
Pumpkin
Joshua Boggs

Christopher Evans
Gabriela Melchior
Quentin Robbins



Language Overview

● Pumpkin is patchwork functional programming language.
● The Pumpkin programming language is a light-functional scripting 

language, which allows for coding flexibility and concise syntax.
● Pumpkin supports many syntactic optimizations for function nesting 

and chaining, such as pipes, partially applied functions, and function 
composition.

● This language focuses on easily modeling the flow of data through 
function.



Motivation

Easy functional language, with beautiful syntax

Simple to type, no need for type declaration

Flexible: partial and anonymous functions



Tutorial Introduction
Declare variables with val: 

val y : Bool = True

Declare functions with def:
def add(a: Int,  b: Int): Int => a + b

Pipe functions with |>:
val x = [1,2,3] |> (a: List[Int] => len(a)%2)

if x is 0:

  print("Even")

else:

  print("Odd")



Tutorial Continued

Create function compositions with >> or <<:
val plusTwoTimesThree = (x:Int => x * 3) <<(x: Int => x + 2)

plusTwoTimesThree(4) # => 18

Type inference: for val and def, the types are not necessary.
Function control with if...else loops.



Example #1
def gcd(a : Int, b : Int) : Int =>

  if(b is 0):

    a

  else:

    gcd(b, a % b)

def relativePrimes(a: Int) =>

  if (a is 1):

    True

  else:

    False

val p = relativePrimes <<  gcd

if(p(25, 15)):

  print("You have relative primes")

else:

  print("Not relative primes")



Example #2
def reduce(func: (Int, Int => Int), acc: Int, l: List[Int]): Int =>

  if(is_empty(l)):

    acc

  else:

    reduce(func, func(hd(l), acc), tl(l))

def map(f: (Int => Int), l: List[Int]): List[Int] =>

  if(is_empty(l)):

    l

  else:

    f(hd(l))::(map(f, tl(l)))

def even(n: Int): Bool =>

  if(n % 2 is 0):

    True

  else:

    False

val x = [1,2,3,4] |> map((x:Int => x + 5 :Int)) |> reduce((x: Int, y: Int => x + y : Int), 0) |> even 

print(x)



Implementation

Main Flow
Scanner -> Parser -> Ast -> Analyzer -> Sast -> 
Codegen
Helpers
Utils: strings for testing
Pmkn+Processor: executable, can run code through 
files incrementally in order to test specific modules



Summary

Pumpkin is functional
Pumpkin is flow oriented
Pumpkin has type inference
Powerful and easy to use!



Lessons Learned

It is not easy to know what will be hard to 
implement until you get simple things out of the 
way.
Look towards successful precedents for inspiration 
and guidance.



End

Thank you for a wonderful semester!


