DO FIFTY-
TWO

Sinclair Target
Yichi Liu
Yunfei Wang
Jayson Ng
Josephine Tirtanata

MOTIVAartlion

Situation:
= (Card game languages are popular
= But the available languages are C-like syntax
= So who were those languages for?

Goal:
= A card game language for beginner
programmers
= Friendly syntax influenced by Python
= Conceptually simple

overview OF THe

LanGuaGe
What is Do Fifty-Two?

= An imperative, (mostly) procedural, statically
and strongly typed language

= An IMPERATIVE, (mostly) procedural,
statically and strongly typed language

= Not functions. Procedures!

= No return values!

= Pass by reference

= Procedures are not first-class

= “A program does things to data.”

UTOrMak

Operator Meaning

+ - */ Standard arithmetic operators. Integer
arithmetic only. Standard precedence.

= 1= Standard relational operators,
<> except that the equivalence operator is =
not ==.

Standard precedence.

| & ! Logical operators and the unary NOT
operator. No bitwise operators.

Assignment operator

t>b><t<b Prepend and append operators. Take a Set
(see below)and a Card and either adds the
Card to the front or the back of the Set.

If Card is null, does nothing.

Orilat

Operator Meaning
Dot operator, Accesses field within an
variable
+ String concatenation operator

UTOrak

Primitive Meaning
Type

Number Integer
String String
Boolean Boolean

UTOrMak

Composite Type

Meaning

Card

A data type representing a card. Fields:
Number rank

Number suit

String desc

Set

A data type representing an ordered collection of
cards, can be a deck, hand, or something else. Fields:
Number size
String desc
Card top
Card bottom

Player

A data type representing a player, or possibly a
dealer. Fields:

Set hand

String desc

Orilat

Action

Function

Declare a new

new typeName variableName: value

variable i.e. new Number num: 0
Add new typeName has fieldType called
fields to fieldName
existing i.e. Player has Number called
variable score

Now Player has field “score”
Redefine configure variableName: value
default i.e. configure numberOfPlayers: 2

environmenta
| variables

UTOrMak

Action Statement
Declare a procedureName with Type
function parameterName:
i.e. do Sum with Number n1 and
Number n2:
<function body>
Call a do procedureName with argumentName
function i.e. do Sum with 5and 6
Quit a do quit

loop/conditio
nal statement

//A Sample Program

configure numberOfPlayers: 2
configure highestCard: ace
configure ascendingOrder: true

A\ ”

Player has Number called x // declare new field for

Player

X

new Number warCount: 0 // declare new variable “warCount”

setup:

// deal cards

do turn with playerl

do output with "The score of playerl before: " +
playerl.x

do output with "The score of playerl after: " +
playerl.x

do output with "warCount: " + x
round:

do output with "number of players: " +
numberOfPlayers

do quit

turn with Player player:
if p.x = 0:

p.x : p.x + 1
do quit

‘ BEHIND-THEe-sCcenes

Implementation and Testing

meeLemenTartlon

Compiler Work Flow

Scanner Parser Semantics

sscanner.ml sparser.ml ssemantic.ml

sindent.ml : : : sstdlib.ml

Source Program
scache.ml

Abstract Syntax Tree Compiler

=ast.ml scompiler.ml

ssast.ml | estdlib.mi

Java Program

meeLementTartlon

Indentation-based Blocks

do output with “Hello”

hello:
do output with “Hello”

(vim) set: list

do output with “Hello”$

S
hello:$

~Ido output with “Hello”$

meeLemen Tartlion

Is this even Context-Free?

hello with Number n
if n > 5:
if num > 10:
do output with “Hello!”
else:
do output with “Bye!”

hello with Number n$

“Tif n > 5:5

AT7MTif num > 10:S

~I7I7Ido output with “Hello!”$5
“"I"Telse: S

~#I7I7Ido output with “Bye!”$S

meLemen TarTtliOn

scanner.ml:
let cur depth = ref 0

If depth > cur_depth, <INDENT>
else if depth < cur_depth, <DEDENT>
else <NEWLINE>

hello:
<INDENT>do output with “Hello”
<DEDENT>

Just as if we had used braces!
hello:

<LBRACE>do output with “Hello”
<RBRACE>

meLemenTartlon

Indentation-based Blocks

But what about:

hello with Number n:

<INDENT>if n > 2:
<INDENT>if n > 4:

<DEDENT??>

Does not parse. Second “if’ never closed!
Need to spit out multiple <DEDENT> tokens

for a single regex in scanner.ml. Can we even
do that in Ocamllex?

meLemen TarTtliOn

No. Parser takes one token at a time—we can’
t just pass it several at once.

parser.ml <:| cache.ml <:| scanner.m|

<DEDENT_MULT(n)>

if cache is not empty
return front of cache
else get token
if token is <DEDENT MULT(n)>
cache n <DEDENT> tokens
return front of cache
else
return token

meeLemen Tartlion

What happens when someone uses one of our
“standard” procedures?

do output with a

UndeclaredID (“"The procedure output
has not been declared.”)

It might be implemented in our runtime, but the
semantic analyzer doesn’t know about it.

meLemen TarTtliOn

#include <stdlib.h>
#include <stdio.h>

int main .. etc.

Standard library inserted at the top of the file.
All function and variable declarations added to
environment before the rest of the program
goes through the semantic analyzer.

How to do this without implementing a
preprocessor?

meLemenTartlon

A Small Standard Library

Another thing to consider:

Do: Java:
card.suit -> card.suit
deck.size -> deck.size()

How do we address what could be lots and lots
of special cases?

meLemen TarTtliOn

stdlib.ml

vars = [(var_decl, java) ..]
configs = [config decl ..]
fields = [(field decl, java)
funcs = [func _decl ..]

semantic.ml

starting scope includes vars

starting environment includes
configs, fields, funcs

compile.ml

let java of var env var =
if var is in stdlib, use the java there
else use the var _id

meLementTartlon

Translating to Java

= |ssues
= abstraction: designing a
Player/Game/Card/Set/Deck class
= What should be default classes?
= What should the compiler generate?
= Making it user friendly
= Defining Ace, Jack, King, Queen, Spade,
Heart, Club, and Diamond
= Card values
= (Card related functions- shuffle and draw
= What would be the best data structure?
= Deque is most suitable
= |mplemented by ArrayList

meLementTartlon

Translating to Java

Implementing a seamless and error prone output and
input function
= recognizing data type of variable to match with
the correct input functions
(Boolean/String/Number)
= error handling
Simplifying logical operators
= The ability to compare various data types such as
String, Card, and Set
= 1f playerl hand top >
playerZ2 hand top
A lot of these issues were solved after the semantic
analysis of the compiler, attaching the data types to
variables

IMmeLermenr

Translating to Java

|ONM

Card

A card
contains a
face
number, a
value, a suit
and a suit
value.

Set Player Game

A set is an ordered A player has a The game class lists
group of cards. Set hand. out the functions that
functions are fixed: are defined by the
shuffle, append, user. The setup() and
prepend, select, round() methods must
and peek. be defined.

Deck MyPlayer Utility

A deck extends a My player extends The utility class aids

Set and creates a
deck of French
Playing cards
(Standard 52 cards
with 4 suits)

player and has
additional instance
variables that are
defined by the
source program

the game class by
supplying functions for
logical operations and
I/0

Main

The main
function creates
an instance of a
game and
invoke setup().
After setup
completes, it
calls round() in
an infinite loop.

meeLementTartlon

Semantic Checking

1. ENV contains

symbol table

- Configuration Variables

- Function Declarations
- Function Calls

- Variable Declarations
- Field Declarations

- break/continue

meLementTartlon

Semantic Checking

2. Check Unknown Data Types
3. Check Undeclared IDs

4. Check Mismatched Types

5. Check Wrong Types

6. Check if any function/variable/field is redeclared
7. check if a program has no setup

8. check if a program has no “round” procedure

(corresponding to “main” in Java)

eSTING

Performed on-going White box testing.

Test Plan:
3 Phase Testing:
= Parsing / Semantics
= Logic
= Game Play

Two automated test suites:
= testlogic.sh
= testParse.sh

TeSTING

Testing Script

Check () {

error=0

basename="echo $1 | sed 's/.*\\///

s/.do//""

reffile="echo $1 | sed 's/.do$//"

basedir=""echo $1 | sed 's/\/["\/1*$//' > /."

javafile="echo Sbasename |sed -e 's/"//g' -e 's/-/ /g'"

ajavafile="echo S$javafile | perl -pe 's/\S+/\uS$&/g'"

newjavafile="echo $ajavafile | perl -pe 's/([" 1) (la-z])
/\N\NIN\u\\2/g""

echo 1>&2

echo "###### Testing Sbasename" 1>&2

generatedfiles="$generatedfiles tests/${newjavafile}.java
tests/S{basename}.diff tests/S$S{basename}.out" &&

Run "$DO_FIFTY TWO" $1 &&

Run "mv Game.java MyPlayer.java SRUNTIME" &&

Run "cd runtime/" &&

CompileRunTime &&

Run "java -cp . SMAIN >" ../tests/${basename}.out &&
Run "make clean" &&
Run "cd .." &&

Compare tests/${basename}.out tests/${basename}.gold
tests/${basename}.diff

Report the status and clean up the generated files

TeSTING

Testing Script

CheckFail () {
error=0
basename="echo $1 | sed 's/.*\\///
s/.do//""
reffile="echo $1 | sed 's/.doS$//'"
basedir=""echo $1 | sed 's/\/["\/]*$//' /."
javafile="echo $basename |sed -e 's/"//g' -e 's/-
/ /9"’
ajavafile="echo $javafile | perl -pe 's/\S+/\uS$&/g'"
newjavafile="echo Sajavafile | perl -pe 's/([" 1) _
([a=-z1) /\\1\\u\\2/g"'"
echo 1>&2
echo "###### Testing Sbasename" 1>&2
generatedfiles="Sgeneratedfiles
tests/test failure/S${newjavafile}.java
tests/test failure/S{basename}.diff
tests/test_failure/${basename}.out" &&
RunFail "$DO FIFTY TWO" $1 ">"
tests/test failure/S$S{basename}.out
Report the status and clean up the generated files

}

eSTING

Manual gameplay testing:

1. Created simple game called War where 2
players are given half a deck each.

2. Each player then plays the top card of their
deck who ever has the lower of the two picks
up the played cards

3. Winner is decided based on who has no more
cards in their deck

sumimary

Summary of the language and lessons learned

sumimary

= Goal: to create a card game language that is user-friendly to
average non-programmers

= We successfully provided an English language style syntax
that are easy for novice programmers to learn

= Qut compiler for do fifty-two parses a user’s program, builds

a AST, and semantically checks the AST with a Semantic

Analyzed AST
= QOur compileris able to generate a running java program
= Manage to get all team members to contribute in the
implementation of the compiler using multiple tools and
languages throughout the semester

= Highlight: compiling hello_world.do, and eventually, war.do

LESSONS Learmneb

“Split your project up into discrete parts with the smallest number of
interdependencies possible. Then give each part to someone and make them own
it. That way nobody has to build a whole compiler.”

Sinclair Target

“Always have the big picture of your language design in mind. Keep modifying as
you move along and discover dark corners of your original design” Yichi Liu

“Understand the concept of a compiler well. Grasp why each stage is required.
Make sure you know OCAML well. And use tools such as Slack and Trello to help

with communication and task management.” Josephine Tirtanata

“l used CLIC machines while the rest of the team members used Mac OS X, and it
gave me some compatibility problems when putting together all the codes to
compile, so | think having integrated IDE environment is important.”

Yunfei Wang

“Communication and task management was incredibly important to us.
The use of trello to monitor bugs and roque features greatly helped our efficiency.
Making tests with the intention of failure was important since it was an outlier case

that wasn’t immediately apparent.” Jayson Ng

