
ADL++

Reference Manual
Alankar Khara, UNI: ask2206

COMS W4115 – winter 2014

Contents
1. Introduction .. 4

2. Lexical conventions ... 4

2.1 Comments ... 4

2.2 Identifiers .. 4

2.3 Keywords ... 4

2.3 Constants .. 5

2.4 Operators .. 5

2.4.1 Operators Precedence ... 5

2.5 Punctuation ... 5

3.0 The role of identifiers with Declaration Expressions Syntax... 6

3.1 Types ... 6

3.1.1 Basic Types ... 6

3.1.2 Derived Types ... 6

4.0 Expressions .. 7

4.1 Binary arithmetic operators .. 8

4.1.1 expression / expression ... 8

4.1.2 expression * expression ... 8

4.1.3 expression - expression .. 8

4.1.4 expression + expression ... 8

4.2 Relational operators ... 8

4.2.1 expression == expression ... 8

4.2.2 expression < expression ... 8

4.2.3 expression <= expression ... 8

4.2.4 expression > expression ... 8

4.3 Logical operators ... 9

4.3.1 boolean-expression && boolean-expression ... 9

4.3.2 boolean-expression || boolean-expression .. 9

4.4 Assignment operator .. 9

4.4.1 identifier = expression ... 9

4.5 Reference operator ... 9

4.5.1 identifier :=> expression .. 9

5.0 Statements .. 9

5.1 Conditional statements ... 9

5.2 Loops ... 9

6.0 Functions .. 10

7.0 Program structure ... 10

8.0 References .. 10

1. Introduction

ADL++ is an Architecture Description Language based on the concepts of General Systems Theory. This language

and its compiler are different from the set of current languages in ADL category in three major ways: 1) it is not

domain specific, 2) it attempts to remove communication gap existed among various stakeholders, 3) it captures

design rationale and history of the design decisions. In addition, this language provides analytical tools to solve the

problem of architecture description of a concerned Systems based on real-time constraints.

ADL++ is complaint with ISO/IEC/IEEE 42010 Systems and software engineering — Architecture description,

which provides international standard to develop architecture description of system.

2. Lexical conventions

There are four kinds of tokens:

a. Identifiers

b. Keywords

c. Constants

d. Operators

e. Punctuation

2.1 Comments

The character :: starts a comment and the characters :: terminates it. The content between these characters is

ignored by the parser.

2.2 Identifiers

An identifier is a sequence of letters, digits and underscores “_” .

For example: Heat_Energy, Boiler_No_980

2.3 Keywords

The following identifiers are reserved for use as keywords, and may not be used otherwise:
system

sub-system

environment

constraint

vulnerability

viewpoint

formula

int

char

float

bool

if

double

otherwise

while

continue

case

return

then

2.3 Constants
There are four kinds of constants:

a. Integer: sequence of digits

b. Strings: sequence of characters between double quotes “ ”

c. Float: has three parts – integer, fraction and optionally signed integer exponent

d. Character: set of strings [\n, \r, \t] for next line, return, and tab representations respectively

2.4 Operators
There are three types of operators

a. Mathematical Operators: Set of characters [+, -, *, /, ^, %]

b. Functional Operators: There are two types-

a. :=> called reference operator (its role is defined further in the manual)

b. = is assignment operator

c. Logical Operators: Set of characters [==, <=, >=, !=, &&, ||]

2.4.1 Operators Precedence

Following table is highest to lowest precedence table:

 ^ Power Operator

* / % Multiplication and Division

+ - Addition and subtraction

< <= > >= Inequality relational

== != Equality relational

&& Logical AND

|| Logical OR

= Assignment

:=> Reference

2.5 Punctuation
The symbol defined below increase the readability of the language.

Symbols Name Use

, Comma It is used to separate elements in Tuples, one of the derived data-types explained in the next

section. It is also used in separating sub-systems in system declaration expression

<< Start It is used to tell parser that tuple definition starts

>> End It is used to tell parser that tuple definition ends

! Call It is used to expand the scope of variable defined within sub-system tuple to the outside

program

3.0 The role of identifiers with Declaration Expressions Syntax

Identifiers used in the program are mainly called variables. In this section, types of identifiers are defined along with

the expressions, which define them. Syntax is presented in italics with symbol >> representing as a line in the

program.

3.1 Types

Mainly there are two types of identifier variables: called Basic Types and Derived Types.

3.1.1 Basic Types

There are six basic types:

Basic Type Definition Syntax Example Representation

Integers no_people (int) 16-bit 2’s compliment notation

Floats money (float) Range 10
+/-38

 or 0; precision: seven decimal digits

Doubles volume (double) Same range as float; precision: 17 decimal digits

Characters info (char) ASCII digit

Strings check (string) Set of ASCII digits between quotes

Boolean needed (bool) True, False or Null values

Syntax of variable declaration expression of basic type is Identifier (keyword) , where keyword is int for Integer,

float for Float, double for Double, char for Characters, string for Strings, bool for Boolean.

Type conversion is not allowed in these basic types. Variables with basic types are always declared as a part of the

concerned system and cannot be used outside of its scope independently. To access it in the program, one need to

use ! Call Operator, as shown in the example below. It is also explained in the next section.

For example: Water is a system defined by two variables  Density and Mass.

>> Water :=> <<Density(float) , Mass (float)>>

>>….

>>if Water!Density > 1 then Flask!Clock = False Otherwise True

3.1.2 Derived Types

Derived Types makes ADL++ domain independent. Following are the derived types introduced:

3.1.2.1 Formula
In Systems theory, admissible Input and Output values are often defined as a parameterized or non-parameterized

function. Moreover, there are pre and post conditions at system’s run-time which can be functions as well. To

capture that abstraction, derived data type Formula is introduced. This will allow independent architecture

description without defining function itself.

Syntax of Formula is Identifier (keyword), where keyword is Formula

For example, Energy is defined as formula in the program, which is later assigned to mathematical formula as

below. This will enhance to readability of the Language as function can be used in the program prior to its

definition.

>> Steam :=> <<Energy (Formula), Volume (int)>>

>> …

>> Steam!Energy = Temperature_Change * specific heat * mass

 :: Right hand side include other declared variables in the program ::

3.1.2.2 System
Language is based on System Oriented Approach, and System will follow the strict mathematical definition under

System theory. In simple words, Objects (as defined in Object Oriented Paradigm) will be replaced by Systems.

Syntax for System declaration is: keyword :=> Identifier, where keyword is System

For example, below one can see System declaration.

>> System :=> Boiler

:: This is somewhat like Class declaration under Object Oriented Paradigm::

System is composed of sub-systems, also called components. Hierarchy, which is one of the most important

properties of ADLs is built-in with this conception.

Syntax for subsystem declaration is: Identifier :=> Identifier, Identifier …., where left hand side Identifier is

variable defined as system, and right hand side identifiers will be defined as sub-systems.

For example, as below:

>> Boiler :=> Burner, Flask, Water, Steam, Heat_Sensor

 :: Right side is the set of sub-systems in a system::

3.1.2.3 Tuple
Sub-System, as a system itself will be defined as a set of variables, called Tuple (as advanced

data type, much like array or list).

Syntax for Tuple declaration is: Identifier :=> << Identifier (keyword) , … , Identifer (keyword)>>,where, left-

hand side Identifier is variable defined as sub-system and right hand side identifiers are basic and derived types of

variables. Keywords are the data types of defined variables.

Like below:

>> Heat_Source :=> <<Energy_Given (float), Cost (formula), Burner_Factor (Constant)> >

Access to Tuple variable is based on the index, which starts with 1 or with the name of the variable. Syntax of

expression to access Tuple variable is : Identifier![index-number] or Identifier![Identifer].

 Representation like below:

>> Real_Cost = Heat_Source![2]

>> Real_Cost = Heat_Source!Cost

4.0 Expressions
Identifiers along with operators form expressions. This language has one simple expression for every single

operator, defined in lexical conventions. In addition, many expressions can be built with the combination of

expressions. Simple expression forms include expressions with binary arithmetic operators, logical operators,

assignment operator and reference operator as defined below:

4.1 Binary arithmetic operators
Many kinds of mathematical constructs can be developed using combination of expressions below. Simple types are

defined:

4.1.1 expression / expression
This operator returns the division of the two arguments, which must be integers, floats or doubles.

4.1.2 expression * expression
This operator returns the multiplication of the two arguments, which must be integers, floats or doubles.

4.1.3 expression - expression
This operator indicates subtraction of two arguments, which must be integers, floats or doubles.

4.1.4 expression + expression
This operator indicates addition of two arguments, which must be integers, floats or doubles.

4.2 Relational operators
These operators evaluate the comparisons and return the result (true, false or null).

4.2.1 expression == expression
This operator evaluates whether the two expressions are equal. The expressions can be integer, strings, or Booleans.

4.2.2 expression < expression
The < operator evaluates if the first expression is less than the second one. The arguments must be integers, floats or

doubles.

4.2.3 expression <= expression
The <= operator evaluates if the first expression is less or equal than the second one. The arguments must be

integers, floats or doubles.

4.2.4 expression > expression
The > operator evaluates if the first expression is greater than the second one. The arguments must be integers, floats

or doubles.

4.2.5 expression >= expression

The >= operator evaluates if the first expression is greater or equal than the second one. The arguments must be

integers, floats or doubles.

4.2.6 expression != expression
The != operator evaluates if the two expressions are different. The expressions can be integers, floats, doubles, string

or boolean.

4.3 Logical operators

4.3.1 boolean-expression && boolean-expression
This operator evaluates if both boolean expressions are true.

4.3.2 boolean-expression || boolean-expression
This operator evaluates whether at least of the two expressions is true.

4.4 Assignment operator

4.4.1 identifier = expression
This operator declares a variable with the same name as the identifier. Then, it evaluates the expression and assigns

its result and type to the variable.

4.5 Reference operator

4.5.1 identifier :=> expression
This operator declares a variable with the same name as the identifier. Then, it references the expression whenever

that variable is used in the program.

5.0 Statements

There are two main kinds of statements in this language, namely: conditions and loops. Both are represented below.

5.1 Conditional statements
Conditional statements take one of the two following forms:

If boolean-expression statements otherwise statements.

If the boolean expression evaluates to true, the first set of statements is executed. Otherwise (and if the otherwise

statement is used), the second set of statements is executed.

For pre and post conditions, logic plays an important part. Standard Logical operators will be used like below:

If/otherwise statement ends with period “.”.

>> if Boiler!Heat_Source!Cost > MAX_Cost && Boiler!Heat_Source!Energy < MAX_ENERGY

>> Set State = TRUE

>> Otherwise

>> State = FALSE .

5.2 Loops
To facilitate analysis of systems design, loops play the central role. One can simulate run-time environment using

loops. There is only while loop defined in this language, and its syntax is:

While Boolean-expression continue statement

This will be used as bellow:

>> while Burner!Energy!Cost >= MAX_COST

>> continue Burner!Burning_State.

Loops will end with ‘.’ period.

6.0 Functions
The parallel to function in this language is the construct of sub-system tuple. There is no separate definition for

functions.

7.0 Program structure
Readability is the key to any successful ADL. To enhance readability, following structure is proposed

a. System Declaration with sub-system identification

b. Sub-system definitions

c. Interconnections and interdependencies of sub-systems with assignment expressions

d. Vulnerabilities defined with control statements

e. Run-time state transitions simulated using loops

f. Develop test cases

g. Run Analysis

h. LP Solver

Using systems engineering approach, which is inherently interdisciplinary, to the architecture

description problems, ADL++ will be first domain independent Architecture description language.

8.0 References
[1] Skyttner, Lars. General systems theory: ideas & applications. World Scientific, 2001.

[2] Polderman, Jan Willem, and Jan C. Willems. Introduction to mathematical systems theory:
a behavorial approach. Vol. 26. Springer, 1998.

[3] Hinrichsen, Diederich, and Anthony J. Pritchard. Modelling, State Space Analysis, Stability
and Robustness. Vol. 1. Springer, 2004.

[4] Lin, Yi, ed. General systems theory: A mathematical approach. Vol. 12. Springer, 1999.

[5] Braga, Christiano, and Alexandre Sztajnberg. "Towards a rewriting semantics for a software
architecture description language." Electronic Notes in Theoretical Computer Science 95 (2004):
149-168.

[6] Rademaker, Alexandre, Christiano Braga, and Alexandre Sztajnberg. "A rewriting
semantics for a software architecture description language." Electronic Notes in Theoretical
Computer Science 130 (2005): 345-377.

[7] Garlan, David. "Software architecture and object-oriented systems."Proceedings of the
IPSJ Object-Oriented Symposium. 2000.

[8] Von Bertalanffy, Ludwig. "{General System Theory}." General systems 1 (1956): 1-10.

[9] Austin M.A., Modelling Systems Structure and Behaviour, Presented at Institute for
Systems Research, University of Maryland, College Park, 2012.

