
SEAL Language Reference

Manual

COMS W4115 Spring 2014

Ten-Seng Guh tg2458

Contents
1. Introduction .. 3

2. Lexical Conventions ... 3

2.1. Comments ... 3

2.2. Tokens ... 3

2.2.1. Identifiers .. 4

2.2.2. Keywords ... 4

2.2.3. Constants .. 4

2.2.3.1. Integer Constants .. 4

2.2.3.2. Floating Point Constants ... 5

2.2.3.3. Character Constants .. 5

2.2.4. String Literals .. 5

2.2.5. Operators .. 5

2.2.6. Separators ... 6

3. Expressions .. 7

3.1. Function Calls .. 9

4. Objects .. 9

4.1. The Object Type .. 9

4.1.1. Labels .. 10

4.2. The Fundamental Types .. 10

4.3. The String Type ... 11

4.4. The Array Type .. 11

4.5. The Enumeration Type .. 11

4.6. Thread Type .. 11

4.7. Lock Type .. 12

4.8. Types ... 12

5. Statements .. 12

5.1. Expression Statements .. 13

5.2. Compound Statements ... 13

5.3. If Statements ... 13

5.4. Iteration Statements ... 13

6. Declarations .. 13

6.1. Array Declaration .. 14

6.2. Enum Declaration .. 14

6.3. Function Declaration ... 14

6.4. Thread Declaration ... 14

6.5. Interrupt Declaration .. 15

6.6. Type Declaration ... 15

7. Program ... 15

7.1. Definitions ... 15

7.2. Setup ... 16

7.3. Main .. 16

7.4. Inclusion of Other Files ... 16

8. References .. 17

1. Introduction

This is a language reference manual for Simple Embedded Avionics Language (SEAL). SEAL is

a programming language that simplifies the tasks most commonly found in embedded

systems development, particularly avionics software development. It borrows a lot of its

syntax from C, but also borrows characteristics from the object-oriented nature of

languages such as Ada, Java and C#. Still other aspects of the language are unique only to

itself. The goal of SEAL is to describe low-level tasks in a high-level way. The format of this

manual is largely based on Appendix A of the C Programming Language, 2nd Edition by

Kernighan and Ritchie.

2. Lexical Conventions
A SEAL program shall consist of three parts: the definitions, the set-up, and the Main. These

parts can all be in one file, or they can span multiple files. Definitions refer to the defining

of types and their functions, as well as stand-alone functions. Set-up refers to the assigning

and mapping of registers, the declaration and initialization of hardware resources such as

timers, I/O ports, interrupts, and the declaring and latching interrupt service routines to

their respective interrupts. Main refers to the block of code that begins execution in the

main loop of the program, once everything else is set up. When the program counter is

initialized, it shall point to the entry point of Main.

2.1. Comments

SEAL shall use either “/*” and “*/” or “//” and newline to enclose a comment. Comments

shall be stripped out by the scanner. Some examples below:

/* this is a valid comment */

// this is also a valid comment

/* this is not a valid comment //

/* this is not a valid comment either */ */

2.2. Tokens

A SEAL program shall be comprised of tokens. There are six classes of tokens: identifiers,

keywords, constants, string literals, operators, and separators. White space shall be used

only to tokenize the program. A token shall constitute the longest string of characters. For

example, if the scanner scans “Int”, it will not stop and will attempt to find “Interrupt”. If

the string does not follow with “errupt”, only then will it tokenize the string as an “Int”.

2.2.1. Identifiers

An identifier (id) shall be composed of a letter, optionally followed by letters and/or

digits. An underscore counts as a letter. Identifiers are case sensitive. Besides for

keywords, identifiers shall also be used for naming variables, types, and functions.

Some examples below:

a //valid token

A //valid token (different than “a”)

_ //valid token

_123 //valid token

123 //invalid token

@ //invalid token

2.2.2. Keywords

The following identifiers shall be keywords reserved for use by SEAL and may not be

used otherwise:

Bool For Long Thread

Bit If Main True

Byte Include Object Type

Double Int Return Uint

Else Interrupt Short Ulong

Float Lock String Ushort

False While

2.2.3. Constants

A constant shall be a representation of a value. There shall be three types of constants:

integer constant, floating point constant, and character constant.

2.2.3.1. Integer Constants

An integer constant may be in decimal form, binary, octal, or hex form. If in binary

form, it shall be suffixed with “b” and contain only 0s or 1s. If in octal form, it shall

be suffixed with “o” and can only contain 0s through 7s. If in hex form, it shall be

prefixed with “0x” or suffixed with “H”/”h” and shall use the traditional hex

characters. An integer constant may be positive or negative. If negative and in

decimal form, it shall be prefixed with a “-”-sign and cannot be assigned to Uint or

Ulong. Integer constants shall be assignable to Int and Long. Below are examples:

00111b // valid integer constant

371o //valid integer constant

01234 //valid integer constant

0xABCD //valid integer constant

AcDdh //valid integer constant

0xabcdH //invalid integer constant

Ulong i = -1234; //invalid assignment

2.2.3.2. Floating Point Constants

A floating point constant shall consist of an integer part, a decimal point, a fraction,

followed by an optional “E”/”e” with an exponent part. This is slightly stricter than C

floating point constant rules. If negative, it shall be prefixed with a ‘-’-sign. Below

are examples:

1.0 //valid

1.34e4 //valid

1. //invalid

1e4 //invalid

2.2.3.3. Character Constants

A character constant shall consist of a ‘\’ followed by any of the following characters:

Character Meaning

n Newline

t Tab

\ Backslash

‘ Single Quote

“ Double Quote

0 Null byte

2.2.4. String Literals

A string literal shall consist of a sequence of characters enclosed by double quotes. A

string literal containing 0 characters shall be equivalent to the Null byte.

2.2.5. Operators

An operator shall allow an operation to be performed between one or two expressions.

The following are two tables of operators, the first one for unary.

Operator Purpose Precedence

++ Increment 1st

-- Decrement 2nd

! Negation 3rd

~ One’s complement 3rd

- Negative 3rd

Operator Purpose Associativity Precedence

* Multiplication Left 1st

/ Division Left 1st

% Modulus Left 1st

+ Addition Left 2nd

- Subtraction Left 2nd

<< Bit Shift Left Left 3rd

>> Bit Shift Right Left 3rd

< Less Than Left 4th

> Greater Than Left 4th

<= Less Than or Equal to Left 4th

>= Greater Than or Equal
to

Left 4th

== Equal to Left 5th

!= Not equal to Left 5th

^ Bitwise XOR Left 6th

& Bitwise AND Left 6th

| Bitwise OR Left 6th

&& Logical AND Left 7th

|| Logical OR Left 7th

= *= /=
%= += -=
<<= >>=
&= ^= |=

Assignment, or
assignment after
operating on the right
operand using the
operator preceding =

Right 8th

, Comma separator Left 9th

2.2.6. Separators

A separator shall be one of the following:

Separator Purpose

; Ending statement

{ … } Type, Function, thread, or interrupt service
routine definition

, Separating arguments

. Label access of an object

3. Expressions
An expression (exp) shall be composed of identifiers, constants, or string literals, and can be

enclosed in parentheses. An integer-expression (int) shall denote an expression composed

of an integer constant. A floating-point-expression (flt) shall denote an expression

composed of a floating-point constant. A variable-name-expression (var) shall denote an

expression composed of identifiers and optionally the “.” separator. A string-expression (str)

shall denote an expression composed of string literals. A numerical-expression (num) shall

denote an expression that is either an integer-expression or floating-point expression. A

non-string-expression (nse) shall denote an expression that is not a string-expression. A

variable-integer-expression (vfe) shall denote an expression that is either a variable-name-

expression or an integer-expression. These basic expressions can then act as operands for

use with operators to become more complex expressions (expr).

Throughout the rest of the document, there will be symbols used to describe the grammar.

The ‘|’ means “or”, ‘?’ means “zero or one”, and ‘*’ means “zero or more”. The following

are the basic rules for the expressions mentioned above.

var: id | id‘.’var

num: int | flt

exp: var | num | str

nse: var | num

vfe: var | int

Below are the various expressions for each grammar. Each row denotes a level of

precedence.

expr: num | exp |nse | vfe

expr: inc

expr: dec

expr: not | inv | neg

expr: mult | div | mod

expr: add | sub

expr: bsl | bsr

expr: lth | gth | lte | gte

expr: equ | neq

expr: xor | and | or

expr: andl | orl

expr: asn

expr: com

expr: ‘(‘ expr ‘)’

The table below contains the expression rules for the operators. They are all valid

expressions:

Operator Expression rule

++ inc: vfe“++”

-- dec: vfe“--”

! not: ‘!’var

~ inv: ‘~’vfe

- (unary) neg: ‘-’num

* mult: nse
mult: mult ‘*’ mult

/ div: nse
div: div ‘/’ div

% mod: int
mod: mod ‘%’ mod

+ add: exp
add: add ‘+’ add

- (binary) sub: nse
sub: sub ‘–’ sub

<< bsl: vfe
bsl: bsl “<<” bsl

>> bsr: vfe
bsr: bsr “>>” bsr

< lth: nse
lth: lth “<” lth

> gth: nse
gth: gth “>” gth

<= lte: nse
lte: lte “<=” lte

>= gte: nse
gte “>=” gte

== equ: vfe
equ: equ “==” equ

!= neq: vfe
neq: neq “!=” neq

^ xor: vfe
xor: xor ‘^’ xor

& and: vfe
and: and ‘&’ and

| or: vfe

or: or ‘|’ or

&& andl: vfe
andl: andl “&&” andl

|| orl: vfe
orl: orl “||” orl

= *= /=
%= += -=
<<= >>=
&= ^= |=

asn: var ‘=’ exp | var “*=” exp | var “/=” exp
asn: var “%=” exp | var “+=” exp | var “-=” exp
asn: var “<<=” exp | var “>>=” exp
asn: var “&=” exp | var “^=” exp | var “|=” exp

, com: exp
com: com ‘,’ com

3.1. Function Calls

A function call (fun) is a postfix expression. It shall consist of a variable-expression,

followed by a pair of parentheses containing an optional list of expressions as

arguments. The following is the rule for function calls.

fun: var“()”

fun: var‘(’ expr (‘,’ expr)*‘)’

4. Objects
In SEAL, an object is a piece of memory that the programmer can use. It is a way to make a

piece of data useful and accessible to the programmer. It shall be identified with a variable-

name-expression. SEAL is object-oriented, so all variables are objects. In SEAL, Type can be

used interchangeably with the object-oriented concept of a class. The Type keyword shall

define a class describing the object.

4.1. The Object Type

The most fundamental type, in which all other types are derived from, shall be the Object

type. All Objects shall have an address or range of addresses associated with it.

Objects shall be accessed by its address. Thus:

AddTwo(Int a){ a += 2;}

…

Int a = 3;

AddTwo(a);

Print(a); //this will print 5

4.1.1. Labels

An Object shall have Labels. Labels allow viewing the object through various other

aspects. Some Labels are global and static functions compiled in. Others act as

monikers for different aspects of the object. Yet others are objects themselves. To

access an object’s label, the label shall be prefixed with the Object name followed by

a ‘.’. All objects shall have the following Labels:

Label Name Return Type Purpose

Address Int Gets or sets the address of the object.

Swap() Object Gets the swapped contents of the object. Good for
sending/receiving contents from a system with an
endianness that is opposite of yours.

BigEndian() Object Gets the big endian representation of the object. If
you are already on a Big Endian system, this
representation will be identical to object.

LittleEndian() Object Gets the little endian representation of the object.
If you are already on a Little Endian system, this
representation will be identical to object.

Lock Object Gets or sets the lock that the object is using. Can be
null.

String() String Gets the string representation of object. If object is
already a String, this representation will be identical
to object.

Length Int Gets the length of the object.

4.2. The Fundamental Types

There shall be eight fundamental Types. They are meant to store numerical-expressions

and so represent floating point numbers as well as integers. The following are the eight

fundamental types.

Type Description
Bit Represents one bit of data. This type has an additional label

Offset to track where in the Address the Bit variable is
located.

Byte Represents one byte of data, 8-bits unsigned.
Bool Represents a Boolean, can be either True or False.
UShort/Short Represents an unsigned/signed 16-bit integer.
Uint/Int Represents an unsigned/signed 32-bit integer.
Ulong/Long Represents an unsigned/signed 64-bit integer.

Float Represents a 32-bit floating point number, unsigned by default.
Double Represents a 64-bit floating point number, unsigned by default.

4.3. The String Type

The String type shall be composed of string-expressions. The addition “+” operator shall

be available for String, allowing concatenation.

4.4. The Array Type

Arrays shall be a 1-dimensional representation of a collection of objects of the same Type.

Arrays shall be fixed size, indexable, and mutable. Arrays shall allow access to an item via

an index, represented by an unsigned integer-expression enclosed by ‘[‘ and ’]’. In addition

to the standard Object Labels, they shall have the following powerful Labels:

Label Return Type Description

Apply(Function()) Object Iterates through the array to apply the given
function to each element in the array.

Sort() Object Sorts array.

Reverse() Object Sorts array in reverse order.

4.5. The Enumeration Type

Enumerations shall be a list of names for bytes. Instead of accessing an item via an index,

enumerations shall allow access to an item via its name. The following is an example:

Enum Seasons = {Spring, Summer, Fall, Winter};

Print(Seasons.Length()); //will print “4”

Seasons a = Fall;

4.6. Thread Type

The Thread Type shall allow code to run autonomously separate from the Main loop.

Anything enclosed in a thread block shall execute in its own stack and address space.

Shared variables among threads shall be protected via the lock label. A Thread shall not

return anything. A Thread shall not receive any arguments. Threads shall have the

following Labels:

Label Return Type Description

Priority Byte The priority in which this thread should run.

Go() None Kicks off thread execution.

Join() None Waits for other thread(s) to finish before kicking off
execution.

Pause() None Halts thread execution. Releases any locks held by the
thread.

Unpause() None Resumes thread execution. Attempts to reacquire any
locks that were held by the thread.

Stop() None Terminates thread execution.

4.7. Lock Type

The Lock allows various Threads to share variables safely. Locks effectively allow code to

become re-entrant. The programmer does not have to worry about explicitly writing code

for initializing, acquiring or releasing locks; this shall all be handled by the Threads that

access the shared variables. The Lock shall have the following Labels:

Label Return Type Description

Acquire() Bool Calling thread attempts to acquire the lock.

Release() None Calling thread releases the lock.

4.8. Types

SEAL shall allow new Types to be created out of current Types. All new Types shall inherit

from the Object type, thereby endowing them with the same Labels. Types shall contain

variable and/or function definitions. SEAL shall not allow new label creation. SEAL shall not

allow multiple inheritance.

5. Statements
Statements (st) are sequences of code that is executed for its effect. There are four types of

statements: expression statements (exst), compound statements (cpst), if statements (ifst),

and iteration statements (itst).

st: exst | cpst | ifst | itst

5.1. Expression Statements

An expression statement shall be merely an expression followed by a ‘;’. An expression may

be empty. All side effects of the expression shall be completed before the next statement is

executed.

exst: expr? ‘;’

5.2. Compound Statements

A compound statement shall be multiple statements enclosed by ‘{’ and ‘}’. Within it can be

declarations and statements. A compound statement shall optionally end with a Return

keyword followed by an expression, if part of a Function declaration (see 6.3). Below, the

“*” means “zero or more”.

cpst: ‘{’ decl* st* (“Return” expr’;’)? ‘}’

5.3. If Statements

An if statement shall allow choice of flow of control. The expression enclosed in the

parentheses is evaluated, and if it equals one, statement shall be executed. If it equals zero

and there’s an “Else” followed by another statement, that statement shall be executed.

ifst: “If (” expr ‘)’ st (“Else” expr)?

5.4. Iteration Statements

Iteration statements shall specify looping. In the While (while) statement, an expression

shall be repeatedly evaluated and statement repeatedly executed as long as the evaluated

expression’s value remains equal to one. In the For (for) statement, there shall be up to

three expressions. The first expression shall be evaluated once. The second expression

shall be repeatedly evaluated and statement repeatedly executed as long as the evaluated

expression’s value remains equal to one. Lastly, after each execution of statement, the

third expression will be evaluated.

itst: while | for

while: “While(” expr ‘)’ st

for: “For(”exst exst exst “)” st

6. Declarations
Declaration (decl) is the method of creating a unique identifier for an object, function,

thread, or interrupt service routine. For objects, a declaration shall start with the Type

(type) name followed by the variable-name-expression and ‘;’, or an assignment before the

‘;’. The declared object shall be public and global if not enclosed in ‘{’ and ‘}’, otherwise it

shall be temporary and private.

decl: type var‘;’

decl: type asn‘;’

decl: ‘{‘ decl* ‘}’

6.1. Array Declaration

An array declaration is similar to an object declaration except the initial size must be

included, enclosed within an ‘[’ and ‘]’. An array declaration shall not allow an unknown or

empty size. The array declaration shall allow an assignment of any subset of the elements.

decl: type var‘[’ int “];”

decl: type var‘[’ int “]={” exp (‘,’ exp)* “};”

6.2. Enum Declaration

An enum declaration (edec) shall allow only variable-name-expressions assigned to its

elements. An enum declaration shall start with the keyword “Enum”.

edcl: “Enum” var “={” var (‘,’var)* “};”

6.3. Function Declaration

A function shall contain a collection of statements to be executed upon being called,

enclosed by ‘{’ and ‘}’. A function shall receive one or more arguments. A function shall

return something or nothing. A function shall return a type or no type at all. The return

type shall be inferred from the return statement or the lack thereof. Recursive functions

shall be allowed.

A function declaration (fdcl) is similar in appearance to a function call, except it shall contain

a compound statement following the parentheses.

fdcl: var(“()” |‘(’ expr (‘,’ expr)*‘)’) cpst ‘;’

6.4. Thread Declaration

A Thread declaration (tdcl) shall be the equivalent to a Function declaration except with the

“Thread” keyword in front, and no option for passing arguments in.

tdcl: “Thread” var “()” cpst ‘;’

6.5. Interrupt Declaration

The keyword Interrupt shall denote a function specifically used for handling interrupts.

An Interrupt shall not return anything. An Interrupt shall not receive any

arguments. An Interrupt cannot be called by the user directly. Although not a Type, an

Interrupt has one label associated with it. An Interrupt shall use the Address label

to hook it into the interrupt vector table.

An Interrupt declaration (idcl) shall be the equivalent to a Thread declaration except with

the “Interrupt” keyword instead of “Thread”.

idcl: “Interrupt” var “()” cpst ‘;’

6.6. Type Declaration

A Type declaration shall include declarations for any enum, arrays, objects, and functions as

part of the Type. A Type declaration shall not allow Thread or Interrupt declarations within

it. A Type declaration shall start with the Type keyword, followed by a variable-name-

expression for its name, followed by an option “:” and Type name for the Type that it

inherits from, followed by expressions enclosed in ‘{’ and ‘}’, followed by a ‘;’.

tdec: “Type” var (‘:’var)? ‘{‘ edecl* decl* fdec* ‘}’

7. Program
A program shall be comprised of up to three sections: the Definitions section, the Setup

section, and the Main section.

7.1. Definitions

Here is where functions, threads, interrupt service routines, and registers shall be declared.

Only declarations are allowed in Definitions. Below is an example of a valid Definitions

section:

Lock lock;

SerialPort sp;

Bool makeSound;

Interrupt SoundOff

{

 counter++;

 if (counter == 4000)

 {

 counter = 0;

 makeSound = TRUE;

 }

}

Float vm1, vm2;

7.2. Setup

Here is where registers, interrupt service routines, and hardware resources shall be

initialized. Only assignment expressions and function calls are allowed in Setup. Below is

an example of a valid Setup section:

sp.Lock = lock; //this serial port shall be shared between

two threads, so lock it

sp.Configure("COM1", 115200, 1, 0, 0);

makeSound = FALSE

makeSound.Address = 0x4A; //speaker byte

SoundOff.Address = 0x3F; //hooking ISR to timer interrupt

at 0x3F

vm1.Address = 0x400;

vm2.Address = 0x410;

7.3. Main

The Main shall be where the entry point of the program resides. The Main function shall

not return anything. The Main function shall not receive any arguments.

7.4. Inclusion of Other Files

Inclusion of other source files containing programs shall be allowed via the Include

keyword. Include can only appear at the top of the file. Included files cannot contain a

Main section.

8. References
1. “Interrupt Functions” Cx51’s user’s guide. Accessed March 2014

http://www.keil.com/support/man/docs/c51/c51_le_interruptfuncs.htm

2. Edwards, Stephen A. "Scanning and Parsing" Programming Languages and Translators.

Mudd 535, Columbia University. Fall 2010. Lecture.

3. Kernighan, Brian W., and Dennis M. Ritchie. "Appendix A." The C Programming Language.

Englewood Cliffs, NJ: Prentice Hall, 1988. 191-239. Print.

http://www.keil.com/support/man/docs/c51/c51_le_interruptfuncs.htm

	1. Introduction
	2. Lexical Conventions
	2.1. Comments
	2.2. Tokens
	2.2.1. Identifiers
	2.2.2. Keywords
	2.2.3. Constants
	2.2.3.1. Integer Constants
	2.2.3.2. Floating Point Constants
	2.2.3.3. Character Constants

	2.2.4. String Literals
	2.2.5. Operators
	2.2.6. Separators

	3. Expressions
	3.1. Function Calls

	4. Objects
	4.1. The Object Type
	4.1.1. Labels
	4.2. The Fundamental Types
	4.3. The String Type
	4.4. The Array Type
	4.5. The Enumeration Type
	4.6. Thread Type
	4.7. Lock Type
	4.8. Types

	5. Statements
	5.1. Expression Statements
	5.2. Compound Statements
	5.3. If Statements
	5.4. Iteration Statements

	6. Declarations
	6.1. Array Declaration
	6.2. Enum Declaration
	6.3. Function Declaration
	6.4. Thread Declaration
	6.5. Interrupt Declaration
	6.6. Type Declaration

	7. Program
	7.1. Definitions
	7.2. Setup
	7.3. Main
	7.4. Inclusion of Other Files

	8. References

