
QuarkQuark

The TeamThe Team
Daria Jung
Jamis Johnson
Linxi Fan (Jim)
Parthiban Loganathan

Why Quark?Why Quark?

Quantum computing has the potential to
become a reality in the next few decades. We're
thinking ahead of the curve and have developed
a language that makes it easy to build quantum

circuits, which consist of quantum gates and
quantum registers holding qubits.

Quantum Computing will allow us to:Quantum Computing will allow us to:

Factorize large integers in polynomial time (Shor's algorithm)
Search unsorted database in sublinear time (Grover's Search)
Build the Infinite Improbability Drive and solve intergalactic
travel

What is Quark?What is Quark?
"QUantum Analysis and Realization Kit""QUantum Analysis and Realization Kit"

A high-level language for quantum computing that

encapsulates mathematical operations and quantum
computing specific components like quantum registers.

A futuristic compiler on your laptop.

FeaturesFeatures
Easy-to-use, high-level language influenced by MATLAB
and Python
Useful built-in data types for fractions and complex
numbers
Support for matrices and matrix operations
Quantum registers and ability to query them
Built-in quantum gate functions
Imports
Informative semantic error messages
Cross-platform

How did we do it?How did we do it?

Compiler flow:Compiler flow:

Preprocessor
Scanner
Parser
AST
Semantic Checker
SAST
Code Generator
OS-aware g++ invocation
Quantum Simulator (Quark++)

PreprocessorPreprocessor
Resolves import statements before the scanner and
parser stages
Recursively finds all imports and prepends them to
the file
Handles cyclic and repetitive imports

ScannerScanner
Based on MicroC

All the usual tokens + specific ones for

fractions : 1$2
complex numbers : i(3, 4)

i can still be used as a variable, not a function
matrix operations : [|1,2; 3,4|], A', A ** B
quantum registers and querying : qreg, <|10,1|>,
q ? [1:5], q ?' 3

ParserParser
Grammar was developed incrementally

Quantum registers query
Matrix and high dimensional array literals
Membership
Fractions, complex numbers
Pythonic for-loops

Pacman Parsing

Some example rulesSome example rules
expr:
 ...
 /* Query */
 | expr ? expr
 | expr ? [: expr]
 | expr ? [expr : expr]
 ...
 /* Membership testing with keyword 'in' */
 | expr in expr
 ...
 /* literals */
 | expr $ expr
 | [| matrix_row_list |]
 | i(expr , expr)
 | <| expr , expr |>

iterator:
 | ident in [range]
 | datatype ident in [range]
 | datatype ident in expr

Lexical and syntactical analysisLexical and syntactical analysis
completecomplete

Now we need semantic checksNow we need semantic checks

Valid syntax doesn't always make sense

The importance of semantic checks in real life

Semantic CheckerSemantic Checker

StrMap hashtables
Variable table

Function table

Semantic CheckerSemantic Checker

Environment struct

Semantic CheckerSemantic Checker

From AST to SAST

Semantic CheckerSemantic Checker

Traverse AST recursively to produce SAST

Semantic CheckerSemantic Checker

Tag the SAST with op_tag constants to
facilitate code generation

Semantic CheckerSemantic Checker
Tag the SAST with op_tag constants to
facilitate code generation

Semantic CheckerSemantic Checker
Separate source file for built-in functions (e.g.
quantum gates)
Can be overridden by users
print() and print_noline() support any number of args
of any type

Semantic CheckerSemantic Checker
Error messages

"A function is confused with a variable: u"
"Function foo() is forward declared, but called
without definition"
"If statement predicate must be bool, but
fraction provided"
"Array style for-loop must operate on array
type, not complex[|]"
"Matrix element unsupported: string"
"Incompatible operands for **: string -.-
fraction"
"All rows in a matrix must have the same
length"

Code GenerationCode Generation

Code GenerationCode Generation

Recursively walks the SAST to generate a string of
valid C++ program
The generated string, concatenated with a header
string, should compile with the simulator and
Eigen library

No exception should be thrown at this stage

Code GenerationCode Generation

int → C++ int64_t
float → C++ primitive float
string → C++ std::string
complex → C++ std::complex<float>
arrays → C++ std::vector<>
matrices → Eigen::Matrix<float, Dynamic, Dynamic>
fraction → Quark++ Frac class
qreg → Quark++ Qureg class

Type Mapping

Code GenerationCode Generation
Op Tag

Code GenerationCode Generation
Pythonic for-loop

[len(a) : 0 : step(x)] the step size can be negative
Whether step(x) is negative or not can only be
determined at runtime
We use system generated temp variables to
handle this.
Always prefixed with "_QUARK_" and followed by
a string of 10 random chars.

Code GenerationCode Generation
Pythonic for-loop

Code GenerationCode Generation
More examples

Code GenerationCode Generation
More examples

Simulator: Quark++Simulator: Quark++

Simulator: Quark++Simulator: Quark++

Written over the summer. Built from
scratch except for the Eigen matrix library.
Features optimized C++11 code for
quantum register manipulation and
quantum gates/operations.
Can be used as a standalone library for any
quantum computing education or research
project
Minor modification to accomodate the
Quark language.

User InterfaceUser Interface
Command line args

-s: source
-c: generated.cpp
-o: excutable
-sc, -sco
-static

Precompiled dynamic/static libraries
Minimal user effort to install dependencies
OS aware. Supports all major OSes

Let's look at some codeLet's look at some code
A simple Hello World

def int main:
{
 print("Hello, Ground!");

 return 0;
}

It was unfortunately a
very short hello for our

whale friend

Defining typesDefining types

int i = 4;
float f = 2.0;
bool b = true;
string s = "So Long, and Thanks for All the Fish";
string[] arr = ["Ford", "Prefect", "Zaphod", "Beeblebrox"];
int[][] arr2 = [[1,2,3],[4,5,6]];

fraction f = 84$2;
complex c = i(5.0, 7.0);
float[|] = [|1.0, 2.1; 3.2, 46.1|];

qreg q = <| 42, 0 |>;

Special operationsSpecial operations

% FRACTIONS
frac foo = 2$3;
~foo; % 3$2
int i = 5;
i > foo; % true

% COMPLEX NUMBERS
complex cnum = i(3.0, 1);
real(cnum); % 3.0
imag(cnum); % 1
complex cnum2 = i(9) % this gives us i(9, 0)

% MATRICES
float[|] mat = [| 1.2, 3.4; 5.6, 7.8 |];
mat[2, 1];
mat'; % transpose matrix

% QUANTUM REGISTERS
qreg q = <|10, 3|>;
hadamard(q);
q ? [2:10]; % measures qubit 2 to 10

Control flowControl flow

if x > 0:
 print("positive");
elif x < 0:
 print("negative");
else:
 print("zero");

while x > 42: {
 print(x);
 x = x - 1;
}

int[] arr = [1,2,3];
for int i in arr:
 print i;

int i;
for i in [1:10]
for int i in [1:10:2]

ImportsImports

import ../lib/mylib1;
import ../lib/herlib2;

import imported_file;

def int main:
{
 return imported_file.function(5);
}

So Fancy!

Simple GCDSimple GCD

def int gcd: int x, int y
{
 while y != 0:
 {
 int r = x mod y;
 x = y;
 y = r;
 }
 return x;
}

def int main:
{
 % prints the greatest common divisor of 10 and 20
 print(gcd(10, 20));
 return 0;
}

Quantum Computing DemoQuantum Computing Demo
TimeTime

Hang on to your Towel!

Let's see Shor's algorithm and Grover's
Search in action! Real quantum computing

programs running on a not-so-real quantum
computer (our simulator)

What did we learn?What did we learn?

Start early!!!Start early!!!

OCaml:OCaml:
[oh-kam-uh l]

Mostly harmless

Interacting with other homo sapiensInteracting with other homo sapiens

Group projects are painful (more so than Vogon poetry)
Allocating work strategically avoids bottlenecks in
pipeline
Better communication saves time and headaches
Dictatorship > Democracy when it comes to software

