stack. Shared variables among threads shall be protected via the
lock label. A Thread shall not return anything. A Thread shall not receive any arguments. Threads
shall have the following Labels:

Label Return Type Description

Tcreate() | Void Initializes the thread.

Go() Int Kicks off thread execution.

Join() Int Waits for other thread(s) to finish before kicking off
execution.

Stop() Int Terminates thread.

Tdestroy() | Void Disposes of the thread.

4.6. Lock Type

The Lock allows various Threads to share variables safely. Locks effectively allow code to become re-
entrant. The programmer does not have to worry about explicitly writing code for initializing, acquiring or
releasing locks; this shall all be handled by the Threads that access the shared variables. The Lock shall
have the following Labels:

Label Return Type Description
Lcreate() Void Initializes the lock.
Acquire() | Int Calling thread attempts to acquire the lock.
Release() | Int Calling thread releases the lock.
Ldestroy() | Void Dispose of the lock.
4.7. Types

SEAL shall allow new Types to be composed out of current Types. All new Types shall inherit from the
Object type, thereby endowing them with the same Labels. Types shall contain variable and/or function
definitions. SEAL shall not allow new label creation. SEAL shall not allow inheritance.

. Statements

Statements (st) are sequences of code that is executed for its effect. There are four types of statements:
expression statements (exst), compound statements (cpst), if statements (ifst), and iteration statements
(itst).

st: exst | cpst [ifst [itst

5.1. Expression Statements
An expression statement shall be merely an expression followed by a /,’. An expression may be empty. All
side effects of the expression shall be completed before the next statement is executed.

exst: expr? ;'

5.2.Compound Statements
A compound statement shall be multiple statements enclosed by {" and ‘}. Within it can be declarations
and statements. A compound statement shall optionally end with a Return keyword followed by an

“uxn

expression, if part of a Function declaration (see 6.3). Below, the means “zero or more”.

cpst: {’ decl* st* (“Return” expr’;’)? ‘V

5.3. If Statements

An if statement shall allow choice of flow of control. The expression enclosed in the parentheses is
evaluated, and if it equals one, statement shall be executed. If it equals zero and there’s an “Else”
followed by another statement, that statement shall be executed.

ifst: “If (” expr ‘)’ st (“Else” expr)?

5.4. Iteration Statements

Iteration statements shall specify looping. In the While (while) statement, an expression shall be
repeatedly evaluated and statement repeatedly executed as long as the evaluated expression’s value
remains equal to one. In the For (for) statement, there shall be up to three expressions. The first
expression shall be evaluated once. The second expression shall be repeatedly evaluated and statement
repeatedly executed as long as the evaluated expression’s value remains equal to one. Lastly, after each
execution of statement, the third expression will be evaluated.

itst: while | for
while: “While(” expr ‘)’ st
for: “For(”exst exst exst “)” st

. Declarations

Declaration (decl) is the method of creating a unique identifier for an object, function, thread, or interrupt
service routine. For objects, a declaration shall start with the Type (type) name followed by the variable-
name-expression and ;’, or an assignment before the ‘;’. The declared object shall be public and global, or
local if declared in a function, Thread, or Interrupt service routine.

decl: type var’;’
decl: type asn”;’
decl: ‘{* decl* ‘}

6.1. Array Declaration

An array declaration is similar to an object declaration except the initial size must be included, enclosed
within an ‘[’ and ‘]". An array declaration shall not allow an unknown or empty size. The array declaration
shall allow an assignment of any subset of the elements. Only one-dimensional arrays are allowed in SEAL.

decl: type var’ int “J;”

6.2.Function Declaration

A function shall contain a collection of statements to be executed upon being called, enclosed by {" and ‘}.
A function shall receive one or more arguments. A function shall return something or nothing. A function
shall return a type or no type at all. The return type shall be inferred from the return statement or the
lack thereof. Recursive functions shall be allowed.

A function declaration (fdc/) is similar in appearance to a function call, except it shall contain a compound
statement following the parentheses.

fdcl: var(“()” | (" expr (% expr)*‘)’) cpst %’

6.3. Thread Declaration

A Thread declaration (tdcl) shall be the equivalent to a Function declaration except with the “Thread”
keyword in front, no parenthesis and no option for passing arguments in. A Thread shall not return
anything.

tdcl: “Thread” var ‘{* cpst ‘}’

6.4. Interrupt Declaration

The keyword Interrupt shall denote a function specifically used for handling interrupts. An
Interrupt shall not return anything. An Interrupt shall not receive any arguments. An
Interrupt cannot be called by the user directly. Although not a Type, an Interrupt has one label
associated with it. An Interrupt shall use the Source label to assign it to handle the particular interrupt

signal.
Label Return Type Description
Source Int Gets and sets which interrupt to handle.

The following is a list of interrupt signals supported:

Signal Name Address value Purpose

SEALINT 1 Intercepts Ctrl+C key to
terminate program.

SEALDFT 0 Restores to original interrupt
handling or lack thereof.

An Interrupt declaration (idcl) shall be the equivalent to a Thread declaration except with the “Interrupt”
keyword instead of “Thread”.

idcl: “Interrupt” var “()” cpst *;’

An example of declaring an interrupt service routine and assigning it to listen to SEALINT would be the
following:

Interrupt SoundOff
{

print (“you pressed control + C key!\n”);

SoundOff.Source = 1;

6.5. Type Declaration

A Type declaration shall include declarations for any arrays, objects, and functions as part of the Type. A
Type declaration shall not allow Thread, Type, or Interrupt declarations within it. A Type declaration shall
start with the Type keyword, followed by a variable-name-expression for its name, followed by expressions
enclosed in ‘{" and ‘}, followed by a ‘;’. Types can only contain fundamental types and cannot inheritance
nor be composed of other Types.

tdec: “Type” var ‘{* edecl* decl* fdec* ‘}

. Program
A program shall be comprised of up to two sections: the Definitions section, and the Main section.

7.1. Definitions
Here is where functions, threads, interrupt service routines, and registers shall be declared. Only
declarations are allowed in Definitions. Below is an example of a valid Definitions section:

Lock lock;
SerialPort sp;
Bool makeSound;

Interrupt SoundOff
{

counter++;
if (counter == 4000)
{

counter = 0;
makeSound = TRUE;

}

Float vml, vm2;

7.2.Main

The Main shall be where the entry point of the program resides. The Main function shall returna 0. The
Main function shall not receive any arguments. Here is also where registers, interrupt service routines,
and hardware resources shall be initialized.

7.3. Inclusion of Other Files
Inclusion of other source files containing programs shall be allowed via the Include keyword. Include
can only appear at the top of the file. Included files cannot contain a Main section.

8. Project Plan
Of most importance was to come up with the Abstract Syntax Tree for SEAL, which is essentially the
skeleton of the language. Much care was put into designing the grammar for the language as well. The
grammar was largely based and heavily influenced by the K and R grammar for C, located in Appendix A of
the C programming language manual. Through fine-tuning the AST, it became clear that most of the
originally intended object-oriented methodology had to be scrapped in order to uphold the goal of fast,
robust, yet high-enough level access to system resources. Making SEAL truly object oriented would’ve
bogged down SEAL with unnecessary layers of abstraction. The beauty of SEAL is that it truly does allow
low-level access in a high-level way.

8.1.Timeline
2/10 Proposal submitted

2/20 Threading example pushed to repository.

2/25 Pthread example pushed ito repository.

3/10 Uploaded sample SEAL code.

3/13 LRM submitted.

3/16 Working on scanner, parser, and AST.

3/23 pushed into repository initial scanner, parser, AST, makefile, bytecode, and seal compiler executable.
3/30 established architecture to be x86_64 Linux, gcc compiler.

4/1 looking at UNIX Signals to implement Interrupt under the hood.

4/8 created the grammar that will become the parser, AST, SAST and used to generate the bytecode, which
has been chosen to be a form of 3 address code.

4/10 studying 3 address code to come up with one.

4/26 Decided to go with the environment data structures as the intermediate between the AST and the
generated C code.

4/26 created library code for implementing Interrupt and Thread
5/7 created AST and the equivalent of the SAST.

5/14 Finished last touches of compiler and test cases. Vigorously tested.

The tables below show some of the preliminary design that went into the library functions.

| C constructs for the SEAL code to work ‘

All interrupts are instances of this struct:

typedef struct
{
void *Address; //might think about taking this out
int Source;

void (*func)(int);

} Interrupt;

All Threads are instances of this struct:

typedef struct
{
int priority;
void (*func)();
pthread_t *thread;
} Thread;

SEAL code Intermediate bytecode | Final C code
Interrupt Ouch Ouch: Interrupt ouch;
{ InterruptBegin

III

Printline(“ouch! | got signa
+ Source;
Source = NONE;

signal ”

_c1="ouch!I got

_c2=_cl+ Source

void ouch_func (int sig)

{

} Call Printline ouchie.Source);
Arg cl signal(sig, SIG_DFL);
main() Source =0 ouchie.Source = 0;
{ InterruptEnd }
Ouch.Source = SIGINT;
While (TRUE) Main: int main()
{ FunctionBegin {

Printline(“Hello World!”);
Sleep(1);
}

FunctionEnd

ouch.func = ouch_func;

ouch.Address = &ouch;

ouch.Source = SIGINT;

signal(ouchie.Source,
ouchie.func);

while (1)
{

sleep(1);
}

return O;

printf("OUCH! | got signal %d\n",

printf("Hello World\n");

Architecture

8.2.0verview

The SEAL compiler was designed to be very mobile and flexible. It is completely platform independent. It
can run on an embedded system without an OS, but it can also run on an x64 machine running Ubuntu.
The front-end of the compiler is completely decoupled from the back-end.

Code input

Tokenized input. If it has reached
the Parser, congrats! The input
has been successfully lexically

analyzed!

Code has been successfully broken down into an
Abstract Syntax Tree. If it has reached the Checker,
congrats! The input is syntactically correct!

Check
If it has reached the Code Generator, S

congrats! The input is semantically
correct as well! The code has now
been put into an array of maps, ready
for generating code from.

At this point, the SEAL compiler will bring in
platform specific code for the various library
calls. The implementation is completely
Code Generator decoupled from the rest of the compiling
process, and can easily be swapped out in

support for another platform. The SEAL

header files work across the board!

SEAL Library Implementation
SEAL Library Headers

4 SEAL

Executable

8.3.Scanning, Parsing, AST

Scanning is performed first, with tokens being formed as the code gets scanned. Next comes the parsing,
which takes the tokens and based on the grammar given, constructs an Abstract Syntax Tree from it. In
this form, the code is now syntactically correct but not necessarily semantically. This is now checked by
the aptly named Checker (resides in compile.ml), which places the code in the translation environment.
Five distinct StringMap data structures comprise the environment in the SEAL compiler- one for global
variables, one for the Threads and anything inside them which includes local variables but no functions,
one for functions which can include local variables of their own as well as arguments, one for Interrupts
and the contents inside which like Threads precludes arguments, return types, or functions, and lastly one
for user defined Types which can include properties and methods but cannot contain other user defined
Types. The contents of these StringMaps in this intermediate form are now good enough to generate C
code directly from.

8.4.SEAL Library

The Library implementation will depend on which platform you are running SEAL code on. For this
particular implementation, | chose the POSIX compliant standard for Threads, and Linux compliant
standard for Signals, which can act as higher level interrupt handlers but not quite at the interrupt level.
On a microcontroller such as the 8051 however, the SEAL Interrupts would appear in their true form.

It is also a marvel to see how clearer the SEAL code looks like compared to its compiled C counterpart.
Screenshots in the appendix will showcase some of this.

. Test Plan

9.1.Test Case Selection
Tests were written by myself, specifically with the goal of testing out the five constructs of SEAL-
Interrupts, Functions, Threads, Types, and Globals. Some files would have examples of all five, and
relentless tries to get it to parse, and then finally to generate C code from.

9.2.Demo Programs
The power of SEAL is that it has multithreading capability built-in, unlike C and C++, and at the same
time it is nowhere near the bloated nature of Threads in Java. In the avionics world, one of the most
common things for a computer to do is read data and report back data in pretty much concurrent time.
Oftentimes there is only one data port available for I/0, and the various threads and processes running
on the embedded computer need to share it cooperatively. SEAL makes this incredibly easy to do.
With two function calls you have a thread up and running, and with two more you have a mutex lock in
place to protect those shared variables.

In this demo program, an autothrottle computer on board a small airplane is both reading in data from
the neighboring airdata computer and calculating throttle lever rates and speed acceleration and
reporting it back to the pilot’s cockpit at the same time. Moreover, it is also reading and reporting
back the electrical condition of the servomotors that it controls. |also threw in an Interrupt handler
for the Ctrl+C keystroke interrupt for added measure. Here is the code:

Lock outbufferLock;

Double bufferil;
Double buffer2;

//this thread receives speed data and calculates throttle rate and current acceleration
Thread Threadl
{
While(1)
{
sleep(1);
outbufferLock.Acquire();
bufferl = 2.4;
buffer2 = 4.5;
print("Current throttle rate is %f degrees/sec, and current acceleration is %f
knots/sec*2\n", bufferl, buffer2);
outbufferLock.Release();

}

/* this thread uses the same output buffer to send out telemetric data, in this case
the voltage and current readings of the autothrottle computer */
Thread Thread2

{
While(1)
{
sleep(1);
outbufferLock.Acquire();
bufferl = 113.45;
buffer2 = 5.1;
printf("Current from servomotor is now %fmA, and voltage is now %fV\n", bufferl, buffer2);
outbufferLock.Release();
}
}
Interrupt Intercepter
{
print("Ctrl+C pressed! Exiting on next request\n");
Intercepter.Source = 0;
}
Int main()
{

Intercepter.Source = 1;
outbufferLock.Lcreate();
Threadl.Tcreate();

Thread2.Tcreate();
Threadl.Go();
Thread2.Go();
while(1);

Contrast it to its C counterpart, which generates this from the above. It is 20% more lines of code and
also much harder to follow.

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#tinclude "SEAL_Thread.h"
#tinclude "SEAL_Lock.h"
#include "SEAL_Util.h"
#include "SEAL_Signal.h"
#include "SEAL_Array.h"

double bufferl;

double buffer2;

Lock outbufferLock;

Thread Threadl;

Thread Thread2;

void *Threadl___ Func (void *arg)
{

while (1)

{sleep(1);
SEALLock_Acquire(&outbufferLock);
bufferl = 2.4;

buffer2 = 4.5;

printf("Current throttle rate is %f degrees/sec, and current acceleration is %f knots/sec”2\n", bufferl,
buffer2);
SEALLock_Release(&outbufferLock);
}

}

void *Thread2___ Func (void *arg)
{

while (1)

{sleep(1);
SEALLock_Acquire(&outbufferLock);
bufferl 113.45;

buffer2 5.1;

printf("Current from servomotor is now %fmA, and voltage is now %fV\n", bufferl, buffer2);
SEALLock_Release(&outbufferLock);
}

}

Interrupt Intercepter;
void Intercepter Handler (int sig)

{

printf("Ctrl+C pressed! Exiting on next request\n");

SEALSignal SetISR(Intercepter Handler, &Intercepter);
SEALSignal SetSignal(©, &Intercepter);

int main()

{

SEALSignal_SetISR(Intercepter Handler, &Intercepter);
SEALSignal SetSignal(l, &Intercepter);

SEALLock_Create(&outbufferLock);
SEALThread_Create(&Threadl, Threadl__ Func);
SEALThread_Create(&Thread2, Thread2__ Func);
SEALThread_Go(&Threadl);
SEALThread_Go(&Thread2);

while(1);
}
Here is a screenshot of the demo program:

@S w4118@ubuntu: ~/Documents/Columbia/CS 4115/SEAL

w4118@ubuntu:~/Documents /Columbia/CS 4115/SEALS ./thread.sh test-autopower.
Thread 1 is now running!
Thread 2 is now running!
throttle rate is 2.400000 degrees/sec, and current acceleration is 4.500000 knots/sec”2
from servomotor is now 113.4500080mA, and voltage is now 5.100000V
throttle rate is 2.400000 degrees/sec, and current acceleration is 4.500000 knots/sec”2
from servomotor is now 113.450000mA, and voltage is now 5.100000V
throttle rate is 2.400000 degrees/sec, and current acceleration is 4.500000 knots/sec”2
from servomotor is now 113.450000mA, and voltage is now 5.100008V
throttle rate is 2.400000 degrees/sec, and current acceleration is 4.500000 knots/sec”2
from servomotor is now 113.4500080mA, and voltage is now 5.100000V
throttle rate is 2.400000 degrees/sec, and current acceleration is 4.500000 knots/sec”2
from servomotor is now 113.450000mA, and voltage is now 5.100000V
throttle rate is 2.400000 degrees/sec, and current acceleration is 4.500000 knots/sec”2
from servomotor is now 113.4500080mA, and voltage is now 5.100008V
throttle rate is 2.400000 degrees/sec, and current acceleration is 4.500000 knots/sec”2
from servomotor is now 113.450000mA, and voltage is now 5.108880V
throttle rate is 2.400000 degrees/sec, and current acceleration is 4.500000 knots/sec”2
from servomotor is now 113.450080mA, and voltage is now 5.100000V
throttle rate is 2.400000 degrees/sec, and current acceleration is 4.500000 knots/sec”2
from servomotor is now 113.4500080mA, and voltage is now 5.100008V
throttle rate is 2.400000 degrees/sec, and current acceleration is 4.500000 knots/sec”2
from servomotor is now 113.450000mA, and voltage is now 5.100000V
AacCtrl+C pressed! Exiting on next request
throttle rate is 2.400000 degrees/sec, and current acceleration is 4.500000 knots/sec”2
from servomotor is now 113.450080mA, and voltage is now 5.100000V
throttle rate is 2.400000 degrees/sec, and current acceleration is 4.500000 knots/sec”2
from servomotor is now 113.450000mA, and voltage is now 5.100000V
throttle rate is 2.400000 degrees/sec, and current acceleration is 4.500000 knots/sec”2
from servomotor is now 113.450000mA, and voltage is now 5.100000V
ACw4118@ubuntu:~/Documents/Columbia/CS 4115/SEALS

10. Lessons Learned
Designing your own programming language, and more importantly, writing the compiler for it, were by no means
trivial tasks. Students every semester say the same thing, but | inevitably underestimated the workload it would
take to accomplish this herculean task. Indeed, it is true that the devil is in the details. There is just no way of
knowing how much is involved until one starts undergoing it. Who knew that type-checking was such a painstaking
and meticulous endeavor?

Another thing | learned was that it is good to know when you’ve reached a practical limit in adding features to your
language. If given years, we could perfect our languages and add all kinds of wonderful features and we still
wouldn’t be happy. Decades later C++ is still evolving. | had to remove some features in the final version of SEAL,
but its main pluses- simple address accessing without the messiness and confusion of pointers, and easy thread and
interrupt handler creation, stayed intact thankfully.

11. Appendix

11.1. AST.ml

type binop = Add | Sub | Mult | Div | Equal | Neq | Less | Leq | Greater | Geq
| orl | Andl | Or | And | Bsr | Bsl | Xor

type unop = Not | Inc | Dec | Inv
type sealConstruct = Interrupt | Thread | Variable | Function | Class
type sealType =
Array of sealType * string | Void | Byte | Int | Double | String | Lock | NewType of string

type expr =
Iliteral of int
| Fliteral of float
| sliteral of string
| variable of sealType
| Id of string (* used in SEAL as well *)
| Binop of expr * binop * expr
| Unop of unop * expr
| Assign of expr * expr
| call of string * expr list (*%*)
| LabelCall of string * string * expr list
| CastType of sealType * expr (* the following are new in SEAL*)
| Address of string * expr
| GetAddress of string
| ArrayIndex of string * string
| Label of expr * expr
| swap of string
| signal of string * expr
| Map of string * string * expr * expr
| Noexpr
(* the following are new expressions for SEAL only
| Int of int
| FLt of float

| Var of string *)

type stmt =

Block of stmt list

Expr of expr

Return of expr

If of expr * stmt * stmt

For of expr * expr * expr * stmt list
While of expr * stmt list

type var_decl = {
vtype : sealType ;
vname : string;

type func_decl = {
rtype : sealType ;
fname : string;
formals : var_decl list;
locals : var_decl list;
body : stmt list;

type thread_decl = {
tname : string;
tlocals : var_decl list;
tbody : stmt list;

type interrupt_decl = {
iname : string;
ilocals : var_decl list;
ibody : stmt list;

}

type type_decl = {
ytype : sealType;
yname : string;

yproperties : var_decl list;
yfunctions : func_decl list;

let first = fun (a,b,c,d,e) -> a
let second = fun (a,b,c,d,e) -> b
let third = fun (a,b,c,d,e) -> c
let fourth = fun (a,b,c,d,e) -> d
let fifth = fun (a,b,c,d,e) -> e

(* type program = string list * func_decl Llist *)
type program = var_decl list * func_decl list * thread_decl list * interrupt_decl list * type_decl list

let rec string_of_expr = function
Sliteral(l) -> 1

Fliteral(l) -> string_of _float 1
Iliteral(l) -»>
Id(s) -> s

Binop(el, o, e2) -> "(" ~

string of_int 1

string _of_expr el ~ " " A
(match o with
Add -> "+" | Sub -> "-" | Mult -> "*" | Div -> "/"
| Equal -> "==" | Neq -> "!="
| Less -> "<" | Leq -> "<=" | Greater -> ">" | Geq -> ">="
| orl -> "||" | Andl -> "&&" | Or -> "|" | And -> "&"
| Bsr -> ">>" | Bsl -» "<<" | Xor -> "A") A" oA

string_of_expr e2 ~ ")
Unop(o, e)-> "(" ~
(match o with

Not -> "I"

| Inc -> "++"

| Dec -> "--"

| Inv -> "~") ~ string_of _expr er")"

Assign(v, e) -> string_of_expr v ~ " =
Call(f, el) -»>
£~ "(" ~ String.concat

call performed."”

let

let

let

let

Noexpr ->

" ~ string_of_expr e

CastType(a, b)->"" (* the following are new in SEAL*)

Address(a, b)-> a ~ ".Address is now = " ~
GetAddress(a)-> "address of " ~ a

ArrayIndex(a, b)-> "Array " ~ a A "[" A
Label(a, b)-> string of expr a ~ " .

Signal(a, b)-> "Interrupt " ~ a ~ " now handling interrupt

Variable(a)-»>
Map(a,b,c,d)-> "Mapping function " ~ b ~ "of type

A string of_expr d ~ " with "~ string_of_expr c ~ "

Swap(a)-> a ~ "has been swapped!"

rec string_of_stmt = function
Block(stmts) -»>

string_of_expr b

b ~ "] indexed."

" ~ string_of_expr b

elements to

A5

"{\n" ~ String.concat "" (List.map string_of_stmt stmts) ~ "}\n"

Expr(expr) -> string_of_expr expr ~ ";\n";

Return(expr) -> "return " ~ string_of_expr expr ~ ";\n";
If(e, s, Block([]1)) -> "if (" ~ string_of_expr e ~ ")\n" ~ string_of_stmt s

If(e, s1, s2) ->
string_of_stmt s1 ”~ "else\n" ”~ string_of_stmt s
For(el, e2, e3, s) ->
"for (" ~ string_of_expr el ~ "

string_of_expr e3
While(e, s) -> "while

A ")y " A String.concat

string_of_vdecl id = " A id.vname ~ ";\n"

string_of_vparam id = " ~ id.vname ~ ",

string_of_fdecl fdecl

2

"if (" ~ string_of_expr e ~ ")\n" ~

; " N string_of_expr e2 ~ "

(" ~ string_of_expr e ~ ") " ~ String.concat

N

, " (List.map string_of_expr el) ~ ") function call performed."
| LabelCall(v, f, el) -> v ~ "." A~ f A~ "(" ~ String.concat ", " (List.map string_of_expr el)

A ") function

~ string_of_expr b

(List.map string_of_stmt s)

(List.map string_of_stmt s)

fdecl.fname ~ "(" ~ String.concat ", " (List.map (fun x -> x.vname) fdecl.formals) ~ ")\n{\n" ~

(List.map string_of_vdecl fdecl.locals) ~

String.concat

String.concat
"}\n"

(List.map string_of_stmt fdecl.body) ~

let string_of_tdecl tdecl =
tdecl.tname #

String.concat (List.map string_of_vdecl tdecl.tlocals) ~

(List.map string_of_stmt tdecl.tbody) ~

String.concat

"“}\n"

let string_of_idecl idecl =
idecl.iname ~

String.concat (List.map string_of_vdecl idecl.ilocals) #

String.concat
"}\n"

(List.map string_of_stmt idecl.ibody) ~

let string_of_ydecl ydecl =
ydecl.yname ~

String.concat (List.map string of vdecl ydecl.yproperties) ~

String.concat

“}\n"

(List.map string of fdecl ydecl.yfunctions) *

let string_of_program (vars, funcs, threads, interrupts, types) =
"THE LIST OF VARS: " ~

String.concat "" (List.map string_of vdecl vars) ~ "\n" A

"\nTHE LIST OF FUNCS: \n" A~

String.concat "" (List.map string_of_fdecl funcs) ~ "\n" ~
"THE LIST OF THREADS: \n" ~

String.concat "" (List.map string_of_tdecl threads) ~ "\n" ~
"THE LIST OF INTERRUPTS: \n" A~

String.concat "" (List.map string_of_idecl interrupts) ~ "\n" ~
"THE LIST OF TYPES: \n" ~

String.concat (List.map string_of_ydecl types)

11.2. Scanner.mll

(* scanner for SEAL compiler *)
{ open Parser }

let digits = ['0'-"'9"']+

let exp = 'e'('+'|'-")? digits

let 1xm = ['a'-'z" 'A'-'Z']['a’-'z' 'A'-'Z' '@'-'9' ' ']*

let double = (digits exp? | digits '.' digits? exp? | digits '.' exp)
let str = """ [~] 0

rule token = parse

[" " "\t" "\r' "\n'] { token lexbuf } (* Whitespace *)

VA { comment lexbuf } (* Comments *)
/7" {comment2 lexbuf}
(! { LPAREN }

"y { RPAREN }

" { LCURLY }

"y { RCURLY }

e { SEMIC }

e { commMA }

g { PLUS }

e { MINUS }

ke { TIMES }

A { DIVIDE }

=t { ASSIGN }

=" {EQ}

=T {NEQ)

<! { LT }

te=" { LEQ }

S { GT }

=" { GEQ}

" {oRL}

"&&" { ANDL }

i& { R }
"&" { AND }
et { BSL }

"> { BSR }

At { XOR }

e { NOT } (* the unary operators *)
R { INC }
AR { DEC }
"t { INn }
"I { IF }

"Else" { ELSE }

"For" { FOR }

"While" { WHILE }
"Return” { RETURN }
"Void" { VOID }

"Int" { INT } (* the following are the fundamental types and are all unique to SEAL *)
"Byte" { BYTE }

"Double" { DOUBLE }

"String" { STRING }

"Thread" { THREAD }

"Source" { SOURCE }

"Map" { MAP }

"Interrupt" { INTERRUPT }
"Enum" { ENUM }

T { LBRACKET } (* for arrays *)

"1 { RBRACKET }

L { LABEL } (* for Llabels *)

"Address" { ADDRESS }

"Swap" { SWAP } (* can't be treated Like normal labels, need to be handled *)

"True" { TRUE }
"False" { FALSE }

"Type" { TYPE } (* for the type declaration *)
"Lock" { LOCK } (* for the Lock type *)

digits as integer { ILITERAL(int_of_string integer) }
double as dbl { FLITERAL(float_of_string dbl) }

1xm as id { ID(id) }
str as slit { SLITERAL(slit) }
eof { EOF }

_ as char { raise (Failure("illegal character " ~ Char.escaped char)) }

and comment = parse
"k/" { token lexbuf }
| _ { comment lexbuf }

and comment2 = parse
‘\n' { token lexbuf}
| _ { comment2 lexbuf }

11.3. Compiler.ml

open Ast
module StringMap = Map.Make(String)

(*type for storing global variables *)
type varSymbolTableEntry = {
data_type : sealType;

(*type for storing functions *)

type funcSymbolTableEntry = {
ftype : sealType;
fparameters : sealType StringMap.t;
flocals : sealType StringMap.t;
fbodylist : stmt list;

(*type for storing SEAL Threads and any local variables defined within the Thread *)
type threadSymbolTableEntry = {

thlocals : sealType StringMap.t;

thbodylist : stmt list;

(*type for storing SEAL Interrupt handlers and any local variables defined within the handler*)
type interruptSymbolTableEntry = {

inlocals : sealType StringMap.t;

inbodylist : stmt list;

(*type for storing SEAL types defined by the user*)
type typeTableEntry = {

thetype : sealType;

properties : sealType StringMap.t;

functions : funcSymbolTableEntry StringMap.t;

(*the entire environment, containing the symbol table, the function table,
the thread table, the interrupt table, and the SEAL types table *)

type environment = {
sealVarSymbolTable : sealType StringMap.t;
sealFuncSymbolTable : funcSymbolTableEntry StringMap.t;
sealThreadSymbolTable : threadSymbolTableEntry StringMap.t;
sealInterruptSymbolTable : interruptSymbolTableEntry StringMap.t;
sealTypeSymbolTable : typeTableEntry StringMap.t; (*7SG HMMMM *)

let checkFunctionBody theBody env construct =

let rec output_function_expr = function
Sliteral(l) -> 1

Fliteral(l) -> string_of_float 1
Iliteral(l) -> string_of_int 1

env.sealVarSymbolTable)) then s
else ™"
context.")) *)

| Binop(el, o, e2) -> "(" ~

string _of _expr el ~ " " 2
(match o with
Add -> "+" | Sub -> "-" | Mult -> "*" | Div -> "/"
| Equal -> "==" | Neq -> "!="
| Less -> "<" | Leq -> "<=" | Greater -> ">" | Geq -> ">="
| orl -> "||" | Andl -> "&&"| Or -> "|" | And -> "&"
| Bsr -> ">>" | Bsl -> "<<" | Xor -> "A") A monoA
string_of_expr e2 ~ ")"
| Unop(o, e)-> "(" ~
(match o with
Not -> "I"
| Inc -> "++"
| Dec -> "--"
| Inv -> "~") 2 output_function_expr er")"
| Assign(v, e) -> output_function_expr v ~ " = " ~ output_function_expr e

| call(f, el) -»
(match f with
"print" -> "printf" ~ "(" ~ String.concat
| _ -> f~ "(" ~ String.concat ", &" (List.map output_function_expr el) ~ ")
)
| LabelCall(v, f, el)->
(match f with
"Lcreate" -> "SEALLock_Create(&" ~ v ~ ")"
| "Acquire" -> "SEALLock Acquire(&" ~ v ~ ")"
| "Release" -> "SEALLock Release(&" ~ v ~ ")"
| "Ldestroy
I
I
I

"-> "SEALLock_Destroy(&" ~ v ~ ")"
"Tcreate" -> "SEALThread_Create(&" ~ v ~ ", " A~ v A~ " Func)"
"Go" -> "SEALThread Go(&" ~ v ~ ")"

"Stop" -> "SEALThread_Stop(&" ~ v ~ ")"

, &" (List.map output_function_expr el) ~ ")

Id(s) -> s (* match construct with Function | Thread | Interrupt *)(*if ((StringMap.mem s

; raise(Failure("Compiler error: \'" ~ s ~ "\' does not exist in the current

| "Join" -> "SEALThread_Join(&" ~ v ~ ")"
| "Tdestroy"-> "SEALThread_Destroy(&" ~ v ~ ")"
I -> v AT A £ A (" A Stping.concat

, " (List.map output_function_expr el) ~ ")

CastType(a, b)->"" (* the following are new in SEAL*)

Address(a, b)-> "SEALUtil_Move((void *)(&"~ a ~ "), (void*)(&" ~ output_function_expr b ~ "), sizeof(" ~
)

GetAddress(a)-> "(&" ~ a A")"

ArrayIndex(a, b)-> a ~ "[" ~ b~ "]"

Label(a, b)-> output_function_expr a ~ "." ~ output_function_expr b

Signal(a, b)-> "SEALSignal SetISR(" ~ a ~ "___ Handler, &"~ a ~");\nSEALSignal_SetSignal("

)
| Noexpr ->
I
I

A output_function_expr b ~ ", &" A~ a A ")
| Swap(a)-> "SEALUtil_Swap((void *)&" ~ a ~ ", sizeof(" ~ a ~ "))"
| Map(a, b, ¢, d)-> (*find out the type of this array *)
"SEALArray_Map((void *)" ~anr", (void (*)(void *))"~b~", "“output_function_expr c~", " A
output_function_expr d ~")"
| variable(a)-> "" in

let rec output_function_stmts = function
Block(stmts) -> "{\n" ~ String.concat "" (List.map output_function_stmts stmts) ~ "}\n";
Expr(expr) -> output_function_expr expr *~ ";\n";
If(e, s, Block([])) -> "if (" ~ output_function_expr e ~ ")\n" ~ output_function_stmts s;
If(e, s1, s2) -> "if (" ~ output_function_expr e A ")\n" 2
output_function_stmts s1 ~ "else\n" ” output_function_stmts s2;
| For(el, e2, e3, s) =-»> "for (" ~ output_function_expr el ~ " ; " ~ output_function_expr e2 ~ " ; " A

I
I
| Return(expr) -> "return " ~ output_function_expr expr ~ ";\n
I
I

string_of_expr e3 ~ ") " ~ String.concat (List.map output_function_stmts s) ;

| Wwhile(e, s) -> "while (" ~ string_ of_expr e ~ ")\n{" ~ String.concat (List.map

output_function_stmts s) ~"}"

in List.map output_function_stmts (List.rev theBody);;

(* prints out the type. Character can either be *, for parameters since SEAL

mn

1s inherently pass-by-reference, or "", for Local and global variables *)

let rec output_type key character = function

| Byte -> "unsigned char " ~ character ~ key
| Int -> "int " A~ character ~ key

| Double -> "double " ~ character ~ key

| String -> "char *" ~ character * key

| NewType(newtype) -> newtype ~ character ~ " " A key

| Lock -> "Lock " ~ key

I

Array(basetype, sz) -> (output_type key character basetype) ~ "[" ~ sz ~ "]

let rec output_typefunc key = function

Void -> "void " A~ " " A key

| Byte -> "unsigned char " ~ key
| Int -> "int " ~ key

| Double -> "double " ~ key

| string -> "char *" 2 key

I

NewType(newtype) -> newtype ~ " " ~ key

let output_newtype = function
| NewType(newtype) -> newtype ~ " "

(* spits out the global variables in C form, post semantically checked AST *)
let output_globals global table env =
let output_each_global key value =

print_endline (output_type key value ~ ";") in

StringMap.iter output_each_global global table

let output_params param_table =
let output_each_param key value =

print_string (output_type key "*" value ~ ", ") in
StringMap.iter output_each_param param_table

(* spits out the thread definitions in C form, post semantically checked AST *)
let output_threads thread_table env=
let output_each_thread key value =
print_endline ("Thread " ~ key ~ ";"); in
StringMap.iter output_each_thread thread_table;
let output_each_threadbody key value =
let threadbody =
"void *" ~ key ~ "__ Func (void *arg)\n{" in
print_endline (threadbody);
output_globals value.thlocals env;
(*eventually output the body here as well*)
List.map print_endline (checkFunctionBody value.thbodylist env Thread); (*the gangsta Line*)
(* List.map print_endline (List.map output function_stmts value.thbodylist); the gangsta Line*)
print_endline ("}\n") in
StringMap.iter output_each_threadbody thread_table;;

(* spits out the interrupt handlers in C form, post semantically checked AST *)
let output_interrupts interrupt_table env =
let output_each_interrupt key value =
print_endline ("Interrupt " ~ key ~ ";"); in
StringMap.iter output_each_interrupt interrupt_table;
let output_each_interruptbody key value =
let interruptbody =
"void " ~ key A "___ Handler (int sig)\n{" in
print_endline (interruptbody);
output_globals value.inlocals env;
(*eventually output the body here as well*)
List.map print_endline (checkFunctionBody value.inbodylist env Interrupt);
(* List.map print_endline (List.map output function_stmts value.inbodylist); the gangsta Line*)
print_endline ("}\n") in
StringMap.iter output_each_interruptbody interrupt_table;;

let output_functions function_table typeFunction env =
let output_each_function key value =
print_string (output_typefunc key value.ftype ~ "(");
output_params value.fparameters;

if typeFunction != Ast.Void then print_string ((output_newtype typeFunction) ~" *itself");
print_endline (")");

print_endline ("{");

output_globals value.flocals env;

(*eventually output the body here as well*)

List.map print_endline (checkFunctionBody value.fbodylist env Function);

(* List.map print_endline (List.map output function stmts value.fbodylist),; the gangsta Line*)
print_endline ("}\n") in

StringMap.iter output_each_function function_table;;

let output_types types_table env =
let output_each_type key value =
print_endline ("typedef struct {");

output_globals value.properties env;

print_endline ("} " ~ key ~ ";\n");

(*eventually output the body here as well*)
output_functions value.functions value.thetype env in
StringMap.iter output_each_type types_table;;

(*utility to print out keys of each string Map*)
let print_vars key value =
print_string(key ~ " \n");
(*array type checking. This is amazing!! *)
let thetype = Ast.Array(Int, "function") and thattype = value in
if thetype = thattype then print_endline "BOOMSHAKALAKA!"
else print_endline "NOPE!";;

let print_funcs key value =
print_string("Function "~ key ~": \n");
print_endline "Parameters:";
StringMap.iter print_vars value.fparameters;
print_endline "Local variables:";
StringMap.iter print_vars value.flocals;;

let print_threads key value =
print_string("Thread "~ key ~": \n");
print_endline "Local variables:";
StringMap.iter print_vars value.thlocals;;

let print_interrupts key value =
print_string("Interrupt "~ key ~": \n");
print_endline "Local variables:";
StringMap.iter print_vars value.inlocals;;

let print_types key value =
print_string("SEAL Type "~ key ~": \n");
print_endline "Properties:";
StringMap.iter print_vars value.properties;
print_endline "Methods:";
StringMap.iter print_funcs value.functions;;

(*TSG
Let check_thread bodies thread table =
Let check_each_tbody key value =

value.thbody = checkFunctionBody value.thbodylist value.thlocals StringMap.empty in
StringMap.map check_each_tbody thread_table; ;

Let check_1interrupt_bodies interrupt_table =
Let check_each_ibody key value =
value.inbody = checkFunctionBody value.inbodylist value.inlocals StringMap.empty in

StringMap.map check_each_ibody interrupt_table;;

Let check_function_bodies function_table =
Let check_each_fbody key value =
value. fbody = checkFunctionBody value.fbodylist value. flocals value.fparameters in

StringMap.map check_each_fbody function_table; ;
*)

(*function that creates symbol tables for variables *)
let createSealvarSymbolTable map (var_elem: var_decl list) =
List.fold _left
(fun map thelist -»>
if StringMap.mem thelist.vname map
then

raise(Failure("Compiler error: a variable named \"" ~ thelist.vname ~ "\" already exists.

choose a different name."))
else
StringMap.add thelist.vname thelist.vtype map)
map var_elem

let createSealFuncSymbol (var_elem: func_decl) =
{
ftype = var_elem.rtype;
fparameters = createSealVarSymbolTable StringMap.empty var_elem.formals;
flocals = createSealVarSymbolTable StringMap.empty var_elem.locals;
fbodylist = var_elem.body; (*this is prior to checking the body *)

(*function that creates symbol table for functions *)
let createSealFuncSymbolTable map (var_elem: func_decl list) =
List.fold_left (fun map thelist ->

if StringMap.mem thelist.fname map then raise(Failure("Compiler error: a function named \'" #

thelist.fname ~ "\' already exists. Please choose a different name.")) else
StringMap.add thelist.fname (createSealFuncSymbol thelist) map) map var_elem

let createSealThreadSymbol (var_elem: thread_decl) =
{
thlocals = createSealVarSymbolTable StringMap.empty var_elem.tlocals;
thbodylist = var_elem.tbody; (*this is prior to checking the body *)

Please

(*function that creates symbol table for functions *)
let createSealThreadSymbolTable map (var_elem: thread_decl list) =
List.fold_left (fun map thelist -»>
if StringMap.mem thelist.tname map then raise(Failure("Compiler error: a Thread named \'" ~ thelist.tname
A "\' already exists. Please choose a different name.")) else
StringMap.add thelist.tname (createSealThreadSymbol thelist) map) map var_elem

let createSealInterruptSymbol (var_elem: interrupt_decl) =
{
inlocals = createSealVarSymbolTable StringMap.empty var_elem.ilocals;
inbodylist = var_elem.ibody; (*this is prior to checking the body *)

(*function that creates symbol table for functions *)
let createSealInterruptSymbolTable map (var_elem: interrupt_decl list) =
List.fold_left (fun map thelist ->
if StringMap.mem thelist.iname map then raise(Failure("Compiler error: an Interrupt handler named \'" ~

thelist.iname ~ "\
StringMap.add thelist.iname (createSeallnterruptSymbol thelist) map) map var_elem

already exists. Please choose a different name.")) else

let createSealTypeSymbol (var_elem: type_decl) =
{
thetype = var_elem.ytype;
properties = createSealVarSymbolTable StringMap.empty var_elem.yproperties;
functions = createSealFuncSymbolTable StringMap.empty var_elem.yfunctions;

(*function that creates symbol table for functions *)
let createSealTypeSymbolTable map (var_elem: type_decl list) =
List.fold_left (fun map thelist ->
if StringMap.mem thelist.yname map then raise(Failure("Compiler error: a Type named \'" ~ thelist.yname ~
"\' already exists. Please choose a different name.")) else
StringMap.add thelist.yname (createSealTypeSymbol thelist) map) map var_elem

let header =

"#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include \"SEAL_Thread.h\"
#include \"SEAL_Lock.h\"
#include \"SEAL_Util.h\"
#include \"SEAL_Signal.h\"
#include \"SEAL_Array.h\"

(* Translate a program in AST form into a bytecode program. Throw an
exception if something is wrong, e.g., a reference to an unknown
variable or function *)

let translate (globals, functions, threads, interrupts, types) =

(*

print_endline "OH SNAP HERE'S THE LIST OF GLOBALS"; *)

let var_table = createSealVarSymbolTable StringMap.empty globals in

(*

(*

StringMap.iter print_vars var_table; *)

print_endline "OH SNAP HERE's THE LIST OF FUNCTIONS"; *)

let fun_table = createSealFuncSymbolTable StringMap.empty functions in

(*

(*

StringMap.iter print_funcs fun_table; *)

print_endline "OH SNAP HERE's THE LIST OF THREADS"; *)

let thread_table = createSealThreadSymbolTable StringMap.empty threads in

(*

(*

StringMap.iter print_threads thread_table; *)

print_endline "OH SNAP HERE's THE LIST OF INTERRUPTS"; *)

let interrupt_table = createSealInterruptSymbolTable StringMap.empty interrupts in

(*

(*

StringMap.iter print_interrupts interrupt_table; *)

print_endline "OH SNAP HERE's THE LIST OF TYPES"; *)

let type_table = createSealTypeSymbolTable StringMap.empty types in

(*

StringMap.iter print_types type_table; *)

let env =

{

(*
ch
ch
ch
*)
pr
ou
ou
ou
ou
ou

sealVarSymbolTable = var_table;
sealFuncSymbolTable = fun_table;
sealThreadSymbolTable = thread_table;
sealInterruptSymbolTable = interrupt_table;
sealTypeSymbolTable = type_table; (*7SG HMMMM *)

in

eck_function_bodies fun_table;
eck_thread_bodies thread_table;
eck_interrupt_bodies interrupt_table;

int_endline header;

tput_globals var_table env;
tput_types type_table env;
tput_threads thread_table env;
tput_interrupts interrupt_table env;
tput_functions fun_table Void env;

11.4. parser.mly

%{ ope

%token
%token
%token
%token
%token

%token

n Ast %}

PLUS TIMES MINUS DIVIDE ASSIGN EQ LT LEQ GT GEQ

SEMIC LPAREN RPAREN LCURLY RCURLY LBRACKET RBRACKET COMMA
RETURN IF ELSE FOR WHILE

<int> ILITERAL

<string> ID

<float> FLITERAL

%token <string> SLITERAL
%token EOF

/* SEAL tokens */

/* unary operators */

%token INC DEC NOT INV NEG ADDRESS SWAP SOURCE MAP
/* binary operators */

%token ANDL ORL

%token XOR AND OR

%token EQU NEQ LTH GTH LTE GTE

%token BSL BSR

%token ADD SUB MULT DIV MOD

/* the fundamental types */

%token INT DOUBLE BYTE STRING

/* other types */

%token ENUM STRING LOCK

/* declarations */

%token THREAD INTERRUPT TYPE LABEL VOID
/* boolean values */

%token TRUE FALSE

%nonassoc NOELSE

%nonassoc ELSE

%right ASSIGN

/* SEAL unary operator precedence: */

%left NOT INV NEG /* lowest precedence */
%left DEC

%left INC /* highest precendence */
%left ADDRESS

%left SWAP

/* SEAL binary operator precedence, left associative:

%left COMMA /* lowest precedence */
%left ANDL ORL

%left XOR AND OR

%left EQU NEQ

%left LTH GTH LTE GTE

%left BSL BSR

%left ADD SUB

%left MULT DIV MOD /* highest precedence */

%left EQ

%left LT GT LEQ GEQ
%left PLUS MINUS
%left TIMES DIVIDE

%start program
%type <Ast.program> program

%%

*/

/* TG 4-22-14 here is where the entire grammar will need to go */
/*
transl_unit:

| interrupt_def

| interrupt_def transl_unit

*/
program:
/* nothing */ { [, [], [, [1, []}
| program vdecl { List.rev ($2 :: first $1), second $1, third $1, fourth $1, fifth $1 }
| program fdecl { first $1, List.rev ($2 :: second $1), third $1, fourth $1, fifth $1 }
| program tdecl { first $1, second $1, List.rev ($2 :: third $1), fourth $1, fifth $1 }
| program idecl { first $1, second $1, third $1, List.rev ($2 :: fourth $1), fifth $1 }
| program ydecl { first $1, second $1, third $1, fourth $1, List.rev ($2 :: fifth $1) }
tdecl:
THREAD ID LCURLY vdecl list stmt_list opt RCURLY
{
{

tname = $2;
tlocals = List.rev $4;
tbody = List.rev $5;

idecl:
INTERRUPT ID LCURLY vdecl list stmt_list_opt RCURLY

{

iname = $2;
ilocals = List.rev $4;
ibody = List.rev $5;

ydecl:
TYPE ID LCURLY vdecl list fdecl opt RCURLY
{

ytype = NewType($2);
yname = $2;
yproperties = $4;

yfunctions = $5;

fdecl:
return_type ID LPAREN formals_opt RPAREN LCURLY vdecl_list stmt_list_opt RCURLY
{

rtype = $1;

fname = $2;

formals = $4;

locals = List.rev $7;
body = List.rev $8;

}

formals_opt:
/* nothing */ { [] }
| formal_list { List.rev $1 }

formal_list:

formal /* nothing */ { [$1] }
| formal list COMMA formal { $3 :: $1 }

vdecl list:
/* nothing */ {1}

| vdecl list vdecl { $2 :: $1 }

vdecl:
return_type ID SEMIC
{
{
vtype = $1;
vname = $2;
¥
}
| return_type ID array_id SEMIC
{
{
vtype = Array($1, $3);
vhame = $2;
}
}
array_id:

LBRACKET ILITERAL RBRACKET { string of int $2 }
| LBRACKET ID RBRACKET { $2 }

array_size:
ILITERAL { Iliteral($1) }
| ID { Id($1) }

/*TSG 5-7-14%/
fdecl list:
| fdecl { [$1] }
| fdecl list fdecl { $2 :: $1 }

fdecl_opt:
/* nothing */ { [] }
| fdecl list { List.rev $1 }

formal:
return_type ID

{
{
vtype = $1;
vname = $2;
}
}
| return_type ID array_id
{
{
vtype = Array($1, $3);
vhame = $2;
}
}
return_type:
VOID {Void}
| BYTE {Byte}
| INT {Int}
| STRING {String}
| DOUBLE {Double}
| Lock {Lock}
| 1D {NewType($1)}

stmt_list_opt:
/* nothing */ { [] }
| stmt_list { List.rev $1 }

stmt_list:
stmt /* nothing */ { [$1] }
| stmt_list stmt { $2 :: $1 }

stmt:

expr SEMIC { Expr($1) }

RETURN expr SEMIC { Return($2) }

LCURLY stmt_list RCURLY { Block(List.rev $2) }

IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5, Block([])) }

IF LPAREN expr RPAREN stmt ELSE stmt { If($3, $5, $7) }

FOR LPAREN expr_opt SEMIC expr_opt SEMIC expr_opt RPAREN LCURLY stmt_list opt RCURLY
{ For($3, $5, $7, $10) }

| WHILE LPAREN expr RPAREN LCURLY stmt_list_opt RCURLY { While($3, $6) }

expr_opt:
/* nothing */ { Noexpr }
| expr {$1}

expr:

ILITERAL { Iliteral($1) }

FLITERAL { Fliteral($1) }
SLITERAL { Sliteral($1) }

1D {1d($1)}

ID array_id {ArrayIndex($1, $2)}

ID LABEL ID array_id { Label(Id($1), (ArrayIndex($3, $4))) }

INC expr Unop(Inc, $2) }
DEC expr Unop(Dec, $2) }
NOT expr Unop(Not, $2) }

INV expr Unop(Inv, $2) }

Binop($1, Add, $3)
Binop($1, Sub, $3)
Binop($1, Mult, $3)
Binop($1, Div, $3)
Binop($1, Equal, $3)
Binop($1, Neq, $3)

{
{
{
{
expr PLUS expr {
{

{

{

{

{

expr LT expr { Binop($1, Less, $3)

{

{

{

{

{

{

{

{

{

{

expr MINUS expr
expr TIMES expr
expr DIVIDE expr
expr EQ expr
expr NEQ expr

B e el el ad

expr LEQ expr Binop($1, Leq, $3) }

Binop($1, Greater, $3) }

Binop($1l, Geq, $3) }

Binop($1, orl, $3) }

Binop($1, Andl, $3) }

Binop($1, or, $3) }

Binop($1, And, $3) }

Binop($1, Bsr, $3) }

Binop($1, Bsl, $3) }

expr XOR expr Binop($1, Xor, $3) }

expr ASSIGN expr { Assign($1, $3) }

ID ADDRESS { GetAddress($1)}

ID LABEL SOURCE ASSIGN expr { Signal($1l, $5) }

ID LABEL ADDRESS ASSIGN expr { Address($1, $5)}

ID LABEL ADDRESS ASSIGN ID LABEL ADDRESS { Address($1, Id($5))}
ID LABEL SWAP LPAREN RPAREN {Swap($1)}

ID LPAREN actuals_opt RPAREN { Call($1, $3) }

ID LABEL ID LPAREN actuals_opt RPAREN { LabelCall($1l, $3, $5) }
ID LABEL MAP LPAREN ID COMMA expr COMMA expr RPAREN { Map($1, $5, $7, $9)}
LPAREN expr RPAREN { $2 }

expr GT expr
expr GEQ expr
expr ORL expr
expr ANDL expr
expr OR expr
expr AND expr
expr BSR expr
expr BSL expr

actuals_opt:
/* nothing */ { [] }
| actuals_list { List.rev $1 }

actuals_list:

expr { [$11 }
| actuals_list COMMA expr { $3 :: $1 }

11.5. seal.ml

type action = Ast | Compile

let =
let action = if Array.length Sys.argv > 1 then
List.assoc Sys.argv.(1) [("-a", Ast);
("-c", Compile)]
else Compile in
let lexbuf = Lexing.from_channel stdin in
let program = Parser.program Scanner.token lexbuf in
match action with
Ast -> let listing = Ast.string_of_program program
in print_string listing
| Compile -> Compile.translate program

11.6. Makefile

OBJS = ast.cmo parser.cmo scanner.cmo compile.cmo seal.cmo

TARFILES = Makefile testall.sh scanner.mll parser.mly \
ast.ml compile.ml seal.ml \

seal : $(0BJS)
ocamlc -o seal $(0BJS)

scanner.ml : scanner.mll
ocamllex scanner.mll

parser.ml parser.mli : parser.mly
ocamlyacc parser.mly

%.cmo : %.ml
ocamlc -c $<

%.cmi : %.mli
ocamlc -c $<

seal.tar.gz : $(TARFILES)
cd .. & tar czf seal/seal.tar.gz $(TARFILES:%=seal/%)

.PHONY : clean

clean :
rm -f seal parser.ml parser.mli scanner.ml testall.log \
*.cmo *.cmi *.out *.diff

Generated by ocamldep *.mlL *.ml1
ast.cmo:

ast.cmx:

tac.cmo: ast.cmo

tac.cmx: ast.cmx

compile.cmo: tac.cmo ast.cmo
compile.cmx: tac.cmx ast.cmx

execute.cmo: tac.cmo ast.cmo
execute.cmx: tac.cmx ast.cmx
parser.cmo: ast.cmo parser.cmi
parser.cmx: ast.cmx parser.cmi
parser.cmi: ast.cmo

11.7. Seal.sh

if [$# -eq 0]

then
echo "please enter the source file to compile”
else
if [-f $1]
then
./seal -c < $1 > $2
rm *.o
gcc -c SEAL_Lock.c
gcc -c SEAL_Thread.c
gcc -c SEAL_Util.c
gcc -c SEAL_Signal.c
gcc -c SEAL_Array.c
gcc -D_REENTRANT $2 SEAL_Signal.o SEAL_Lock.o SEAL_Thread.o SEAL_Util.o SEAL_Array.o -
lpthread
./a.out
else
echo $1 "does not exist. Please try again."
fi
fi

11.8. SEAL_Array.h

#ifndef _ SEAL_ARRAY_H__
#define __ SEAL_ARRAY_H__

typedef enum

{
BYTE, SHORT, USHORT, INT, UINT, LONG, ULONG, FLOAT, DOUBLE, OTHER

} TYPE;

void SEALArray_Map(void *array, void (*function)(void *arg), int length, TYPE type);
int SEALArray_Sort(void *array);

int SEALArray_Reverse(void **array);

void * SEALArray_Min(void **array);

void * SEALArray_Max(void **array);

#tendif

11.9. SEAL_Array.c

#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include "SEAL_Array.h"

#tdefine map(type) for (i=0;i<length;i++){function(type array + i);}
#define C_BYTE (unsigned char *)

t#tdefine C_SHORT (short *)
#tdefine C_USHORT (unsigned short *)
#tdefine C_INT (int *)
#tdefine C_UINT (unsigned int *)
#define C_LONG (long *)
#define C_ULONG (unsigned long *)
#tdefine C_FLOAT (float *)
#tdefine C_DOUBLE (double *)

void SEALArray_Map(void *array, void (*function)(void * arg), int length, TYPE type)
{
int i = 9;
switch (type)
{
case BYTE:
map(C_BYTE)
break;
case SHORT:
map (C_SHORT)
break;
case USHORT:
map (C_USHORT)
break;
case INT:
map (C_INT)
break;
case UINT:
map (C_UINT)
break;
case LONG:
map (C_LONG)
break;
case ULONG:
map (C_ULONG)
break;
case FLOAT:
map (C_FLOAT)
break;
case DOUBLE:

map (C_DOUBLE)
break;
default:

map ()
break;

int SEALArray_Sort(void *array)
{

int SEALArray_Reverse(void **array)

{

11.10. SEAL_Lock.h

#ifndef _ SEAL_LOCK_H__
#define _ SEAL_LOCK_H__

typedef struct
{

void *1lock;
} Lock;
void SEALLock_Create(Lock *t);
int SEALLock_Acquire(Lock *t);
int SEALLock_Release(Lock *t);

void SEALLock_Destroy(Lock *t);

t#tendif

11.11. SEAL_Lock.c

#include <stdlib.h>
#include <stdio.h>
#tinclude <pthread.h>
#include "SEAL_Lock.h"

static unsigned char _threadID = 0;

void SEALLock_Create(Lock *1)

1->lock = malloc(sizeof(pthread_mutex_t));
pthread_mutex_init(1l->lock, NULL);

int SEALLock_Acquire(Lock *1)

{
pthread_mutex_lock(1l->lock);

int SEALLock_Release(Lock *1)

{
pthread_mutex_unlock(l->lock);

void SEALLock_Destroy(Lock *1)

{
pthread_mutex_destroy(1l->lock);
free(l->lock);
1->lock = NULL;

11.12. SEAL_Signal.h

#ifndef _ SEAL_SIGNAL_H__
#define __ SEAL_SIGNAL_H__

#define SEALINT 1

typedef struct

{

void *Address;

int Source;

void (*func)(int);
} Interrupt;

void SEALSignal_SetISR(void (*isr)(int), Interrupt *interrupt);
void SEALSignal_SetSignal(int sig, Interrupt *interrupt);
#tendif

11.13. SEAL_Signal.c

#include <signal.h>
#include <stdio.h>
#include <unistd.h>
#include "SEAL_Signal.h"

void SEALSignal_SetSignal(int sig, Interrupt *interrupt)
{

interrupt->Source = sig;

switch (interrupt->Source)

{
case -1:
//ignore all
signal (SIGINT, SIG_IGN);
break;
case 0:
//restore default to all
signal (SIGINT, SIG_DFL);
break;
case SEALINT:
signal (SIGINT, interrupt->func);
break;
}

//for use with code generation.

//This may go away and be replaced by a direct assignment, depending if
//additional checks may be done here

void SEALSignal_SetISR(void (*isr)(int), Interrupt *interrupt)

{

interrupt->func = isr;

11.14. SEAL_Thread.h

#ifndef _ SEAL_THREAD_H__
#define _ SEAL_THREAD_H__

typedef struct
{
void *pthread;
void *(*func)(void *);
} Thread;
void SEALThread_Create(Thread *t, void * (*function) (void * arg));
int SEALThread_Go(Thread *t);
int SEALThread_Join(Thread *t);

int SEALThread_Stop(Thread *t);

void SEALThread_Destroy(Thread *t);

#tendif

11.15. SEAL_Thread.c

#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include "SEAL_Thread.h"

static unsigned char _threadID = 0;

void SEALThread_Create(Thread *t, void * (*function) (void * arg))
{

t->pthread = malloc(sizeof(pthread_t));

t->func = function;

int SEALThread_Go(Thread *t)
{

int success = -1;

if (pthread_create((pthread_t *)t->pthread, NULL, t->func, & threadID) == 0)
{

_threadID++;

printf("Thread %d is now running!\n", _threadID);

success = 0;

}

return success;

int SEALThread_Join(Thread *t)
{
int success = -1;
pthread_t thread = *(pthread_t *)t->pthread;
if (pthread_join(thread, NULL) == 0)
{

success = 0;

}

return success;

int SEALThread_Stop(Thread *t)
{
int success = -1;
pthread_t thread = *(pthread_t *)t->pthread;
if (pthread_cancel(thread) == 0)
{

success = 0;

}

return success;

void SEALThread_Destroy(Thread *t)
{

free(t->pthread);

t->pthread = NULL;

t->func = NULL;

11.16. SEAL_Util.h

#ifndef _ SEAL_UTIL_H__
#define _ SEAL_UTIL_H__

void * SEALUtil_Swap(void *object, int length);
void * SEALUtil_Move(void * object, void *location, int length);

#endif

11.17. SEAL_Util.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "SEAL_Util.h"

void * SEALUtil_Swap(void *object, int length)
{
int i;
char temp;
char *array = (char *)object;
int arraymax = length - 1;
for (i = 0; i < (length / 2); i++)
{
temp = array[i];
array[i] = array[arraymax - i];
array[arraymax - i] = temp;

return object;

void * SEALUtil_Move(void * object, void *location, int length)

return memmove(location, object, (size_t)length);

¥
11.18. Test-swap.sl

Int main()

{
Int a;
Int b;
a = 305419896; // 0x12345678 in decimal
print("a = %X\n", a);
a.Swap();
print("a = %X\n", a);
a.Swap();
print("a = %X\n", a);
Return 0;

}

Displays the following cool output:

O E wa4118@ubuntu: ~/Documents/Columbia/CS 4115/SEAL

w4118@ubuntu:~/DocumentsfColumbia/CS 4115/SEALS ./seal -c < tests/test-swap.sl > test-swap.c
w4118@ubuntu:~/Documents/Columbia/CS 4115/SEALS ./thread.sh test-swap.c

12345678

78563412

12345678
w4118@ubuntu:~/Documents/Columbia/CS 4115/SEALS

11.20. Test-semanticerror.sl

Thread Holla
{

¥
Int bl;

int main()
{
Int a;
String a;
a = 23;
If (1) print(1);
//a = 42;
print(39 + 3 -4 +5 /3 *8*4 -2+ 1),
Return a;

¥
// Chinatown hustler

Compiler correctly finds the error:

@™ wa4118@ubuntu: ~/Documents/Columbia/CS 4115/SEAL

test-autopower.c test-threadmultidimensionalarrays.sl
test-autopower.sl test-thread.sl
test-func3.sl

w4118@ubuntu:~/Documents/Columbia/C5S 4115/SEALS ./seal -c < tests/test-semanticerror.sl = test-swap.c
Fatal error: exception Failure("Compiler error: a variable named "a" already exists. Please choose a diffe
rent name.")

w4118@ubuntu:~/Documents/Columbia/CS 4115/SEALS I

11.21. Test-thread.sl

Int one[5];

Int two;

Double three;
String four[28];

Thread Threadl
{

Double x;
X = 12;

If (1) print(1);
output = 23;
If (1) print(1);

Thread Thread3
{Int r2d2[40];}

Type State
{

Int State_holla;

Double State_doh;

String State_what;
String hollaFuncl()

{
State_holla = 32;
State_doh = 3.134;
State_what = "hello there";
}
String hollaFunc2()
{
}
}
Interrupt wakeUp
{
Int x;
++X;
X~ x| ox;
print("Time to wake up!");
}
String function1()
{
}
Int function2()
{
String f;
f = 123;
}

Int function3(String aaa[3], Int b, Int c)

{
Int d;

Double e;

String f;

e = 3.145;
hhh =1223;
//a[1];

}

Holla function4()

{

}

Holla function5()

{

¥

String main()

{
Int w;
State welcome;
welcome.hollaFuncl();
If (1) print(1);
print("%a\n", 39 + 3 -4 +5 /3 *8 *4 -2+ 1);
Threadl.Create();
//Threadl.Go();
w = 12;
w.Swap();
w = w.Swap();
w.Address = a;
Return aj;

¥

// Chinatown hustler

Thread Thread2

{
Int output; //Int output;
If (1) print(1);
output = 12;

12. References

1. “Interrupt Functions” Cx51’s user’s guide. Accessed March 2014
http://www.keil.com/support/man/docs/c51/c51 le interruptfuncs.htm

2. Edwards, Stephen A. "Scanning and Parsing" Programming Languages and Translators. Mudd 535,
Columbia University. Fall 2010. Lecture.

3. Kernighan, Brian W., and Dennis M. Ritchie. "Appendix A." The C Programming Language. Englewood Cliffs,
NJ: Prentice Hall, 1988. 191-239. Print.

4. Beginning Linux Programming 4™ Edition

http://www.keil.com/support/man/docs/c51/c51_le_interruptfuncs.htm

	1. Introduction
	2. Lexical Conventions
	2.1. Comments
	2.2. Tokens
	2.2.1. Identifiers
	2.2.2. Keywords
	2.2.3. Constants
	2.2.3.1. Integer Constants
	2.2.3.2. Floating Point Constants
	2.2.3.3. Character Constants

	2.2.4. String Literals
	2.2.5. Operators
	2.2.6. Separators

	3. Expressions
	3.1. Function Calls

	4. Objects
	4.1. The Object Type
	4.1.1. Labels
	4.2. The Fundamental Types
	4.3. The String Type
	4.4. The Array Type
	4.5. Thread Type
	4.6. Lock Type
	4.7. Types

	5. Statements
	5.1. Expression Statements
	5.2. Compound Statements
	5.3. If Statements
	5.4. Iteration Statements

	6. Declarations
	6.1. Array Declaration
	6.2. Function Declaration
	6.3. Thread Declaration
	6.4. Interrupt Declaration
	6.5. Type Declaration

	7. Program
	7.1. Definitions
	7.2. Main
	7.3. Inclusion of Other Files

	8. Project Plan
	8.1. Timeline
	Architecture
	8.2. Overview
	8.3. Scanning, Parsing, AST
	8.4. SEAL Library

	9. Test Plan
	9.1. Test Case Selection
	9.2. Demo Programs

	10. Lessons Learned
	11. Appendix
	11.1. AST.ml
	11.2. Scanner.mll
	11.3. Compiler.ml
	11.4. parser.mly
	11.5. seal.ml
	11.6. Makefile
	11.7. Seal.sh
	11.8. SEAL_Array.h
	11.9. SEAL_Array.c
	11.10. SEAL_Lock.h
	11.11. SEAL_Lock.c
	11.12. SEAL_Signal.h
	11.13. SEAL_Signal.c
	11.14. SEAL_Thread.h
	11.15. SEAL_Thread.c
	11.16. SEAL_Util.h
	11.17. SEAL_Util.c
	11.18. Test-swap.sl
	11.19.
	11.20. Test-semanticerror.sl
	11.21. Test-thread.sl

	12. References

