
RTL Reference

1. JVM

Record Transformation Language (RTL) runs on the JVM. Runtime support for operations on data
types are all implemented in Java. This constrains the data types to be compatible to Java's data types.

2. Lexical Conventions

Only the ASCII character set is supported, characters outside of that character set in source files will
cause a error.

Regular expressions as defined in flex are used to add clarity. These expression follow the rules of
regular expression as used by the flex package. These expressions will be in mono spaced font.

2.1 Blanks

blank = [\t\n\r]+

Unless blanks are inside a string literal, they are ignored and provide no meaning to the program except
as separators for program elements.

2.2 Comments

comment = "#".*$

Outside of a string literal, all characters following a # character on the same line of code are
considered comments and are ignored by the compiler.

2.3 Identifiers

letter = [a-zA-Z]

digit = [0-9]

identifier = ({letter}|"_")({letter}|"_"|{digit})*

All characters in an identifier are significant. Identifiers are limited 256 characters. Identifiers are case
sensitive, upper and lower case characters are considered different.

2.4 Integer Literals

integer = ({digit})+("_"+{digit}+)*

For readability, all integers can have the underscore character embedded in the number, the underscore
is ignored when evaluating the value of the literal. Note, the integer literal cannot have a trailing
underscore.

1 of 11

2.5 Floating Point Literals

float = {integer}"."{integer}([eE][-+]?{digit}+)?

Just as in integer literals, underscore characters can be embedded in the number for readability. Floats
in RTL conform to double precision 64 bit IEEE 754 floating point standard. Note, all floating point
literals require a digit before and after the decimal point. .34 and 124. are not validate floating
point numbers.

2.4 Date and Time Literals

bdate = {digit}{4}{digit}{2}{digit}{2}

edate = {digit}{4}{digit}{2}{digit}{2}

btime = {digit}{2}{digit}{2}{digit}{2}?{letter}?

etime = {digit}{2}:{digit}{2}:{digit}{2}?{letter}?

datetime = {bdate}T{btime}|{edate}T{etime}

2.5 Character Literals

character = [-~]

RTL supports all ASCII printable characters as literals.

2.6 String Literals

String = "\"".*"\""

To embed a double qoute in a string, you can prefix the double quote with a backslash.
"This \"string\" is quoted." is an example where the word string is surrounded by double
quotes.

2.7 Boolean Literals

boolean = true|false

2.8 Set Literals

bliteral = {integer}|{float}|{date}|{character}|{string}|{boolean}

set = \{{blank}*({bliteral}{blank}*(,{blank}*|{bliteral}
{blank}*)*)*\}

A set is a collection of values with the same data type containing no duplicates. Set literals are
separated by bracketing a comma separated list of values between the { and } brackets. {} is
considered an empty set.

2.8.1 Examples

{ "Monday", "Tuesday", "Wednesday", "Thursday", "Friday" }
{ 1, 2, 3, 4 }

2 of 11

{ 34,8, 90.2, 891.19 }

2.9 Map Literals

kv = {bliteral}":"{bliteral}

map = "{"{blank}*({kv}{blank}*(,{blank}*|{kv}{blank}*)*)*]"}"

A maps key and value types can be different, but must the same type respectively. Map literals are
created by bracketing a comma separated list of key value pairs between the { and } brackets. Key
value pairs are any two values separated by a colon. {:} is considered an empty map.

2.9.1 Examples

{ "bob" : 34, "ted" : 27, "alice" : 37 }

{:}

{ 98 : ~2008-12-25~, 44 : ~2009-01-23~ }

2.10 Array Literals

array = "["{blank}*{bliteral}{blank}*(,{blank}*|{bliteral}
{blank}*)*"]"

An array is a list of values of the same data type. Array literals are created by bracketing a comma
separated list of values between angle brackets [and]. [], is considered an empty array.

2.10.1 Examples

[89, 90, 91, 92]

[~12:34:00~, ~12:34:00~, ~12:34:00~, ~12:34:00~, ~12:34:00~]

[true, false, false, true, false]

2.11 Keywords

These identifiers are keywords, and as such, cannot be used as program identifiers.

bool break char check date

datetime delete else file filter

float for foreach function if

int log map process print

rec return set string time

to trans transform while

3. Objects and names

All objects must be declared, and there fore named, before they can be accessed. Static scoping is used
to limit the scope of a name either the file level or to a block delimited by {}. Binding the same name

3 of 11

to a different object in an inner scope will hide the out binding.

4. Expressions

Expressions are evaluated in the order they are listed.

4.1 (expression)

Provides grouping for expression so that the expression inside the brackets must be evaluated before
any expression before or after the grouped expressions.

4.2 expression1 [expression2]

If expression1, is an array, then expression2 must evaluate to an integer and provides access to the

contents of the array at that position. If expression1, is a map, then expression2 must evaluate the same

data type as the key for the map and provides access to the value of the key-value pair.

4.3 expression1 { expression2 }

Provides access to the contents of an array expression1, expression2 must evaluate to an integer.

4.4 ! expression

Negates the value of the expression, only valid for boolean expressions.

4.5 – expression

Reverses the numeric sign of the expression.

4.6 Binary expressions

expression1 * expression2 - multiplication

expression1 / expression2 - division

expression1 + expression2 - addition

expression1 – expression2 - subtract

Evaluates to numerical result of the normal mathematical operations. These operators are only valid
for numerical data types int and float.

expression1 < expression2 - less than

expression1 > expression2 – greater than

expression1 <= expression2 - less than or equal

expression1 >= expression2 – greater than or equal

expression1 == expression2 - equal

expression1 != expression2 – not equal

4 of 11

expression1 && expression2 – logical and

expression1 || expression2 – logical or

Evaluates to a boolean value, the data types of expression1 and expression2 must be the same.

expression1 = expression2 – assignment

Assign the values of expression2 to the object in expression1. The the data types of expression1 and

expression2 must be the same.

4.4 Operator precedence

Operators are listed in order of precedence, lower precedence operators are listed below those with a
higher precedence.

Operator Type Operator Associativity

Primary () [] {} Left to right

Unary ! - Right to left

Binary
* /

Left to Right+ -

< > <= >= == !=

&& ||

Assignment = Right to left

5. Declarations

A declaration creates an object and gives it a name. These objects are usually variables or functions.
The object can then be referenced by name as long as the name is in scope. When the name goes out of
scope, the object can no longer be referenced and for all purposes, does not exist any more.

Name scoping uses static scoping rules, and names declared in an inner block will hide names declared
outside that block. Functions can only be declare at the file level, nested function declarations are not
supported.

6. Statements

A statement is a single language construct, such as an expression. A statement_list is an grouping of
statements that are evaluated in the order they are listed.

6.1 Control Statements

if, while, for and foreach provide a way to control the execution of a statement_list.

6.1.1 If statements

if (expression) { statement_list1 }

5 of 11

if (expression) { statement_list1 } else { statement_list2 }

If the expression evaluates to true, then the statement_list1 is executed, otherwise, statement_list2 is

executed if present. The open and closing brackets are always required around either statement_list.

6.1.2 While statement

while (expression) { statement_list }

The expression is evaluated first, and as long as the expression evaluates to true, the statement_list will
be execute repeatedly. The open and closing brackets are always required around either statement_list.

6.1.3 For statement

for (expression1; expression2; expression3) { statement_list }

expression1 is evaluated once, before any other expressions are evaluated. Then the statement_list is

executed. Then expression3 and expression2 are evaluated in that order. As long as expression2

evaluates to true, the statement_list will be repeatedly executed. The open and closing brackets are
always required around either statement_list.

6.1.4 Foreach statement

foreach (expression1 in container) { statement_list }

The foreach statement iterates through the elements of the container, providing access to each
element in turn. expression1 needs to declare the variable that will hold the contents of the elements in

the container. Modification of the data in the variable does not change the contents of the elements in
the container, the variable contains a copy element. The open and closing brackets are always required
around either statement_list.

6.2 Break statement

break

The break statement only has meaning in the body of a looping statements while, for and
foreach. It will terminate the loop and continue execution after the loop body.

6.3 Return statements

return expression

This will cause any function to stop executing the statements in it's statement_list and return the value
of the expression to the caller.

6.4 Log statements

log file string

Writes the string to the output data stream name file. Each string is written on its own line with the

6 of 11

current date and time written out before string.

7. Data types

These are the supported primitive data types.

Name Type Values

char A single character. Any printable ASCII character.

string A sequence of characters

bool A binary value. True or false.

int An integral value. -263 to 263 - 1

float A floating point number. -2

date A date. 1900-01-01 to 9999-12-31

time A time of day. 00:00:00 to 23:59:59

datetime A date and time combined.

7.1 Built in data conversion functions

There are a set of supplied functions that take a single expression and convert the data from the
expression into another type. These functions all have the name to_{data_type}. For example, to
convert a string into an integer, you would call the function to_int(). date, time data types are
an exception to this, they cannot only be converted to and from string, and datetime can only be
converted to a date or time data type.

7.2 Data containers

arrays, sets and maps are supported data containers. They can contain any primitive data types.

7.2.1 Array interface

These functions will can be used on array containers.

add(array, value) bool – adds value to the end of the array. If the value cannot be added,
the function will return false.

add_at(array, int, value) bool – adds value at the array position, expanding the array
as needed to accommodate the new position. If the value cannot be added, the function will return
false.

remove_at(array, int) bool – removes the position from the array, reducing the number
of positions in the array by one. If the position does not exist, the function will return false.

count(array) int – Returns the size of the array

In addition to these functions, an array's contents can be accessed by using the [] operator. The []
operator can be used to update the value at a position or retrieve its value in an expression.

7 of 11

7.2.2 Set interface

These functions will can be used on set containers.

add(set, value) bool – adds the value to the set, if the values already exists, the function
returns false.

remove(set, value) bool – removes the value from the set if it exists, otherwise it returns
false.

exists(set, value) bool – returns true if the value is in the set.

count(set) int – returns the size of the set.

7.2.2 Map interface

These functions will can be used on map containers.

add(map, key, value) bool – adds the key-value pair to the map, if the key already exists,
the function returns false and does not add the key-value pair.

remove(map, key) bool – removes the key-value pair from the map if it the key exists,
otherwise it returns false.

exists(map, key) bool – returns true if the key is in the map.

count(set) int – returns the size of the map.

In addition to these functions, a map's contents can be accessed by using the [] operator. The []
operator can be used to update the value at a position or retrieve its value in an expression. The key for
the key-value pair must be specified inside the operator's brackets.

7.3 Date and Time manipulations

+ and – are supported operations on date and time data types. These operators add and subtract days
and seconds respectively.

7.3.1 Date inteface

These functions will can be used on a date data type.

to_string(date) string – return the string representation of a date.

year(date) int – return year part of the date.

month(date) int – return month part of the date.

day(date) int – return day part of the date.

7.3.2 Time interface

These functions will can be used on a time data type.

to_string(time) string – return the string representation of a time.

hour(time) int – return hour part of the time.

8 of 11

minute(time) int – return minute part of the time.

second(time) int – return seconds part of the time.

7.3.3. Datetime inteface

These functions will can be used on a datetime data type.

to_string(datetime) string – return the string representation of a datetime.

to_date(datetime) date – extract the date part.

to_time(datetime) time – extract the time part.

to_datetime(date, time) datetime – construct a datetime from a date and time.

8. Strings

Strings are objects just like any other data type. They are not arrays of characters. String
manipulations are all performed using built in functions.

substring(string, pos, len) string – returns the inner string of the specified
string start at pos (string positions start at 0) for len characters. If the length requested extents past
the end of the string, only those characters are returned.

concat(string1, string2) string – concatenates string1 and string2 to form a

new string which is returned.

9. Data streams

file name = "path" noheader sep=ch output|log

There are three types of data streams, input, output and logging. Input data streams are the default.
The path can be an absolute path or relative to the current process's directory. Only the name and path
of a file statement are required, noheader, sep, output and log are all optional attributes for a
data stream.

All data stream except the log data stream operate on Character Seperated Value or CSV files. Each
line in the file is treated as a record to be processed.

The noheader attributes for input streams informs the reader that the first line of the CSV file is data.
For output streams, no header is written to the resulting CSV file.

The sep=ch attribute changes the default separation character from a ',' to ch. This can be specified
for both input and output data streams, but has no meaning for a log data stream.

The output attribute changes the data stream from the default input to an output stream.

The log attribute changes the data stream to a logging output stream. Instead of writing records, each
line of text is written with a data time stamp. The output and log attribute cannot be specified for
the same data stream.

Any attempt to read or write to a data stream that fails, will result in the termination of the application
with an OS appropriate error message written to standard error. The return code will be the OS error

9 of 11

number.

10. Functions

10.1 Generic functions

function expression (param_list) return_type { statement_list }

Functions create grouping of statements that can be executed by name. The parameter_list defines a
list of variables that have local scope to the function whose values must be provided by the caller. The
value of the return_type is either the value of the last expression in the statement_list or the value of the
expression in a return statement. The data type of the returned value from the function must match
the data type declared in the return_type.

10.2 Filter functions

filter expression { statement_list }

A filter function has an implicit return_type of bool. These functions are used to filter out records that
should not be included in the result set from processing the input stream. The filter is called for each
record in the input stream. It has a single implicit parameter rec, that is a map containing the value of
the current record. The elements of the map can be accessed by name or column number. If the
function returns false, the record is not included in the output stream.

Any changes to the values in the rec map will not be reflected in the output stream.

10.3 Transform functions

transform expression { statement_list }

A transform function has no return type, it does not return any value. These functions are used to
transform a record before it is written to an output stream. The transform function is called for each
record in the input stream. It has a single implicit parameter rec, that is a map containing the value of
the current record. The elements of the map can be accessed by name or column number.

11. Processing

process input check_trans_list to output

This is the main part of the application. The process statement will run each record in the input
stream through the list of data checks and transformations in the check_trans_list. If the record
evaluates to true for all check statements it will be written to the output stream with any modifications
made by the trans statements in the check_trans_list. The check and trans statements are
executed in the order they are declared.

11.1 rec map

To access the contents of the current record, an implicit map is created. The keys for the map are the
names of the columns in the header row of the input file. If the input file has a noheader attribute,
then the keys are the column numbers starting with 0 for the first column. The values in the map are

10 of 11

the read in values in the CSV row.

11.2 Check statement

check { expression }

If the expression evaluates to true, then the record passes the check. The code block for the expression
is the same as the code block for a filter function. A rec map is implicitly defined in the code
block.

check filter_function

The filter_function must be a filter function. It will be called for each record in the input stream
and if the filter function returns false, the record will not be included in the output stream.

check "key" file

The file should be an input stream with a single column. If there are more columns in the input stream
then, columns after the first column are ignored. If the value of the rec map for the key is not found in
the first column of the file, the check will fail and the record will not be included in the output stream.

11.3 Trans statement

trans { statement_list }

The code block for the statement_list is the same as the code block for a transform function. A rec
map is implicitly defined in the code block. Any changes to the values of the rec map will be included
in the output stream.

trans transform_function

The transform_function must be a transform function. It will be called for each record in the input
stream. Any changes to the values of the rec map will be included in the output stream.

trans "key" file

The file should be an input stream with two columns. If there are more columns in the input stream
then, columns after the first two columns are ignored. If the value of the rec map for the key is not
found in the first column of the file, then no transformation will be made. If the key is found, then the
values of the rec map for the key will be update to the value of the second column on the same row.
Any changes to the values of the rec map will be included in the output stream.

11 of 11

	1. JVM
	2. Lexical Conventions
	2.1 Blanks
	2.2 Comments
	2.3 Identifiers
	2.4 Integer Literals
	2.5 Floating Point Literals
	2.4 Date and Time Literals
	2.5 Character Literals
	2.6 String Literals
	2.7 Boolean Literals
	2.8 Set Literals
	2.8.1 Examples

	2.9 Map Literals
	2.9.1 Examples

	2.10 Array Literals
	2.10.1 Examples

	2.11 Keywords
	3. Objects and names
	4. Expressions
	4.1 (expression)
	4.2 expression1 [expression2]
	4.3 expression1 { expression2 }
	4.4 ! expression
	4.5 – expression
	4.6 Binary expressions
	4.4 Operator precedence

	5. Declarations
	6. Statements
	6.1 Control Statements
	6.1.1 If statements
	6.1.2 While statement
	6.1.3 For statement
	6.1.4 Foreach statement
	6.2 Break statement
	6.3 Return statements
	6.4 Log statements
	7. Data types
	7.1 Built in data conversion functions
	7.2 Data containers
	7.2.1 Array interface
	7.2.2 Set interface
	7.2.2 Map interface

	7.3 Date and Time manipulations
	7.3.1 Date inteface
	7.3.2 Time interface
	7.3.3. Datetime inteface

	8. Strings
	9. Data streams
	10. Functions
	10.1 Generic functions
	10.2 Filter functions
	10.3 Transform functions

	11. Processing
	11.1 rec map
	11.2 Check statement
	11.3 Trans statement

