QLang: Qubit Language
(Final Report)

Christopher Campbell Clément Canonne Sankalpa Khadka Winnie Narang
Jonathan Wong

December 17, 2014

Contents

1 An Introduction to the Language

1.1

1.2

2.1
2.2
2.3

3.1

3.2

3.3
3.4

3.5

Background: Quantum Computing
1.1.1 Dirac notation for quantum computation
1.1.2 Quantum Algorithms
Goal and objectives L e

QLang in practice: a Tutorial

Basics and syntax
Control structures, built-in functions and conversions
Diving in: Deutsch—Jozsa Algorithm

Reference Manual

Lexical conventions L
3.1.1 Character set e
3.1.2 Literalso
3.1.3 Constants
3.1.4 Identifier (names)
3.1.0 Keywords oL e e
3.1.6 Expression Operators e
3.1.7 Seperators e e
3.1.8 Elementary operations and spacingo
Objects and types L
3.2.1 Objectsand lvalues.
3.2.2 Valid types e
Conversions L e e
Expressions oo
3.4.1 Operator Precedence
3.4.2 Literals e
3.4.3 Primary Expressions
3.4.4 Unary Operators i e e
3.4.5 Binary Operators
3.4.6 Assignment Operators
Declarations
3.5.1 Type Specifiers
3.5.2 Declarator List

3.5.3 Meaning of Declarators

3.6 Statements L e e e e
3.6.1 Expression statements Lo
3.6.2 Theif-else statement
3.6.3 Theforloop e
3.6.4 Thewhileloop

3.7 Scoperules e

3.8 Constant expressions L e e

3.9 Examples
3.9.1 Solving Quantum Computation Problem,
3.9.2 Simulation of Quantum Algorithm

Project Plan and Organization

4.1 Project Management e e
4.1.1 Planning L e
4.1.2 Specification e
4.1.3 Development
4.1.4 Testing e

4.2 Style Guide e

4.3 Project Timeline

4.4 Roles and Responsibilities oo

4.5 Software Development Environment

4.6 Project Log e

Architectural Design
5.0.1 Block Diagram
5.0.2 Components e

Test Plan

6.1 Testing Phases e
6.1.1 Unit Testing e
6.1.2 Integration Testingo
6.1.3 System Testing L

6.2 Automation and Implementation L L

6.3 Sample test programs L.

Lesson Learned

7.1 Christopher Champbell

7.2 Sankalpa Khadka

7.3 Winnie Narang oL

7.4 Jonathan Wong L

More on Quantum Computing

A1 Common quantum gates

A.2 Tensor product and its properties

29
29
29
29
29
30
30
30
30
30
31

39
39
39

41
41
41
41
41
41
42

B Source Code 54

B.1
B.2
B.3
B.4
B.5
B.6
B.7

B.8

B.9

SCANNET o e e e e e e 54
Parser e 55
AST e e 58
Analyzer e 61
SAST . e e e e 72
Generator L e e 75
SCripts . . . e 80
B.7.1 Makefile e 80
B.7.2 Compilation script 81
B.7.3 Testing script Lo 81
Programso 84
B.81 Demo e 84
B.8.2 Successful Test cases 88
B.8.3 Execution output of successful cases 96
B.84 Failedcases e 100
B.8.5 Output for failed cases 104
C++ Helper files e 105
B.9.1 qlang.cpp 105
B.9.2 qlang.hpp 107

Chapter 1

An Introduction to the Language

The QLang language is a scientific tool that enables easy and simple simulation of quantum computing
on classical computers. Featuring a clear and intuitive syntax, QLang makes it possible to take any
quantum algorithm and implement it seamlessly, while conserving both the overall structure and
syntactical features of the original pseudocode. The QLang code is then compiled to C++, allowing
for an eventual high-performance execution — a process made simple and transparent to the user,
who can focus on the algorithmic aspects of the quantum simulation.

1.1 Background: Quantum Computing

In classical computing, data are stored in the form of binary digits or bits. A bit is the basic unit of
information stored and manipulated in a computer, which in one of two possible distinct states (for
instance: two distinct voltages, on and off state of electric switch, two directions of magnetization,
etc.). The two possible values/states of a system are represented as binary digits, 0 and 1. In a
quantum computer, however, data are stored in the form of qubits, or quantum bits. A quantum
system of n qubits is a Hilbert space of dimension 2"; fixing any orthonormal basis, any quantum
state can thus be uniquely written as a linear combination of 2" orthogonal vectors {|i)}; where i is
an n-bit binary number.

Ezxample 1.1.1. A 3 qubit system has a canonical basis of 8 orthonormal states denoted |000), |001),
|010), [011), |100), |101), |110), |111).

To put it briefly, while a classical bit has only two states (either 0 or 1), a qubit can have states
|0) and |1), or any linear combination of states also known as a superposition:

|#9) = al0) + 51)
where a, 8 € C are any complex numbers such that |a|® + |3]° = 1.

Similarly, one may recall that logical operations, also known as logical gates, are the basis of
computation in classical computers. Computers are built with circuit that is made up of logical
gates. The examples of logical gates are AND, OR, NOT, NOR, XOR, etc. The analogue for quantum
computers, quantum gates, are operations which are a wunitary transformation on qubits. The
quantum gates are represented by matrices, and a gate acts on n qubits is represented by 2™ x 2"

unitary matrix'. Analogous to the classical computer which is built from an electrical circuit

That is, a matrix U € C?"*?" such that UTU = Ion, where -1 denotes the Hermitian conjugate.

containing wires and logic gates, quantum computers are built from quantum circuits containing
“wires” and quantum gates to carry out the computation.

More on this, as well as the definition of the usual quantum gates, can be found in Appendix A.

1.1.1 Dirac notation for quantum computation

In quantum computing, Dirac notation is generally used to represent qubits. This notation provides
concise and intuitive representation of complex matrix operations.
C1

C2
More precisely, a column vector | . is represented as [1)), also read as “ket psi”. In particular,

Cn
the computational basis states, also know as pure states are represented as |i) where i is a n-bit
binary number. For example,

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
|000) = 0 ,1001) = 0 ,1010) = 0 ,...,]101) = 0 ,]110) = 0 ,|111) = 0
0 0 0 1 0 0
0 0 0 0 1 0
10 10 0] 0] 0] 1]
Similarly, the row vector [c}‘ s ... ¢ }, which is also complex conjugate transpose of |¢), is

represented as (1|, also read as “bra psi”.

The inner product of vectors |p) and [¢) is written (p,). The tensor product of vectors |p)
and |¢) is written |p) ® |¢) and more commonly |p)|)). We list below a few other mathematical
notions that are relevant in quantum computing:

- z* (complex conjugate of elements)
if z = a + ib, then z* = a — ib.

- A* (complex conjugate of matrices)

e 1 e L [1 0 6
A= g o, | thend _l—?)i 2—4@]‘
- AT (transpose of matrix A)

L [6 o (1 s
A= g o,y thend _l&' 2+ 44|

- AT (Hermitian conjugate (adjoint) of matrix A)
* 1 61 1 —31
Defined as A (A) pif A l then A [—62‘ 9 _ 4@.]
- l|V)|| (€2 norm of vector |t))

31 2444
I
1) = v/ (¥|¢). (This is often used to normalize |¢) into a unit vector ||ti§u)

- (p|AlY) (inner product of |p) and Aly)).
Equivalently?, inner product of Af|p) and [1))

1.1.2 Quantum Algorithms

A quantum algorithm is an algorithm that, in addition to operations on bits, can apply quantum
gates to qubits and measure the outcome, in order to perform a computation or solve a search
problem. Inherently, the outcome of such algorithms will be probabilistic: for instance, a quantum
algorithm is said to compute a function f on input z if, for all x, the value f(x) it outputs is correct
with high probability. The representation of a quantum computation process requires an input
register, output register and unitary transformation that takes a computational basis states into
linear combination of computational basis states. If x represents an n qubit input register and
y represents an m qubit output register, then the effect of a unitary transformation U; on the
computational basis |),|y)m is represented as follows:

Us([€)nly)m) = |2)nly @ f(2))m, (1.1)

where f is a function that takes an n qubit input register and returns an m qubit output and &
represents mod-2 bitwise addition.

1.2 Goal and objectives

QLang has been designed with a handful of key characteristics in mind:

Intuitive. Any student or researcher familiar with quantum computing should be able to trans-
pose and implement their algorithms easily and quickly, without wasting time struggling to
understand idiosyncrasies of the language.

Specific. The language has one purpose — implementing quantum algorithms. Though, the language
supports many linear algebraic computation, it is mainly aims for quantum computation.
Anything that is not related to nor useful for this purpose should not be — and is not — part of
QLang (e.g., the language does not support strings).

Simple. Matrices, vector operations are pervasive in quantum computing — thus, they must be
easy to use and understand. All predefined structures and functions are straightforward to
use, and have no puzzling nor counter-intuitive behavior.

In a nutshell, QLang is simple, includes everything it should — and nothing it should not.

2Recall that we work in a complex Hilbert space: the inner product is a sesquilinear form.

Chapter 2

QLang in practice: a Tutorial

2.1 Basics and syntax

A QLang file (extension .ql by convention) comprises several functions, each of them having its
own variables. Once compiled, a program will start by calling the compute() function that must
appear in the .ql file, and whose prototype is as follows:

def compute(): int trial {
trial =10;
}

In particular, the main entry point compute() receives no argument and, automatically prints the
return variable defined in the function declaration. The execution of above program prints 10. Note
also that QLang is case-sensitive: compute and Compute would be two different functions (however,
indentation is completely unrestricted).

Comments in the language are single-line, and start with a #: everything following this symbol,
until the next line return, will be ignored by the compiler. Furthermore, a function is defined (and
declared — there is no forward declaration) by the keyword def followed by the details of the function:

def function name(typel paraml, type2 param2, ..., typek paramk): type returnvar {
variable declarations
body of the function

}

The valid types in QLang for parameters, return variables and variables are int, float, comp, mat:
respectively integers, real numbers, complex numbers and matrices (the latter including, as we shall
see, qubits). In the above, the return variable returnvar is available in the body of the function, and
its value will be returned at the end of the function call. All other local variables must be declared,
at the beginning of the function body: in particular, it is not possible to mix variable declaration
and assignment:

def foo(mat bar): mat blah {

int bleh; # OK
int bluh = 0; # Not OK: parsing error
comp blih ; bloh; # Not OK: one variable at a time

comp blih; comp bloh; #OK

bleh = 5; # OK
bleh = bleh+1 # Not OK: missing semicolon
bleh = bleh * 4 +
2" bleh; # OK: statements can span several lines
bleh = bleh —1; bleh = 2xbleh; # OK: several statements per line
blah = bleh * bar; # OK: blah is the returned variable

As examplified above, each statement (declaration, assignment, operation) can span any number of
lines, and end with a semicolon.

Qubits, matrices and vectors. Before turning to the flow control structures, recall that QLang
is designed specifically for the sake of implementing quantum algorithms; as such, it supports the
usual quantum notations for bra and kets (although it stores and recognize then as of type mat):

mat idt ;

mat vct;

mat qub;

qub = [11>; # this is a ket of dirac notation

qub = <01[; # this is a bra of dirac notation

idt = [(1,0)(0,1)]; # this is a matrix

vet = [(1,2,C(3.2 + 1.1))]; # this is a vector (with complex entries)
vet = qub; # this is OK

In the above, the 3 variables have the same type — the difference is only syntatical, in order to
provide the user with an intuitive way to program the quantum operations.

2.2 Control structures, built-in functions and conversions

Now that the basic syntax of the language has been described, it is time to have a look at
the fundamental blocks of any algorithm: the control structures, such as loops and conditional
statements.

Loops. QLlang supports two sorts of loop, the for and while statements. While their behaviors are
illustrated below, it is important to remember two features of the for loop: namely, that (a) the
loop index must be a variable declared beforehand; and (b) that the (optional) keyword by allows to
set the increment size by any integer, even negative.

int i; # Will be used as ’for’ loop index
int a;

for(i from 0 to 2 by 1) # OK

a=a+5;
for(i from 2 to 0 by —1) # OK
{
a=ax*x10;
continue; # going to next iteration: the next instruction will never be executed.
print(a);
for(i from 1 to 10) # OK: missing "by 1" is implicit

a=a—3;

break; # leaves the loop.
¥
while(a leq 10) # OK
a=a-+1;

while(a neq 0) # OK

a = (a+1) ;
continue;
print (0); # never reached

As shown above, braces are optional when the body of the loop comprises only one line.

Conditional constructs. As in many languages, QLang supports a C-like if...else construct:

if (predicate)

{
Do something
}
else
{
Do something else
}

The predicate can be any expression evaluating to an integer: if non-zero, the if statement is entered;
otherwise, the (optional) else statement is entered, if it exists. Note that QLang does not provide a
builtin construct elseif, but instead relies on a nested combination of if and else:

if(z eq 5) a = 0;

a =a — 2;
if(z leq 5)

a = 0;
}
else
{
a = 10;
b = 24;
}
if(a gt 100)
{

print(b); # a > 100

else if(a eq 10)
{

}

print(a);

Builtin functions and operators. As shown in the previous two examples, QLang provides
builtin constructs to perform basic or fundamental tasks:

Comparison operators: gt, It, geq, leq, eq, neq take two operands a, b, and return 0 (resp. 1) if
respectively a > b, a < b,a>b,a<b,a<band a=0>band a # b

Builtin functions: these are convenient functions such as print, printq (for qubit syntax), or mathe-
matical ones applying to matrices such as norm, adj, to complex values (sin, im, ...) or to 0/1
integers (“Booleans”) such as and, xor.

Operators: the language supports the usual unary (negation —, logical negation not), binary (addition
+, substraction —, exponentiation”...) operators, as well as some more specific ones (tensor
product @).

The complete list of these functions, operators and builtin constants can be found in Chapter 3.

Implicit conversions. Implicit conversions for some operators such as eq is possible, according
to the following rule: int~~float~~comp~>mat. However, the language is otherwise strongly typed:
it is not possible to assign a complex number to a variable of type mat, for instance.

2.3 Diving in: Deutsch—Jozsa Algorithm

To illustrate and describe the process of writing in QLang, this section will walk the reader through
the implementation of one of the most emblematic quantum examples, namely Deutsch-Jozsa
Algorithm. The goal of this algorithm is to answer the following question: given query access to an
unknown fucntion f: {0,1}" — {0,1}, promised to be either constant or balanced', which of the
two holds? Classically, it is easy to see that this requires (in the worst case) querying just over half
the solution space, that is 21 4+ 1 queries. Quantumly, the Deutsch-Jozsa algorithm enables us to
answer this question with just one query!

The circuit performing the algorithm is given below:

|0> n_| gen o N
!

i — L —

To implement it in QLang, we first have to implement the n-fold Hadamard gate H®"; recalling
that the Hadamard gate H is a built-in operator of the language, this can be done as follows:

def hadamard(int n): mat gate{
#returns Hadamard gate of 2" n dimensions
int i;
gate = H;
for (i from 1 to n—1 by 1){
gate = gate @Q H;
}

! f is said to be balanced if f(x) = 0 for exactly half of the inputs z € {0,1}"; or, equivalently, if E,[f(x)] =

(S

10

Now, to implement the measurement gate (or, more precisely, to return the measurement matrix),
we write the following code that takes a ket |x) and returns the matrix |z)(z|:

def measure(mat top): mat result{
returns the measurement matrix

mat ad;
mat ad = Adj(top);
result = top * ad;

(Note that |z) (x| was written as |x) adjoint(|x)), which is performed above using the transparent
conversion between vectors and matrices provided by the language.)

Since the qubit in the top register is n-bit, we can write a function that allows us to create such
a qubit for any n.

def topqubit(int n): mat input{
n—bit qubit
int i;
input = |0>;
for (i from 1 to n—1 by 1){
input = input @ |0>;
}

Once all the “building blocks” (gates) of the algorithm have been implemented, we can write
down the algorithm as it appears from the circuit above: the function takes as argument the
parameter size n, as well as the unitary matrix implementing the quantum gate Uy (the access to
the unknown function f), and returning either 0 or 1, depending one wether the function is constant
or balanced.

def deutsch(int n, qubk top, mat U): float outcomeZero{
mat bottom; mat top; mat input;
mat hadtop; mat meas;

bottom = |1>;
top = topqubit(n);
input = top @Q bottom;

hadtop = hadamard(n) ;
input = (hadtop @ H)x*input;

input U * input;
input = (hadtop @ IDT)x*input;
meas = measure (top);

input = (meas @ IDT)#* input;
outcomeZero = norm(input);

}

Finally, we can call (and test) our algorithm by defining two unitary transformations (here Uy,
and U.) and testing our function on them — and print the output. This is done by writing the entry
point function, compute:

11

def compute (): float outcomef{
int n; mat Ub; mat Uc;

n = 1;
Ub = [(1,0,0,0)(0,1,0,0)(0,0,0,1)(0,0,1,0)];
Ue = [(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)];

outcome = deutsch(n, Ub);
print (outcome) ;

outcome = deutsch(n, Uc);
print (outcome) ;

n = 2;
Ub =

coococorOC@

cocooor OO

[eoNeNeN o NN ol

e N N
coocoocococor
coocoococoro
corroO0O0OO
—oo0O00O0O0O
o oOoOO0OCOOO
NN NN NN

B

outcome = deutsch(n, Ub);

The above program will print 0, 1, 0 for balanced function, constant function and balanced
function respectively.

12

Chapter 3

Reference Manual

3.1 Lexical conventions

There are five kinds of tokens in the language, namely (1) literals, (2) constants, (3) identifiers, (4)
keywords, (5) expression operators, and (6) other separators. At a given point in the parsing, the
next token is chosen as to include the longest possible string of characters forming a token.

3.1.1 Character set

QLang supports a subset of ASCII; that is, allowed characters are‘ a-zA-Z0-90#,—_;: O [1{}<>=+/1%*|,
as well as tabulations \t, spaces, and line returns \n and \r.

3.1.2 Literals

There are three sorts of literals in the language, namely integer, float, and complex. All three can be
negative or positive (negation is achieved by applying the unary negative operator to them). Integers
are given by the regular expression [’0°-’9°]+, floats are given by [’0°-9°]1+ >.> [?0°-79’]*,
and complex are given by C(F) |C(F+F1I)|C(FI), where F is any floating point number.

3.1.3 Constants

There are several built-in numerical constants that can be treated as literals, they include:

e the base of natural logarithm e = >~72, % Equivalent to exp(1); has type comp.

pi the constant m. Has type float.

3.1.4 Identifier (names)

An identifier is an arbitrarily long sequence of alphabetic and numeric characters, where _ is included
as “alphabetic”. It must start with a lowercase or uppercase letter, i.e. one of a-zA-Z. The language
is case-sensitive: hullabaloo and hullABal.oo are considered as different.

13

3.1.5 Keywords

The following identifiers are reserved for keywords, using them as function of variable name will
result in an error at compilation time.

int float comp mat C I def return eq neq 1lt gt leq geq
true false not and or xor norm trans det adj conj unit @
im re sin cos tan if else for from to by while break continue

3.1.6 Expression Operators

Expression operators are discussed in detail in section 3.4, Expressions.

3.1.7 Seperators

Commas are used to separator lists of actual and formal parameters, colons are used to separate the
rows of matrices, semi-colons are used to terminate statements, and the hash-symbol (#) is used to
begin a comment. Comments extends until the next carriage return. Multi-line comments are not
supported.

3.1.8 Elementary operations and spacing

An operation, or language elementary unit, starts from the end of the previous one, and ends
whenever a semicolon is encountered. Whitespace does not play any role, except as separators
between tokens; in particular, indentation is arbitrary.

3.2 Objects and types

3.2.1 Objects and lvalues

As in C, “an object is a manipulatable region of storage; an lvalue is an expression referring to an
object.”

3.2.2 Valid types

The language features 4 elementary types, namely int, float, comp, mat. Is also valid, any type that
inductively can be built from a valid type as follows:

e clementary types are valid;

e an matriz of a valid type is valid. Matrices have fixed size (that must be declared at compilation
time), and are comprised of any elements of any type (that is, a matrix can have elements of
non-necessarily identical types);

e a function taking as input a fixed number of elements from (non-necessarily identical) valid
types, and returning a valid type.

14

3.3 Conversions

Applying unary or binary operators to some values may cause an implicit conversion of their
operands. In this section, we list the possible conversions, and their expected result — any conversion
not listed here is impossible, and attempting to force it would generate a compilation error.

e int — float

e float — comp

e int — comp
The equality and comparison operators (eq, leq, geq, It, gt) will perform the implicit conversions
above, when they make sense. For instance, 0 eq C'(0.0 + 0.07) is valid, and the comparison will be
between two complex numbers (after the first operand is converted into a comp). Similarly, 1 It 2.5

is valid, the integer left-hand side being cast into a float (note that leq, geq, It, gt are not defined
for complex numbers, but only int and float).

3.4 Expressions

3.4.1 Operator Precedence

Unary operators have the highest precedence, followed by binary operators, and then assignment.
The precedence and associativity within each type of operator is given in the table below. The lists
of operators are read left to right in order of descending precedence. Also, the | symbol is used to
group operators of the same precedence.

Operator Type Operator Associativity

Primary Expressions | () [] <| |> Left

Unary re im norm unit trans det adj conj sin cos tan - | not | Right

Binary T */ % |+ -|tgtleqgeq|eqneq|and | orxor | Left (except ~ which is Right)
Assignment = Right

3.4.2 Literals

Literals are integers, floats, complex numbers, and matrices, as well as the built-in constants of
the language (e.g. pi). Integers are of type int, floats are of type float, complex numbers are of
type comp, qubits and matrices are of type mat. The built-in constants have pre-determined types
described above (e.g. pi is of type float).

The remaining major subsections of this section describe the groups of expression operators,
while the minor subsections describe the individual operators within a group.

3.4.3 Primary Expressions
identifier

Identifiers are primary expression. All identifiers have an associated type that is given to them upon
declaration (e.g. float ident declares an identifier named ident that is of type float).

15

literals

Literals are primary expression. They are described above.

(expression)

Parenthesized expressions are primary expressions. The type and value of a parenthesized expression
is the same as the type and value of the expression without parenthesis. Parentheses allow expressions
to be evaluated in a desired precedence. Parenthesized expressions are evaluated relative to each
other starting with the expression that is nested the most deeply and ending with the expression
that is nested the least deeply (i.e. the shallowest).

primary-expression(expression-list)

Primary expressions followed by a parenthesized expression list are primary expressions. Such
primary expressions can be used in the declaration of functions or function calls. The expression list
must consist of one or more expressions separated by commas. If being used in function declarations,
they must be preceded by the correct function declaration syntax and each expression in the
expression list must evaluate to a type followed by an identifier. If being used in function calls each
expression in the expression list must evaluate to an identifier.

[expression-elementlist]

Expression element lists in brackets are primary expressions. Such primary expressions are used to
define matrices and therefore are of type mat. The expression element list must consist of one or
more expressions separated by commas or parenthsized. Commas separate expressions into matrix
columns and parentheses group expressions into matrix rows. The expressions can be of type int,
float, and comp and need not be identical. Additionally, the number of expressions in each row of
the matrix must be the same. An example matrix is shown below.

int a = 3;
int b = 12;
mat my matrix = [(0+1, 2, a)(5—1, 2x3—-1, 12/2)];

< expression|

Expressions with a less than sign on the left and a bar on the right are primary expression. Such
expressions are used to define qubits and therefore are of type mat. The notation is meant to mimic
the "bra-" of "bra-ket" notation and can therefore be thought of as a row vector representation of
the given qubit. Following "bra-ket" notation, the expression must evaluate to an integer literal of
only 0’s and 1’s, which represents the state of the qubit. An example "bra-" qubit is shown below.

mat b__qubit = <0100];

16

|expression>

Expressions with a bar on the left and a greater than sign on the right are primary expression. All
of the considerations are the same as for <ezpression|, except that this notation mimics the "ket" of
"bra-ket" notation and can therefore be though of as a column vector representation of the given
qubit. An example "ket-" qubit is shown below.

int a = 001;
mat k__qubit = |a>;

3.4.4 Unary Operators

not expression

The result is a 1 or 0 indicating the logical not of the expression. The type of the expression must
be int or float. In the expressions, 0 is considered false and all other values are considered true.
re exrpression

The result is the real component of the expression. The type of the expression must be comp. The
result has the same type as the expression (it is a complex number with 0 imaginary component).
im expression

The result is the imaginary component of the expression. The type of the expression must be comp.
The result has the same type as the expression (it is a complex number with 0 real component).
norm erpression

The result is the norm of the expression. The type of the expression must be mat. The result has
type float, and corresponds to the 2-norm; in the case of comp or float.

unit expression

The result is a 1 or 0 indicating whether the expression is a unit matrix. The type of the expression
must be mat.

trans expression

The result is the transpose of the expression. The type of the expression must be mat. The result
has the same type as the expression.

det expression

The result is the determinant of the expression. The type of the expression must be mat. The result
has type comp.

17

adj expression

The result is the adjoint of the expression. The type of the expression must be mat. The result has
the same type as the expression.

conj expression

The result is the complex conjugate of the ezpression. The type of the expression must be comp or
mat. The result has the same type as the expression.

sin expression

The result is the evaluation of the trigonometric function sine on the expression. The type of the
expression must be int, float, or comp. The result has type float if the expression is of type int or
float and type comp if the expression is of type comp.

cos expression

The result is the evaluation of the trigonometric function cosine on the expression. The type of the
expression must be int, float, or comp. The result has type float if the expression is of type int or
float and type comp if the expression is of type comp.

tan expression

The result is the evaluation of the trigonometric function tangent on the expression. The type of
the expression must be int, float, or comp. The result has type float if the expression is of type int
or float and type comp if the expression is of type comp. (If an error occured because of a division
by zero, a runtime exception is raised.)

3.4.5 Binary Operators

expression” exrpression

The result is the exponentiation of the first expression by the second expression. The types of the
expression must be of type int, float, or comp. If the expressions are of the same type, the result has
the same type as the expressions. Otherwise, if at least one expression is a comp, the result is of
type comp; if neither expressions are comp, but at least one is float, the result is of type float.

expression * expression
The result is the product of the expressions. The type considerations are the same as they are for
expression” expression except that it also allows for matrices.

expression / expression

The result is the quotient of the expressions, where the first expression is the dividend and the
second is the divisor. The type considerations are the same as they are for expression” expression.
Integer division is rounded towards 0 and truncated. (If an error occured because of a division by
zero, a runtime exception is raised.)

18

expression % expression

The result is the remainder of the division of the expressions, where the first expression is the
dividend and the second is the divisor. The sign of the dividend and the divisor are ignored, so the
result returned is always the remainder of the absolute value (or module) of the dividend divided by
the absolute value of the divisor. The type considerations are the same as they are for expression”
expression.

expression + expression

The result is the sum of the expressions. The types of the expressions must be of type int, float,
comp, or mat. If at least one expression is a comp, the result is of type comp; if neither expressions
are comp, but at least one is float, the result is of type float. Qubits and matrices are special and can
only be summed with within operands of the same type (and, in the case of matrices, dimensions).

expression - expression
The result is the difference of the first and second ezpression. The type considerations are the same
as they are for expression + expression.

expression @Q expression

The result is the tensor product of the first and second expressions. The expressions must be of
type of mat. The result has the same type as the expression.

expression eq expression

The result is a 1 or 0 indicating if it is true or false that the two expression are equivalent. The
type of the expressions must either be the same, or one of the two should be implicitly convertible
to the other type (e.g., 0.2 eq 1, where the right-hand side is an int that can be cast into a float).

expression It expression

The result is a 1 or 0 indicating if it is true or false that the first expression is less than the second.
The type of the expressions must be int or float.

expression gt exrpression

The result is a 1 or 0 indicating if it is true or false that the first expression is greater than the
second. The type of the expressions must be int or float.

expression leq expression

The result is a 1 or 0 indicating if it is true or false that the first expression is less than or equal to
the second. The type of the expressions must be int or float.

19

expression geq erpression

The result is a 1 or 0 indicating if it is true or false that the first expression is greater than or equal
to the second. The type of the expressions must be int or float.

expression or expression

The result is a 1 or 0 indicating the logical or of the expressions. The type of the expressions must
be int or float and must be the same. In the expressions, 0 is considered false and all other values
are considered true.

expression and expression

The result is a 1 or 0 indicating the logical and of the expressions. The type considerations are the
same as they are for expression or expression.

exrpression Xor exrpression

The result is a 1 or 0 indicating the logical xor of the expressions. The type considerations are the
same as they are for expression or expression.

3.4.6 Assignment Operators

Assignment operators have left associativity

lvalue = expression

The result is the assignment of the expression to the lvalue. The lvalue must have been previously
declared. The type of the expression must be of the same that the lvalue was declared as. Recall,
lvalues can be declared as int, float, comp, and mat.

3.5 Declarations

Declarations are used within functions to specify how to interpret each identifier. Declarations have
the form

declaration:
type-specifier declarator-list

3.5.1 Type Specifiers

There are five main type specifiers:
type-specifier:
int
float
comp
mat

20

3.5.2 Declarator List

The declarator-list consist of either a single declarator, or a series of declarators separated by commas.

declarator-list:
declarator
declarator , declarator-list

A declarator refers to an object with a type determined by the type-specifier in the overall
declaration. Declarators can have the following form

declarator:
identifier
declarator ()
(declarator)

3.5.3 Meaning of Declarators

Each declarator that appears in an expression is a call to create an object of the specified type.
Each declarator has one identifier, and it is this identifier that is now associated with the created
object.

If declarator D has the form

D()

then the contained identifier has the type "function" that is returning an object. This object
has the type which the identifier would have had if the declarator had just been D.

Parentheses in declarators do not change the the type of contained identifier, but can affect the
relations between the individual components of the declarator.

Not all possible combinations of the above syntax are permitted. There are certain restrictions
such as how array of functions cannot be declared.

3.6 Statements

3.6.1 Expression statements

Expression statements are the building blocks of an executable program. As the name suggests,
expression statements are nothing but expressions, delimited by semicolons. Expressions can actually
be declarations, assignments, operations or even function calls. For example,

x = a + 3;

21

is a valid expression statement, and so is

print(a);

3.6.2 The if-else statement

The if-else statement is used for selectively executing statements based on some condition.Essentially,
if the condition following the if keyword is satisfied, the specified statements get executed.To specify
what happens if the condition does not evaluate to true, we have the else keyword. In case we
want to evaluate more than one condition at a time, if-else can be nested.

if (condition){

else{

}

Example:

if (x eq 5) {
print (5);

} else if (x eq 3) {
print (3);

} else {
print (0) ;

}

3.6.3 The for loop

The for statement is used for executing a set of statements a specified number of times. The
statements within the for loop are executed as long as the value of the variable is within the
specified range. As soon as the value goes out of range, control comes out of the for loop. To ensure
termination, each iteration of the for loop increments/decrements the value of the variable, bringing
it one step closer to the final value that is to be achieved.

By default, increment or decrement is by 1. However, if the desired increment is something other
than one, the optional keyword by lets you specify that explicitly.

An example of for loop, increment by 2 is as follows:

int k;
for(k from 1 to 10 by 2) {
}

The two keywords break and continue can be used inside the body of the loop to respectively exit it
prematurely, or skip to the next iteration.

22

3.6.4 The while loop

The while statement is used for executing a set of statements as long as a predicate (condition)
is true. As soon as the predicate is no longer satisfied, control comes out of the while loop. An
example of while loop is given below:

while(k leq 100) {
k= k™2;
}

The two keywords break and continue can be used inside the body of the loop to respectively exit it
prematurely, or skip to the next iteration.

3.7 Scope rules

Name bindings have a block scope. That is to say, the scope of a name binding is limited to a
section of code that is grouped together. That name can only be used to refer to associated entity
in that block of code. Blocks of code in QLang are deliminated by the opening curly brace (’{’) at
the start of the block, and the closing curly brace (’}’) at the end of the block.

Within a program, variables may be declared and/or defined in various places. The scope of
each variable is different, depending on where it is declared.There are three primary scope rules.

If a variable is defined at the outset/outer block of a program, it is visible everywhere in the
program.

If a variable is defined as a parameter to a function, or inside a function/block of code, it is
visible only within that function.

Declarations made after a specific declaration are not visible to it, or to any declarations before

it.
For instance, consider the following snippet.
int x = 5;
int y = x + 10; # this works
int z = a + 100; # this does not
int a = 200;

3.8 Constant expressions

In order to facilitate efficiency in writing expression, the language introduces various mathematical
constants such as 7 , e and matrices such Pauli matrices and Hadamard matrices which are frequently
used in quantum computation. The keywords I, X, Y, Z, and H are reserved for this expressions.

o T I (B PRt

23

The Hadamard gate is defined by the matrix:

1 /1 1
3.9 Examples

We present some examples that illustrates the use of Qlang in solving quantum computing problems.

3.9.1 Solving Quantum Computation Problem

Probleml
Evaluate the following expressions: a. (H ® X)|00) b. (101]|000) c. (01|H ® H|01)

2| def compute() : mat evaluate (){
mat a;

a = |00>;

evaluate = (H @ X) x a;

6 printq (evaluate);

Problem 2

Consider the circuit and show the probabilities of outcome 0 where |¥;,,) = |1)

0) —{H] Y —)——1m)

| w-iﬁ!} Se | W 1:'

Figure 3.1: Quantum Circuit

def measure(mat top): mat outcomef{
mat ad;

ad = adj(top);
5 outcome = topx*ad;

}
def outcomezero(mat bottom) : float probability{

mat top; mat input;
11 mat had; mat cnot; mat ynot;

24

mat output; mat meas;

top = |0>;

input = top @ bottom;
had = H @ IDT;

cnot = [(1,0,0,0)

(0,1,0,0)

(0,0,0,1)

)

(0707170];

output = (ynotx(cnot+*(hadxinput)));
printq (output);
probability = norm(output);
}
def compute() : float outcome{
mat bottom;
bottom = |1>;

outcome = outcomezero (bottom) ;
print (outcome) ;

Output

(0.707107)[10> 4+ (—0.707107)[11>
1

3.9.2 Simulation of Quantum Algorithm
Deutsch Jozsa Algorithm

def measure (mat top) : mat outcome{
returns the measurement matrix for top qubit
mat ad;

ad = adj(top);
outcome = top * ad;

}

def hadamard (int n) : mat gate{
returns Hadamard gate for n qubit system
int i;
gate = H;

for (i from 0 to n—1 by 1){

25

26

50

60

66

76

}

def topqubit (int n)

}

def deutsch (int n,

def compute ()

gate = gate @Q H;

mat input{

#returns zero qubit for n qubit system
int i;

input = [0>;

for (i from 0 to n—1 by 1){

input = input @ |0>;

}

mat U)

unitary
mat top;
mat meas;

float outcomeZero{
transformation
mat input;

series of
mat bottom;
mat hadtop;

bottom = |1>;
top = topqubit(n);
input = top @Q bottom;

hadtop = hadamard(n);

input = (hadtop @ H)x*input;
input = U % input;

input = (hadtop @ IDT)x*input;
meas = measure (top);

input = (meas @ IDT)x* input;
outcomeZero = norm(input);

float outcome{

mat Ub; mat Uc;
for n equals 1

int n;
#test
n=1;
Ub is balanced, Uc is constant

Ub = [(1,0,0,0)(0,1,0,0)(0,0,0,1)(0,0,1,0
Uc¢ = [(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1

outcome = deutsch(n, Ub);
print (outcome) ;

outcome = deutsch(n, Uc);
print (outcome) ;

test for n equals 2

n = 2;

Ub = [(1,0,0,0,0,0,0,0)
(071707070707070)
(0,0,1,0,0,0,0,0)
(0,0,0,1,0,0,0,0)
(0,0,0,0,0,1,0,0)
(0,0,0,0,1,0,0,0)
(0,0,0,0,0,0,0,1)
(0,0,0,0,0,0,1,0)];

outcome = deutsch(n, Ub);

)
)

].
].

followed by

)

)

measurement

26

Output

Grover’s Search Algorithm

The following program implements special case of Grover’s Search Algorithm for f(0) =1.

Grover diffusion operator

5

-~

L gEn 2|0 (0] — 1,

Haer - A=

|[}::. _,.Ll e

|1} H

Repeat O(v'N) times

Figure 3.2: Grover Algorithm Circuit

|}

def measure (mat top) mat outcome{
measurement matrix for top qubit
mat ad;

ad = adj(top);
outcome = top * ad;

}

def ntensor (int n, mat k)
return n qubit k

: mat gate{

int i;

gate = k;

for (i from 0 to n—1 by 1){
gate = gate Q k;

}

def prepareU (int n) mat gate {
prepare the Uw or grover oracle

mat 1i;
mat u;
i =[(1,0)
(0,0)];
u = ntensor (n+1, i);
gate = ntensor (n+1,IDT)—2xu;
}

def prepareG (int n) mat gate{
prepare grover defusive operator

27

33 mat s; mat sa; mat i; mat h;

35 s = ntensor (n,|0>);
sa = adj(s);

37 i = ntensor(n,IDT);
gate = 2xs*xsa — i;

39 h = ntensor(n, H);

gate = hxgatexh;
41 gate = gate @ IDT;

}

def grover (int n) : float outcomeZero{

mat bottom; mat top; mat input;
17 mat hadtop; mat u; mat g; mat go; mat meas;
int i;

bottom = |1>;
51 top = ntensor(n, [0>);
input = top @ bottom;

hadtop = ntensor(n, H);

55 input = (hadtop @ H)x*input;
u = prepareU(n);

57 g = prepareG(n);

59 # grover operator
g0 = g*u;

apply grover operator over iteration
63 for (i from 0 to n by 1){

input = gox*xinput;
65 }

67 # measure on top qubit

meas = measure (top);

69 input = (meas @ IDT)x* input;

likelihood to get 0 on top register
71 outcomeZero = norm(input);

75| def compute () : float outcome{
#simulate the grover for f(0)=1

int n; mat Ub; mat Uc;
79 n = 1;

81 outcome = grover (n);
print (outcome) ;

n = 2;
85 outcome = grover(n);
}
Output
0.707107
2|1 0.5

28

Chapter 4

Project Plan and Organization

The majority of our initial meetings consisted of creating a rough outline of how we envisioned our
language. Much of the concept for the language was decided upon by Sankalpa, who was originally
the one who suggested designing a quantum computing language. This strong foundation is what
allowed us to create glang.

4.1 Project Management

4.1.1 Planning

Throughout the semester we met regularly to keep everyone up to date on the overall progress of
the project. Initially, it was twice a week after class for short meetings, but as the semester went on,
we began to meet nearly everyday. At the end of every week, there was a short session reviewing
what was accomplished that week, as well as our goals for the upcoming week.

4.1.2 Specification

Upon creation, the LRM was the manifestation of our vision. However, it was almost immediately
upon submitting the LRM that we realized that there were some changes that had to be made.
This was a common theme throughout the development process. Even though we had a set ideal
of what we wanted, the specification of the implementation varied during the course of our work.
However, constantly thinking about how certain things would affect, or be influenced by, the LRM
caused us to think more critically about our code. Though our LRM changed during the project
lifetime, QLang evolved as well.

4.1.3 Development

To ensure the group as a whole was able to coordinate their independent work, we used Git as a
distributed version control system. Each team member worked on an individual feature. When
they were satisfied that their section was working and had passed unit tests, it was pushed into the
master branch. Once it was pushed, the other team members looked over the feature and made
suggestions as well as pointed out any bugs that were missed. This iterative process was repeated
the entire project.

29

4.1.4 Testing

We continuously performed unit tests throughout the development process. However, it was not
until the end that we completed more rigorous acceptance testing. This was due to the continued
evolution of our language as well as features. One constant throughout the project was a configurable
test script that allowed us to complete the compilation process to a certain point. This allowed us
to isolate tests for the individual parts of the compiler such as the AST or code generator.

4.2 Style Guide

The following coding guidelines were generally followed while coding:

e One statement per a line
e Each block of code following a “let” statement is indented

e Helper functions are written for commonly reused code

4.3 Project Timeline
Commits to master, excluding merge commits

Nov 30: Started Code Generation
Nov 16: Started SAST, Analyzer, Compiler

Oct 27: Submitted LRM
Dec 2/3 Working Analyzer, Code Gen and Compiler
Oct 13: Started AST and LRM Nov 10: Working AST, Scanner] Parser

The above graph shows the project timeline for the QLang compiler. It represents the number of
commits over the course of the project, with a total of 397 commits. Work was generally centered
around large project deadlines but slowing down near the end of the project as we were wrapping
up.

4.4 Roles and Responsibilities

Christopher Campbell - System Architect (coded the greater part of the semantics)
Sankalpa Khadka - Language Guru (designed the majority of the features of our language)
Winnie Narang — Testing Verification and Validation (created the bulk of the test suite)
Jonathan Wong — Manager (built the QLang C++ library)

Cément Canonne - LaTex

4.5 Software Development Environment

The QLang project was built on a combination of OS X and Arch Linux platforms. As stated above,
Git was used as a distributed version control system. The compiler itself was written using both

30

vim and sublime. The project was done mostly in OCaml, but a QLang C++ library was created to
augment the C+4 Matrix library Eigen that is used for much of the linear algebra. Since our code
was compiled to C++, g++ was used to compile the code into an executable. Lastly, Bash/shell
scripts and makefiles were used to automate compilation and testing.

4.6 Project Log

Below is an excerpt from our git log in the format of “<YYYY-MM-DD>: <Author> - <Commit
Message>".

2014-12-17: khadka - main

2014-12-17: Christopher Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT
2014-12-17: Christopher Campbell - removed vestigial tokens

2014-12-17: khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT
2014-12-17: khadka - main

2014-12-17: Winnie Narang - Merge branch ’master’ of https://github.com/thejonathanwong/PLT
2014-12-17: Winnie Narang - tex

2014-12-17: Christopher Campbell - lessons learned

2014-12-17: khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT
2014-12-17: khadka - lessons learned

2014-12-17: Jonathan Wong - script to compile to execution file for single .ql file
2014-12-17: Jonathan Wong - cleaned up directory and minor change to Makefile

2014-12-17: Winnie Narang - Merge branch ’master’ of https://github.com/thejonathanwong/PLT
2014-12-17: Winnie Narang - main.tex

2014-12-17: khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT
2014-12-17: khadka - demo2

2014-12-17: Winnie Narang - Merge branch ’master’ of https://github.com/thejonathanwong/PLT
2014-12-17: Winnie Narang - PPT

2014-12-17: khadka - grover

2014-12-17: Winnie Narang - merge

2014-12-17: khadka - grover

2014-12-17: khadka - lessions, examples

2014-12-17: khadka - revised tutorial and introduction

2014-12-17: khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT
2014-12-17: khadka - demo 2 for probability

2014-12-17: khadka - demo 3 Deutsch

2014-12-17: Winnie Narang - Merge branch ’master’ of https://github.com/thejonathanwong/PLT
2014-12-17: Winnie Narang - tex files

2014-12-17: Christopher Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT
2014-12-17: Christopher Campbell - negative numbers in floats and funcitons with no params working
2014-12-17: khadka - demo 1 added

2014-12-16: Jonathan Wong - fixed up rows/cols

2014-12-16: Jonathan Wong - added cpp compilation to Makefile in Compiler directory
2014-12-16: Jonathan Wong - just kidding didn’t get rid of them all

2014-12-16: Jonathan Wong - got rid of extraneous ; in generator print

2014-12-16: Jonathan Wong - added compile cpp to runTest script

2014-12-16: Jonathan Wong - cleaned directory

2014-12-16: Jonathan Wong - fixed vectorToBraket

2014-12-16: Jonathan Wong - Added double endl to print

2014-12-16: Winnie Narang - Merge branch ’master’ of https://github.com/thejonathanwong/PLT
2014-12-16: Christopher Campbell - fixed glang.hpp

2014-12-16: Winnie Narang - Merge branch ’master’ of https://github.com/thejonathanwong/PLT
2014-12-16: Christopher Campbell - should be fixed

2014-12-16: Winnie Narang - Removed conflict

2014-12-16: Winnie Narang - Merge

2014-12-16: Christopher Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT
2014-12-16: Christopher Campbell - added break and continue

2014-12-16: khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

31

2014-12-16:
2014-12-16:
2014-12-16:
2014-12-16:
2014-12-16:
2014-12-16:
2014-12-16:
2014-12-16:
2014-12-16:
2014-12-16:
2014-12-16:
2014-12-16:
2014-12-16:
2014-12-16:
2014-12-15:
2014-12-15:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:

2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:

2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:
2014-12-14:

2014-12-14:
2014-12-14:

khadka - introduciton

Winnie Narang - Formatted result in exec_output a little

Winnie Narang - Comp n float matrix binop tests

khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Christopher Campbell - more updates

Christopher Campbell - more updates to presentation

Christopher Campbell - more updates to presentation

Christopher Campbell - more updates2

Christopher Campbell - more updates

Christopher Campbell - working on powerpoint2

Christopher Campbell - working on powerpoint2

Christopher Campbell - working on powerpoint

Christopher Campbell - working on powerpoint

khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Jonathan Wong - duplicate Eigen, fixed cpp makefile

khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Jonathan Wong - fixed tensor product

khadka - merge

Winnie Narang - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Winnie Narang - Better test for im,not and neg

Jonathan Wong - Merge https://github.com/thejonathanwong/PLT

Jonathan Wong - for some reason Eigen was deleted. Fixed vectorToBraket to
handle float coefficients

Winnie Narang - Fixup for assertion failed issue for determinant

Winnie Narang - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Winnie Narang - Fixed adjoint

Jonathan Wong - minor changes to norm test

Jonathan Wong - minor change

Winnie Narang - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Winnie Narang - Merge

Jonathan Wong - added constants test

Winnie Narang - All tests passing execution except for those with printq

Christopher Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Christopher Campbell - added rows, cols, and elem builtin funcs

Winnie Narang - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Jonathan Wong - Merge https://github.com/thejonathanwong/PLT

Jonathan Wong - added some mat operators and qubit printing

Winnie Narang - Fixed else if keyword bug in generator.ml

Christopher Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Christopher Campbell - updated test suite

Jonathan Wong - Merge https://github.com/thejonathanwong/PLT

Jonathan Wong - accidently removed if_stmt.ql

Christopher Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Christopher Campbell - updated test suite

Jonathan Wong - Merge https://github.com/thejonathanwong/PLT

Jonathan Wong - moved includes directory into Compiler dir, since that is
the directory we are going to submit

Christopher Campbell - analzyer

khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

khadka - chaning deutsch

Jonathan Wong - minor changes to merge

Christopher Campbell - updated test suite again

Christopher Campbell - updated test suite

khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Jonathan Wong - fixed tests for norm and det to reflect them returning comp

khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Christopher Campbell - fixed det

Jonathan Wong - reorganized cpp directory and eigen 1lib. Added compilation to
runTests.sh.

Jonathan Wong - Merge https://github.com/thejonathanwong/PLT

Jonathan Wong - some modifications to qlang.cpp

32

2014-12-13:
2014-12-13:
2014-12-13:
2014-12-13:
2014-12-13:
2014-12-13:
2014-12-13:
2014-12-13:
2014-12-13:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:

2015-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-12:
2014-12-11:
2014-12-11:
2014-12-11:
2014-12-11:
2014-12-11:
2014-12-11:
2014-12-11:
2014-12-11:
2014-12-11:
2014-12-11:
2014-12-11:
2014-12-11:
2014-12-11:
2014-12-11:

2014-12-11:
2014-12-11:
2014-12-11:

2014-12-11:
2014-12-11:
2014-12-10:

Winnie Narang - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Winnie Narang - Refined failures folder and added powerpoint

khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

khadka - row and column

Clement Canonne - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Clement Canonne - LRM, changes to get it consistent with the language.

Clement Canonne - LRM, changes to get it consistent with the language.

Christopher Campbell - really fixed it this time

Christopher Campbell - fixed comp comparisons

Christopher Campbell - script updates

Christopher Campbell - updated test script

Christopher Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Christopher Campbell - updated test script to take folder param

Jonathan Wong - Merge https://github.com/thejonathanwong/PLT

Christopher Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Christopher Campbell - syntax changes to analyzer

Jonathan Wong - changed const I to IDT

Winnie Narang - Refined failure test cases

Christopher Campbell - run tests update

Christopher Campbell - updated run tests

Christopher Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Winnie Narang - Failure test cases refined

Christopher Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Christopher Campbell - updated run tests script

Jonathan Wong - fix to if else

Jonathan Wong - Removed merge tokens from generator

Clement Canonne - Including the previous LRM, roughly (un)modified for now.

Clement Canonne - Tutorial: finished for now (i.e., not finished: DS algo and some
others (?) still to add. Turning to the refence manual.

Christopher Campbell - fixed by x in for loop’

Clement Canonne - Added tests for while, for and if

Clement Canonne - Tutorial: if, loops, etc

Clement Canonne - Going through the tutorial: added basics

khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

khadka - parts by parts

Clement Canonne - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Clement Canonne - Fixing parsing errors.

Christopher Campbell - changed norm, det, and equality/inequality analysis

khadka - generator

Winnie Narang - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Winnie Narang - Added some meaningful failures

Christopher Campbell - makefile for compiling our test output cpp

Christopher Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Christopher Campbell - fixed mod

Winnie Narang - generating outputs for gqland programs complete

Winnie Narang - Got cpp code compilation working in general

Jonathan Wong - Merge https://github.com/thejonathanwong/PLT

Jonathan Wong - added multiple qubit functionality to qubitToString -> vectorToBraket

khadka - small change in function call

Winnie Narang - runTests.sh working

Clement Canonne - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Winnie Narang - Resolving merge issues

Clement Canonne - Updated code for the tutotial, improved syntax for the code
highlighting.

Clement Canonne - Started fixing deutsch.ql, not valid yet (parsing errors)

Winnie Narang - Updated runTests.sh

Clement Canonne - Adding stuff to the tutorial. TODO: check the Deutsch algo .ql
file in the tests, it seems to be buggy.

Christopher Campbell - small updates

Christopher Campbell - print working

Christopher Campbell - working

33

2014-12-10: Christopher Campbell - updated

2014-12-10: Winnie Narang - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

2014-12-10: Christopher Campbell - updated

2014-12-10: Winnie Narang - Cleaning up temp cpp and ql files

2014-12-10: Winnie Narang - Merge

2014-12-10: Winnie Narang - Updated testing

2014-12-10: Christopher Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

2014-12-10: khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

2014-12-10: Christopher Campbell - adding support for polymorphing print function

2014-12-10: khadka - print stuff

2014-12-10: Christopher Campbell - commit

2014-12-10: Christopher Campbell - removed qub

2014-12-10: khadka - print qubit

2014-12-10: Jonathan Wong - enforced 1 dimensionality of qubitToString

2014-12-10: khadka - test cases

2014-12-10: khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

2014-12-10: khadka - generator to handle print and equals

2014-12-10: Jonathan Wong - removed main from glang.cpp

2014-12-10: Jonathan Wong - moved eigen lib into directory

2014-12-10: Jonathan Wong - added qubitToString to generate string representation (|> & <|) of
a qubit

2014-12-10: Clement Canonne - Tutorial

2014-12-10: Clement Canonne - Tutorial

2014-12-10: Clement Canonne - iAdd tutorial file.

2014-12-10: Clement Canonne - Add package for quantum circuits in Latex.

2014-12-10: Clement Canonne - Starting to add final report, first attempt (wip)

2014-12-10: Clement Canonne - Starting the first commit for the final report.

2014-12-10: Jonathan Wong - Fixed qlang.cpp so testl.cpp and test2.cpp compiles

2014-12-09: Christopher Campbell - trying to get test algorithms to work

2014-12-06: khadka - algorithms to test for

2014-12-06: Christopher Campbell - if else working

2014-12-06: Christopher Campbell - implemented if else

2014-12-06: Christopher Campbell - matricies and complex working

2014-12-05: Christopher Campbell - fixed matricies

2014-12-05: Christopher Campbell - blah

2014-12-05: khadka - gen

2014-12-05: khadka - function call defined

2014-12-05: khadka - mat defination changed

2014-12-05: khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

2014-12-05: khadka - print statement and qlc file output

2014-12-05: Christopher Campbell - reading this?

2014-12-05: khadka - additional test cases

2014-12-05: khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

2014-12-05: Christopher Campbell - still no one reading this

2014-12-05: Christopher Campbell - no one is reading this

2014-12-05: khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

2014-12-05: Christopher Campbell - you suck more

2014-12-05: Christopher Campbell - you suck

2014-12-05: khadka - damn

2014-12-05: khadka - qubit def

2014-12-05: Christopher Campbell - fixed qubits

2014-12-05: Christopher Campbell - fixed qubits

2014-12-05: khadka - new qub

2014-12-05: Christopher Campbell - updated

2014-12-04: Jonathan Wong - changed all matrix gen to matrixXcf

2014-12-03: Jonathan Wong - midfix of cpp qubit

2014-12-03: Jonathan Wong - code gen qubit bra ket functionality

2014-12-03: Jonathan Wong - attempt to add qubit func

2014-12-03: Christopher Campbell - started final report document

2014-12-03: Christopher Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

2014-12-03: Christopher Campbell - fixed qubit and return variable issue with analyzer

34

2014-12-03:
2014-12-03:
2014-12-03:
2014-12-03:
2014-12-03:
2014-12-03:
2014-12-03:
2014-12-03:
2014-12-03:
2014-12-03:
2014-12-03:
2014-12-03:
2014-12-03:
2014-12-03:
2014-12-03:
2014-12-03:
2014-12-03:
2014-12-03:
2014-12-02:
2014-12-02:

2014-12-02:
2014-12-02:
2014-12-02:
2014-12-02:

2014-12-01:
2014-12-01:
2014-12-01:
2014-12-01:
2014-12-01:
2014-12-01:
2014-12-01:
2014-12-01:
2014-12-01:
2014-12-01:
2014-12-01:
2014-12-01:
2014-12-01:
2014-12-01:
2014-12-01:
2014-12-01:
2014-12-01:
2014-12-01:
2014-12-01:

2014-12-01:
2014-12-01:
2014-12-01:
2014-11-30:
2014-11-30:
2014-11-30:
2014-11-30:
2014-11-30:
2014-11-30:
2014-11-30:
2014-11-30:
2014-11-30:
2014-11-30:
2014-11-30:

khadka - working generator

khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

khadka - merge conflict resolution

Winnie Narang - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Winnie Narang - Semantic checks error output formatted

Jonathan Wong - Fixed semicolons and added initializer for return

Winnie Narang - Test Script and few cases

Christopher Campbell - remove test.sh

Christopher Campbell - fixed weird matrix output issue

khadka - test2

khadka - example testl

khadka - working qglc.ml

khadka - almost complete code generator; works

khadka - working qlc

khadka - working code generator with fixes

khadka - changes in testl.ql

khadka - working qlc with entire pipeline

khadka - Working makefile with all the requirements

Christopher Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Christopher Campbell - implemented matrix checking with the analyzer and printing
with the ast and sast pretty printer

Winnie Narang - semantic testing; not working yet

Jonathan Wong - updated generator

Christopher Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Christopher Campbell - analyzer is working. also made changes to qubits across all
files that may affect your work. please review them and we
can talk about it

Jonathan Wong - removed extraneous headers

Jonathan Wong - Merge https://github.com/thejonathanwong/PLT

Jonathan Wong - Some minor fixes

khadka - vardecl

Jonathan Wong - Merge https://github.com/thejonathanwong/PLT

khadka - vardecl

Jonathan Wong - Added return variable initializer

khadka - vardecl

Winnie Narang - Merged

Winnie Narang - Call

Jonathan Wong - Merge https://github.com/thejonathanwong/PLT

Jonathan Wong - writeQubit and changes to header

Jonathan Wong - Consolidated glang.h and constants.h into one file

khadka - merging

khadka - writeMatrix included

Winnie Narang - Lit_comp

Winnie Narang - cppExpr

Jonathan Wong - Finished writeUnop

Christopher Campbell - removing uncessary comments now that we have a better
understanding of how everything works

Christopher Campbell - analyzer compiles, but not complete and not tested

Christopher Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Christopher Campbell - big progress on analyzer, but still not compiling

khadka - more generator

Jonathan Wong - Added cpp directory with qubit gen

Winnie Narang - Working on Unop

Winnie Narang - Worked on cppExpr

Winnie Narang - Fixed cppStmt

Jonathan Wong - Merged conflicts, includes most of the controlflow

Jonathan Wong - Initial merge

Winnie Narang - Merged While and For

Winnie Narang - generator - added codegen skeleton for while

khadka - conflict solved

khadka - sast with updated statements

35

2014-11-30:
2014-11-30:
2014-11-30:
2014-11-30:
2014-11-30:
2014-11-30:
2014-11-30:
2014-11-29:
2014-11-29:
2014-11-29:
2014-11-29:
2014-11-26:
2014-11-26:
2014-11-26:
2014-11-26:
2014-11-26:
2014-11-26:
2014-11-26:
2014-11-26:
2014-11-23:
2014-11-23:
2014-11-23:
2014-11-23:
2014-11-23:
2014-11-23:
2014-11-23:
2014-11-23:
2014-11-23:
2014-11-23:
2014-11-22:
2014-11-22:

2014-11-20:
2014-11-20:

2014-11-19:
2014-11-19:
2014-11-19:
2014-11-19:
2014-11-19:
2014-11-19:
2014-11-17:
2014-11-16:
2014-11-16:

2014-11-12:
2014-11-10:

2014-11-09:
2014-11-09:
2014-11-09:
2014-11-09:
2014-11-09:
2014-11-04:
2014-11-04:
2014-11-04:
2014-11-04:
2014-11-04:
2014-11-04:

2014-11-04:

khadka -
khadka -
khadka -
Jonathan
Jonathan
khadka -
Christopher
Christopher
Christopher
Christopher
Christopher
Christopher
Christopher
Christopher
Christopher
Christopher
Christopher
Christopher
Christopher

Winnie Narang -
Winnie Narang -

changes with generator

qlc with generator

additional generator.ml

Wong - start writeIfStmt in code gen
Wong - Fixed minor typing mistakes
code generator starting point

Campbell - more updates...

Campbell - more updates to analyzer

Campbell - cleaned up analyzer

Campbell - sast is back

Campbell - updates to analyzer

Campbell - successfully able to parse full programs
Campbell - got statement lists working, program will be next
Campbell - getting further along withe testing
Campbell - compile script

Campbell - basic testing

Campbell - small changes

Campbell - merged

Campbell - updates to analyzer

Merge with exampleCPP
Pretty printing working...

Jonathan Wong - Made initial fixes to grover search

Jonathan Wong - Added control, updated problems, more examples
Jonathan Wong - Merge https://github.com/thejonathanwong/PLT
Jonathan Wong - Updated examples. Created constants and tensorProd
khadka - testl program

Jonathan
Jonathan
Jonathan
Christopher
Christopher

Christopher
Christopher

Christopher
Christopher
Christopher

Wong - Fixed example 3
Wong - Possible fix to example 3
Wong - Made initial changes to LRM based on TA feedback

Campbell - small change

Campbell - added more to ananalyzer, but I know it’s not compiling
right now so don’t even try

Campbell - updated analyzer

Campbell - completed unop and binop checks for analyzer nad made
small changes to the other files

Campbell - still working on analyzer

Campbell - merging

Campbell - working analyzer - far from done

khadka - a first working sast

khadka - included sast.mli in make

Jonathan Wong - Added C++ code for examples in LRM. Prob 3 broken
Winnie Narang - Pretty printer for AST added, not compete yet

Christopher
Christopher

Christopher
Christopher

Christopher
Christopher
Christopher
Christopher
Christopher
Christopher

Campbell - added files for sast, analyzer, and compiler

Campbell - fixed shift/reduce conflicts for our ’for’ statements
and complex numbers ; °’

Campbell - added project examples

Campbell - finished ast, parse, and scanner for the most part, but
need to be carefully reviewed and tested

Campbell - updated ast, parser, and scanner
Campbell - updated ast and parser

Campbell - updated ast and parser

Campbell - updated scanner

Campbell - updated ast and parser

Campbell - Updated Ast and scanner

khadka - new tokens added
khadka - fix merge conflicts
khadka - updated with all the token from the scanner

Christopher
Christopher

Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Campbell - Finished AST, although it will almost certainly need
revision

Jonathan Wong - Added some tokens to parser

36

2014-10-27:
2014-10-27:
2014-10-27:
2014-10-27:
2014-10-27:
2014-10-27:
2014-10-27:
2014-10-27:
2014-10-27:

2014-10-27:
2014-10-27:
2014-10-27:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-26:
2014-10-24:

2014-10-20:

2014-10-15:
2014-10-15:
2014-10-15:
2014-10-15:
2014-10-14:
2014-10-13:
2014-10-13:
2014-10-13:
2014-10-13:

2014-10-13:
2014-10-13:
2014-10-13:
2014-10-13:
2014-10-13:
2014-10-13:

khadka - build main.pdf

Jonathan Wong - turned off colour and notes in main.tex

Jonathan Wong - redo scope commit

khadka - examples

Winnie Narang - Refined Statements and Scope

Winnie Narang - Added statements and scope rules

Jonathan Wong - Fixed rolled back changes in sec-declarations

Clement Canonne - Added matrix and array access [i] and [i,j]

Clement Canonne - Changes (fixed inconsistencies and types; added valid types and
conversions) .

Clement Canonne - Added files for new sections.

Clement Canonne - Second round of change: fixed some inconsistencies.

Clement Canonne - First round of changes: (lexical conventions updated soon).

khadka - main

khadka - grover circuit

khadka - new examples

Christopher Campbell - Finished sec-expressions.text

Jonathan Wong - Merge https://github.com/thejonathanwong/PLT

khadka - main

Jonathan Wong - Fixed sec-declarations.tex

khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

khadka - main

Christopher Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Christopher Campbell - Updating sec-expressions.tex

khadka - troubleshooting

khadka - updated examples

khadka - section on constant expressions

khadka - main with updated sections

Christopher Campbell - Added sec-expressions-table.tex

Christopher Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Christopher Campbell - Fixed formatting and compile issues with sec-declarations.tex

khadka - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

khadka - section for examples

khadka - just the main

thejonathanwong - Added declarations section

khadka - new section for constant expressions

khadka - new package for graphics

khadka - new section examples

khadka - images

khadka - updated packages with listling for code formatting

khadka - example section

Christopher Campbell - Completed a large part of ’expressions’ section and small
changes other places

Christopher Campbell - Made small changes to the scanner and added package and
preamble files

Clement Canonne - Filled section 2.

Clement Canonne - Filled lexical conventions, added packages and preamble files.

Clement Canonne - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Clement Canonne - (latest changes)

Christopher Campbell - Completed most of the scanner

Christopher Campbell - added . to symbols

Christopher Campbell - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Christopher Campbell - Started scanner

Clement Canonne - It goes on: started filling the reference manual, added a file for
the keywords.

Clement Canonne - Merge branch ’master’ of https://github.com/thejonathanwong/PLT

Clement Canonne - First push: baby reference manual, take #1.

Christopher Campbell - Added folder and documents for our compiler

Christopher Campbell - Adding microc to resources

khadka - starter for langauge referece manual

Sankalpa Khadka - starter ast

37

2014-10-12: khadka - Project proposal

2014-09-30: Christopher Campbell - Adding a Resources folder. It already contains two quantum
computing resources that are pretty helpful.

2014-09-29: thejonathanwong - Initial commit

38

Chapter 5

Architectural Design

5.0.1 Block Diagram

program scanner
(symbol stream)

token stream

G

AST glang lib
. Eigen lib
@Iwer libc++
SAST

h
C++ 5rc
generator o executable

5.0.2 Components

1. Scanner

The scanner was implemented using ocamellex - the associated file is scanner.mll. It was
chiefly implemented by Christopher Campbell and Winnie Narang.

The scanner takes a program (symbol stream) as input and tokenizes it to produce a token
stream. The tokenization process provides basic syntax checking, rejecting programs that
contain illegal symbols and illegal combinations of symbols (e.g. the $ symbol). Additionally,
it discards information that is unnecessary for the remainder of the compilation process such
as white space and comments.

2. Parser & Abstract Syntax Tree

39

The parser was implemented using ocamlyacc - the associated files are ast.ml and parser.mly.
It was chiefly implemented by Christopher Campbell and Sankalpa Khadka.

The parser takes the token stream produced by the scanner as input and parses it to produce
an abstract syntax tree (AST), which describes the overall structure of the program. ast.ml
provides parser.mly with the acceptable structure of the AST. The parsing process provides
further syntax checking, rejecting programs that do not strictly meet the syntactic requirements
of the AST (e.g. a malformed for statement).

. Analyzer & Semantically Analyzed Syntax Tree

The analzyer was implemented in OCaml - the associated files are analyzer.ml and sast.ml.
Additionally, analyzer.ml utilizes ast.ml in order to be able to analyze its input. It was chiefly
implemented by Christopher Campbell.

The analyzer takes the ast produced by the parser and analyzes it to produce a seman-
tically analyzed abstract syntax tree (SAST). Like the AST, the SAST describes the overall
structure of the program, but it also includes type information that was attached during the
analysis process. sast.ml provides analyzer.ml with the acceptable structure of the SAST. The
analysis process provides rigorous semantic checking, rejecting programs that violate type
requirements (e.g. assigning a complex number to a variable declared as an integer), declaration
requirements (e.g. using a variable that was not declared or attempting to declare a variable
more than once), scope requirements (e.g. using a variable declared in another function),
order requirements (e.g. calling a function before it is declared), and other language-specific
requirements (e.g. not declaring a compute function). Additionally, the analyzer adds built-in
information (i.e. built-in variables and functions) to the sast.

. Generator

The generator was implemented in OCaml - the associated file is generator.ml. Additionally,
generator.ml utilizes sast.ml in order to be able to process its input. It was chiefly implemented
by Sankalpa Khadka, Jonathan Wong, and Winnie Narang.

The generator takes the sast produced by the analyzer and generates c4++ code from it.
Most of the code it generates is hard coded into generator.ml, but but it also draws on code
from our standard library - glanglib, libc++, and Eigen (a third-party library).

. QLang Library
The QLang Library was implemented in c++ - the associated files are qlang.hpp and glang.cpp.
It was chiefly implemented by Jonathan Wong. The QLang library contains c++ code for

carrying out some of the more complex conversions from glang code to c+4 code in the
generator (e.g. generating qubits and carrying out the tensor product).

40

Chapter 6

Test Plan

6.1 Testing Phases

6.1.1 Unit Testing

Unit testing was done at very point essentially, as we were in the coding phase. Every building
block was tested rigorously using multiple cases. We tested for recognition of dataypes, variables ,
expression statements and functions initially, and then moved on to AST generation.

6.1.2 Integration Testing

In this phase,the various modules were put together and tested incrementally again. So once the
AST could be generated, we moved on to test the semantic analysis and code generation.

6.1.3 System Testing

System testing entailed end to end testing of our entire language framework. The input program
written in QLang is fed to the compiler and it gives out the final output of the program, having
passed through the parsing, scanning, compiling, code generation and execution phases. The final
results were piped to an output file where we could see all the outputs.

6.2 Automation and Implementation

A shell script was written in order to automate the test cases at each level, syntax, semantic, code
generation and accurate execution. Our file is called runTests.sh, located in the ’test’ folder. It
takes a folder having QLang program files, and the operation to be done on them as arguments.
The outputs of the respective operation can be seen in the corresponding output file.

The operation options available are :
: Parsing, scanning and AST generation.
: SAST generation.
: Code generation.
: Generated code is compiled.
: Generated executable is run, to generate the program’s outputs.

® O 0 »n

41

Code Code .

AST SAST generation L] Execution

Exec_output

The operations mentioned above are each inclusive of the operations mentioned above them. That
means, if you enter the ’g’ option, runTests.sh will perform the tasks under ’a’,’s’ and then the
operations specific to 'g’ as well.

The second argument is the folder that has the input program files. We have acronyms for two
folder that are standard to our implementation, the SemanticSuccess and the SemanticFailures. So
to run the sast generation on the files in SemanticSuccess folder, we would write :

sh runTests.sh s ss.

Test suite Operation

runTeusts.sh
Output

The entire code of this script can be seen in the appendix. The Test Suites were chiefly created
by Winnie Narang, and everyone else also contributed test cases. The script runTests.sh was created
by Winnie Narang and Christopher Campbell.

6.3 Sample test programs

The effort has been to exhaustively test every kind of execution scenario, in what can be a typical
user program. We have created many test files to showcase varied kinds of programs that can be
written in QLang, as can be seen in the contents of the SemanticSuccess and SemanticFailures
folders.

The rationale is to make sure that syntactically or semantically incorrect programs are not
compiled and echo corresponding meaningful error messages to the user, and that correct programs
are accepted and executed correctly.

Hence, we have separate test programs to test all kinds of unary and binary operations on all
datatypes that our language supports, and also for all kinds of statements and possible combinations
of expressions. Though the test suite is too large to be included in this section, here are a few
sample success and failure cases that showcase different applications of our language :

For instance, break_continue.ql is a QLang program as follows :

42

def func_test(int a) : int ret_name {
int i;

for (i from 0 to 2 by 1)
7 a=a+5;

9 for (i from 2 to 0 by —1)

{

11 a=ax*x10;
print(a);
13 break;
}
15
for (i from 1 to 5)
17
print(a);
19 continue;
a=ax*x10;
21
}
o3
ret_name = a;

25| }
27| def compute(): int trial {

29 trial = func_test (20);

It generates break_continue.cpp as below upon passing it through the code generation code

2|#include <iostream>
#include <complex>
#include <cmath>
#include <Eigen/Dense>
6|#include <qlang>

using namespace Eigen;
3| using namespace std;

10l int func_test (int a)

2 int i;
int ret_name;

16 for (int 1 = 0; i < 2; i =1 4+ 1){

a =a 4+ 5;
18
}

20 for (int i = 2; i< 0; i =14+ =1){
22 {

a =a x 10;

cout << a << endl;
26

break;

28 }

43

}

for (int i =1; i < 5; i =1 4+ 1){

{

cout << a << endl;

continue;
a =a x 10;
} ret_name = a;

return ret__name;

}

int main ()
{
int trial;
trial = func_test (20);
std::cout << trial << endl;

return 0;

}

and the generated output of this is :

Another example we consider is mat__qubit.ql

def func_test(mat a, mat b) : mat ret_name {

ret_name = axb;

def compute(int a):mat trial {

mat zero;
mat one;

zero = |0>;
one = |1>;

trial = func_test (H, zero);
printq(trial);

trial = func_test (H,one);
printq(trial);

44

It generates mat__qubit.cpp as below :

#include <iostream>
#include <complex>
#include <cmath>
#include <Eigen/Dense>
#include <qlang>

using namespace Eigen;
using namespace std;

MatrixXcf func_test (MatrixXecf a,MatrixXcf b)
MatrixXcf ret_ name;
ret_name = a * b;

return ret__name;

}
int main ()
{
MatrixXcf zero;
MatrixXcf one;
MatrixXcf trial;
zero = genQubit ("0",0);
one = genQubit("1",0);
trial = func_test (H, zero);
cout << vectorToBraket(trial) << endl;
trial = func_ test (H,one);
cout << vectorToBraket(trial) << endl;
std :: cout << trial << endl;
return O;
}

and it generates the qubits in the output as well, like :

(0.707107)[0> + (0.707107)[1>
(0.707107)]0> + (—0.707107)|1>
(0.707107,0)
(—0.707107,0)

One more program we can show here is a demonstration of the capacity of QLang to emulate
Quantum algorithms. The following program runs the Deutsch-Jozsa algorithm.

def measure (mat top) : mat outcome{
mat ad;

ad = adj(top);

outcome = top * ad;

}

def hadamard (int n) : mat gate{
int i;
gate = H;

for (i from 0 to n—1 by 1){

45

gate = gate @Q H;

}

}

def topqubit (int n) : mat input{
int i;
input = [0>;

for (i from 0 to n—1 by 1){
input = input @ |0>;

}

}

def deutsch (int n, mat U) : float outcomeZero{
mat bottom; mat top; mat input;

mat hadtop; mat meas;

bottom = |1>;

top = topqubit(n);

input = top @Q bottom;

hadtop = hadamard(n);

input = (hadtop @ H)x*input;

input = U % input;

input = (hadtop @ IDT)x*input;

meas = measure (top);

input (meas @ IDT)* input;

outcomeZero = norm(input);

}
def compute () : float outcome{

int n; mat Ub; mat Uc;

n=1;

Ub = [(1,0,0,0)(0,1,0,0)(0,0,0,1)(0,0,1,0)];

Uc = [(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)];

outcome = deutsch(n, Ub);

print (outcome) ;

outcome = deutsch(n, Uc);

print (outcome) ;

n = 2;

Ub = [(1,0,0,0,0,0,0,0)
(0,1,0,0,0,0,0,0)
(0,0,1,0,0,0,0,0)
(0,0,0,1,0,0,0,0)
(0,0,0,0,0,1,0,0)
(0,0,0,0,1,0,0,0)
(0,0,0,0,0,0,0,1)
(0,0,0,0,0,0,1,0)];

outcome = deutsch(n, Ub);

}

It creates the C++ code as follows :

46

50

60

#include <iostream>
#include <complex>
#include <cmath>
#include <Eigen/Dense>
#include <qlang>
using namespace Eigen;
using namespace std;

MatrixXcf measure (MatrixXcf top)

{
MatrixXcf ad;

MatrixXcf outcome;

ad = top.adjoint () ;
outcome = top * ad;

return outcome;

}

MatrixXcf hadamard (int n)

{
int i;
MatrixXcf gate;

gate = H;
for (int i = 0; i <n— 1; i =1 + 1){

{

gate = tensor (gate, H);

}
}

return gate;

MatrixXcf topqubit (int n)

{
int i;
MatrixXcf input;

input = genQubit ("0",0) ;
for (int i = 0; i <n-—1; i =1+ 1){

{

input = tensor (input, genQubit("0",0));
}
}

return input;

}

float deutsch (int n,MatrixXcf U)

{
MatrixXcf bottom;
MatrixXcf top;
MatrixXcf input;
MatrixXcf hadtop;
MatrixXcf meas;
float outcomeZero;

bottom = genQubit("1",0) ;
top = topqubit(n);
input = tensor (top, bottom);

47

hadtop = hadamard(n);

input = tensor (hadtop, H) * input;
input = U % input;

input = tensor (hadtop, IDT) x input;
meas = measure (top);

input = tensor (meas, IDT) % input;
outcomeZero input .norm() ;

return outcomeZero;
}
int main ()
{
int n;
MatrixXcf Ub;
MatrixXcf Uc;
float outcome;

n 1;

Ub = (Matrix<complex<float >, Dynamic, Dynamic>(4,4)<<1,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0).
finished () ;

Uc = (Matrix<complex<float >, Dynamic, Dynamic>(4,4) <<1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1).
finished () ;

outcome deutsch (n,Ub);

cout << outcome << endl << endl;

outcome deutsch (n,Uc);

cout << outcome << endl << endl;

n 2;

Ub = (Matrix<complex<float >, Dynamic, Dynamic> (8,8)
<<1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,

.finished () ;
outcome = deutsch(n,Ub);

std :: cout << outcome << endl;

return O0;

0,1,0,0,0,0,0,

The output of this exceution is :

Following programs show the ability of the semantic analyzer to catch incorrect programs. For
instance, the program:

def func_testl(int z)
int a;
int b;
int d;
a Z
ret__name

int ret_name {

= z;

def func_testl(int z) int ret_name2 {

ret__name2

Z;

48

}

def compute(int a):int trial {

trial = func_testl (4);

gives the error :

Fatal error: exception Analyzer.Except('Invalid function declaration: func_testl was already
declared")

whereas the sample program

def func_test(float z) : float ret_name {
float a;
a = 5.8;
ret_ name = z;

}

would give the error :

Fatal error: exception Analyzer.Except("Missing ’compute’ function")

More such pass and fail test cases can be found in the appendix and in our project folder.

49

Chapter 7

Lesson Learned

7.1 Christopher Champbell

I learned many lessons from this project, most of which were related to group dynamics. I learned
that, depending on how they are managed and leveraged, every group member’s differences (i.e.
differences in ideas, opinions, abilities, etc.) can either be beneficial or detrimental to the group
and the project. In order to effectively leverage differences in opinion, all group member’s opinions
should be heard and considered by the group, and if a clear winner does not emerge the leader for
that part of the project should make a decisive decision. This situation highlights another aspect of
group dynamics that I learned - leaders are important. In order to keep the different parts of the
project focused and progressing, each part should have a group member that leads its development.
Leading the development of a part of the project entails having expertise in the associated domain,
resolving tough issues and questions with it, and driving its development from beginning to end.In
addition to the lessons I learned involving group dynamics, I also learned lessons, and re-learned
lessons that I should have already known, that apply to project work in general. Among these
lessons learned were: start early and manager your time well, thoroughly research ideas before you
begin implementing them, and maintain a big picture view of the project.

7.2 Sankalpa Khadka

I realized that one of the important aspects of doing a big project is to make incremental progress,
however small, over time. In the beginning, it is not always possible to have a global view of how
each component of project fits in together. This can be discouraging factor at times, however this
should not deter anyone from building the components of the project. Teamwork is very crucial
to the success of the project. From the very beginning of the project, it is important to delegate
responsibilities and making sure that each member of team is contributing to the project. Any
disruption to this can affect the work balance.

Finally, it is a very fulfilling experience to design a programming language from CS perspective.
This experience draws from both theory and application aspect of CS. Everyone doing similar
projects in future should try to participate, contribute and enjoy the process.

50

7.3 Winnie Narang

I learned that one should always work while keeping in the mind the shape of the end result. That
helps in making sure your efforts are not wasted, and helps you make decisions more easily. Also,
start early. And always test every change as you go. If you code everything at once and then it
doesn’t work, it gets very hard to debug.

Also, since we were using git as our version control system, we had to deal with numerous merge
conflicts. So I learnt that one should keep committing changes, as you code as soon as you can be
sure however much you have written is correct, no matter how small the change. this helps makes
sure you are not causing any faults or conflicts for the other team members and also for you as an
individual.

7.4 Jonathan Wong

At the start of the semester, the task of creating a new programming language seemed to be an
impossibility. However, over the course of the semester, I learned and a gained an appreciation for
the amount of work and though that goes into the creation of languages.

I have learned that communication is key. Without our regular meetings, I would have been
floundering whenever I was off working independently. It is necessary to have a clear picture of what
is needed to be done everytime you sit down to work on the project. Effective communication also
allowed us to flesh out the gritty details of the language. What could have been improved is how
quickly a concensus on specifics could be reached. It would have been better to have one person
decide on these things and work could have been started immediatedly.

I know this is probably a common sentiment, but starting this project early is key. We did
not really start pushing until the start of November. Ideally, once we covered the lectures on the
structure of the compiler we should have hit the ground running. I have also learned that even
though git can be great at what it does, improper use of it can lead to a great deal of frustration if
one pushes bad code, or someone else deletes good working code.

o1

Appendix A

More on Quantum Computing

A.1 Common quantum gates

Pauli Operators

The Pauli operators are the special single qubit gates which are represented by the Pauli matrices
{I,X,Y,Z} as follows

I R B R R v

For example, the application of X causes bit-flip in following ways:

- J-f-»
o-f 8-

The Hadamard gate is defined by the matrix:

1 /1 1
- [1 _1] .
The Hadamard gate maps the computational basis states into superposition of states. The Hadamard

gate is significant since it produces maximally entangled states from basis states in the following
ways:

Hadamard Gate

HI0) = —=(0)+ 1)) HI1) = (10~ 1)

S
S

2

52

Controlled-U Gates

A controlled-U gate is the quantum gate in which the U operator acts on the n'" n-qubit only if the
value of the preceeding qubit is 1.

For example: In a Controlled-NOT gate, the NOT operator flips the second qubit if the first qubit is
1.

CNOT =

o O o=
o O = O
o O O
O = O O

CNOTI00) = |00
CNOT|01) = |01)
CNOT|10) = |11)
CNOT/11) = |10).

A.2 Tensor product and its properties

Let A = (a;j) be a matrix with respect to the ordered basis A = (u1,...,u,) and B = (b; ;) be a
matrix with respect to the ordered basis B = (v1,...,vy). Consider the ordered basis C = (u; ® v;)
ordered by lexicographic order, that is u; ® v; < w; ® vy ifif ¢ <l or i =1 and j < k. The matrix of
A ® B with respect to C is :

CLLlB CLLQB . CLLnB

a271B ag’gB ce agmB
A®B=| . .

an1B an2B ... app,B

This matrix is called the tensor product of the matrix A with the matrix B.
e A BR(C=(A®B)@C=A® (B ()

a(|z) @ y)) = alz) @ |y) = |z) @ aly)

(A® B) - (Iy)|2)) = Aly) ® Blz)

(A®B)-(C®D)=AC® BD

(A@ B = A" @ BH

If A and B unitary, A ® B is unitary.

If |z) = |z1)|z2) and |y) = [y1)|y2) then (z|y) = (z1]y1)(@2|y2)

53

Appendix B

Source Code

B.1 Scanner

scanner.mll

(* Christopher Campbell, Winnie Narangx)
{ open Parser }

let whitespace = [> 7 ’\t’ ’\r’ ’\n’]
Iet name — [’a’_’Z’ 7A7_7Z7] [7a’_7z7 7A7_7Z’ 70’_797 k)
let integers = [0’ ="9’]+
let floats = ['07—="9’]+ .7 ['0°—="9]
rule token = parse
whitespace { token lexbuf }
| # { comment lexbuf }
| "int" { INT } (x Integer type x*)
| "float" { FLOAT } (x Float type x)
| "comp" { COmP } (x Complex type x*)
| "mat" { MAT } (* Matrix *)
| 'C" {C} (* Start of complex number x)
| "I" {1} (* Imaginary component)
| "def" { DEF } (* Define function =x)
| '=’ { ASSIGN } (% Assignment)
| 7,7 { COMMA } (*x Separate list elements x)
| { COLON } (% Separate matrix rows =)
| 757 { SEMI } (* Separate matrix columns x)
| ¢ { LPAREN } (% Surround expression =)
|) { RPAREN }
[{ IBRACK } (* Surround vectors/matricies)
|] { RBRACK }
| { { LBRACE } (* Surround blocks =)
|y { RBRACE }
| "< { LCAR } (* Open bra— x)
[7> { RCAR } (* Close —ket =)
| { BAR } (¥ Close bra— and Open —ket =x)
| "+ { PLUS } (* Addition =)
| "= { MINUS } (% Subtraction =)
(R { TIMES } (x Multiplication =)
| /)’ { DIV } (* Division =)
| "%’ { MOD } (* Modulus x*)

54

| { EXPN } (*x Exponentiation x)

| "eq" { EQ } (* Equal to (structural) x)

| "neq" { NEQ } (x Not equal to (structural) =)
| "1t" { LT } (* Less than =)

| "gt" { GT } (* Greater than =)

| "leq" { LEQ } (x Less than or equal to x*)

| "geq" { GEQ } (x Greater than or equal to x)
| "not" { NOT } (* Boolean not x)

| "and" { AND } (x Boolean and x*)

| "or" { OR } (* Boolean or x)

| "xor" { XOR } (x Boolean xor)

| "norm" { NORM } (* Get norm)

| "trans" { TRANS } (* Get transpose x*)

| "det" { DET } (* Get determinant x)

| "adj" { ADJ } (x Get adjoint =)

| "conj" { CONJ } (* Get complex conjugate x*)

| "unit" { UNIT } (* Is unit matrix? =)

| "@’ { TENS } (¥ Tensor product =)

| "im" { IM } (x Is imaginary number? x)

| "re" { RE } (* Is real number x)

| "sin" { SIN } (* Sine x)

| "cos" { COs } (x Cosine =x)

| "tan" { TAN } (* Tangent =)

["if" { IF } (x If statement x)

| "else" { ELSE } (* Else statement x*)

| "for" { FOR } (* For loop — for(i from x to y by z) x)
| "from" { FROM }

| "to” { 7O }

| by { BY }

| "while" { WHILE } (x While loop =)

| "break" { BREAK } (* Break For or While loop)
| "continue" { CONT } (* Continue to For or While loop =)
| name as lxm ID(lxm) }

{
| integers as lxm { INT_LIT(lxm) }
| floats as lxm { FLOAT LIT(float_of_string lxm) }
{
{

| eof EOF }
| _ as char raise (Failure("illegal character " = Char.escaped char)) }
and comment = parse
[’\r’ ’\n’] { token lexbuf }
| —
B.2 Parser
parser.mly

(x Christopher Campbell, Sankalpa Khadkax)
%{ open Ast %}

%token C 1

%token INT FLOAT COMP MAT

%token DEF

%token ASSIGN

%token COMMA COLON SEMI LPAREN RPAREN LBRACK RBRACK LBRACE RBRACE LCAR RCAR BAR

55

%token
%token
%token
%token
Y%token
%token

PLUS MINUS TIMES DIV MOD EXPN

EQ NEQ LT GT LEQ GEQ
NOT AND OR XOR

EOF

%token
%token
%token
%token

<string> ID
<string> INT_LIT
<float > FLOAT _ LIT
<string> COMP_LIT

%nonassoc NOELSE
Y%nonassoc ELSE
%right ASSIGN
%left OR XOR

%left AND

%right NOT

%left BQ NEQ

%left LT GT LEQ GEQ
%left PLUS MINUS
%left TIMES DIV MOD TENS
%right EXPN

TENS UNIT NORM TRANS DET ADJ CONJ IM RE SIN COS TAN
IF ELIF ELSE FOR FROM TO BY WHILE BREAK CONT

%mnonassoc RE IM NORM TRANS DET ADJ CONJ UNIT SIN COS TAN

Y%start program
%type <Ast.program> program

%%

vtype:
INT { Int }
| FLOAT { Float }
| COMP { Comp }
| MAT { Mat }

vdecl:
vtype ID SEMI { { typ

name

$1;
$2 } }

vdecl list:

/* nothing =/ {] }

| vdecl_list vdecl { $2 $1 }

formal_params:

/* nothing =/ {] }
| formal params list { List.rev $1 }

formal params_ list:
vtype ID {

| formal params_list COMMA vtype ID { {
actual__params:
/* nothing */ {] }
| actual params list { List.rev $1 }
actual__params_ list:
expr { [81]
| actual_params_list COMMA expr { $3 :

fdecl:

({

3

typ = $1;

name = $2; }] }

typ = 83;

name = $4; } $1 }
$1 3}

DEF ID LPAREN formal_ params RPAREN COLON vtype ID LBRACE vdecl_ list

{ { func_name = $2;
formal_params = $4;
ret__typ $7;

56

stmt_list RBRACE

ret_name = $8;
locals = List.rev $10;

body = List.rev $11; } }
mat_row:
expr { [81] }
| mat row COMMA expr { $3 :: $1 }
mat_row_ list:
LPAREN mat row RPAREN
| mat_row

inner_ comp:
FLOAT_LIT {
| FLOAT LIT I
| FLOAT LIT PLUS FLOAT LIT I {

expr:
1D
INT_LIT
FLOAT_LIT
C LPAREN inner__comp RPAREN
LCAR INT_LIT BAR
BAR INT_LIT RCAR
LBRACK mat__
LPAREN expr RPAREN
ID ASSIGN expr
ID LPAREN actual__
MINUS expr
NOT LPAREN expr RPAREN
RE LPAREN expr RPAREN
IM LPAREN expr RPAREN
NORM LPAREN expr RPAREN
TRANS LPAREN expr RPAREN
DET LPAREN expr RPAREN
ADJ LPAREN expr RPAREN
CONJ LPAREN expr RPAREN
UNIT LPAREN expr RPAREN

list RBRACK

row__

params RPAREN

COS LPAREN expr RPAREN
TAN LPAREN expr RPAREN

expr PLUS expr
expr MINUS expr
expr TIMES expr
expr DIV expr
expr MOD expr
expr EXPN expr
expr TENS expr
expr EQ expr
expr NEQ expr
expr LT expr
expr GT expr
expr LEQ expr
expr GEQ expr
expr OR expr
expr AND expr
expr XOR expr

by :
/* nothing */ { Noexpr }

| BY expr { $2

stmt :

expr SEMI

| LBRACE stmt_ list RBRACE

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| SIN LPAREN expr RPAREN
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

A A A e o o o o e e A A A A A A e e o o o o A A A A A A A e o oy o o e A A A Ay

{ [List.rev($2)]

0.] }

$1] }

$3] }
d($1) }
Lit_int (int__
Lit

__list LPAREN mat_row RPAREN { List.rev($3)

of

}

Lit_comp(List .hd $3,

Lit_qub (%2, 0) }
Lit_qub($2, 1) }
Mat(List .rev ($2)) }
$2 }

A531gn($1 $3) }
Call ($1) }

Unop (Neg, $2))

Unop (Not, $3) }
Unop(Re, $3) }

Unop (Im, $3) }

Unop (Norm, $3) }
Unop(Trans $3) }
Unop (Det, $3) }
Unop(Adj, $3) }
Unop(Conj, $3) }
Unop(Unit, $3) }
Unop(Sin, $3) }
Unop(Cos, $3) }
Unop (Tan, $3) }
Binop (%1, Add, $3)
Binop ($1, Sub, $3)
Binop (81, Mult, $3)
Binop ($1, Div, $3)
Binop ($1, Mod, $3)
Binop (%1, Expn, $3)
Binop ($1, Tens, $3)
Binop (81, Eq, $3)
Binop ($1, Neq, $3)
Binop (81, Lt, $3)
Binop ($1, Gt, $3)
Binop($1, Leq, $3)
Binop (%1, Geq, $3)
Binop (81, Or, $3)
Binop (%1, And, $3)
Binop($1, Xor, $3)

57

$1 }

S M Nyt Ny S e e Al N e e g N Nl e)

_string $1) }
_float ($1) }

List.hd (List.rev $3)) }

{ Expr($%1) }
{ Block(List.rev $2) }

| FOR LPAREN expr FROM expr TO expr by RPAREN stmt
| WHILE LPAREN expr RPAREN stmt

| IF LPAREN expr RPAREN stmt %prec NOELSE

| IF LPAREN expr RPAREN stmt ELSE stmt

| BREAK SEMI

| CONT SEMI

stmt_list:

/* mnothing x/ { [] }

| stmt_list stmt { $2 $1 }

rev__program:

/* nothing =/ { [] }

| rev_program fdecl { $2 $1 }

program:
rev_program { List.rev $1 }

For($3, $5, $7, $8,
While ($3, $5) }

$10) }

If($3, $5, Ast.Expr(Ast.Noexpr)) }

If($3, 35, $7) }
BreakCont (0) }
BreakCont (1) }

B.3 AST

ast.ml

(x Christopher Campbell, Winnie Narang)
(* Elementary Data Types)
type data_type =
Int
| Float
| Comp
| Mat

(* Unary Operators)
type un_op =

Neg
| Not
| Re
| Im
| Norm
| Trans
| Det
| Adj
| Conj
| Unit
| Sin
| Cos
| Tan

(* Binary Operators x*)
type bi_op =
Add
| Sub
| Mult
| Div
| Mod
| Expn
| Tens
| Eq
| Neq
| Lt
| Gt
| Leq

58

| Geq
| Or
| And
| Xor
(x Expressions)
type expr =
Lit int of int

| Lit_float of float
| Lit_comp of float = float
| Lit_qub of string = int
| Mat of expr list list
| Id of string
| Unop of un_op x* expr
| Binop of expr * bi_op * expr
| Assign of string = expr
| Call of string * expr list
| Noexpr

(* Statements x)
type stmt =
Expr of expr
| Block of stmt list
| If of expr x stmt % stmt
| For of expr x expr * expr * expr #* stmt
| While of expr * stmt
| BreakCont of int

(* Statement Lists)
type stmt_ list =
stmt list

(* Variables Declaration x)
type var__decl =
{
typ : data_type;
name : string;

}

(* Function Declaration)
type func_decl =

{

ret__typ : data_type;

ret_name : string;

func_name : string;

formal params : var_decl list;
locals : var_decl list;

body : stmt list;

}

(* Program =)
type program =
func__decl list

(x Pretty Printer =x)
let rec string_ of_ expr = function
Lit_int(n) —> string_of_int n
| Lit_float(n) —> string_ of float n
| Lit_comp(fl,f2) —> string_of_float f1 + " 7 string_of_float f2 = "i"
| Lit_qub(s,t) —> let typ = string of int t in (match typ with
"0" —> "Qub—bra of "7 s
| _ —> "Qub—ket of "7 s)
| Mat(1l) —> string of mat 1
| Id(s) — s
| Unop(unl,expl) —>

~

59

(match unl with
105 Neg —> " —"
| Not —> " I "
| Re => " Re '
| Im —> " Im "
| Norm —> " Norm
| Trans —> " Trans
| Det —> " Det '
| Adj — " Adj "
|
|
|
|
|

107

109 !

"

"

Conj —> " Conj
Unit —> " Unit "

Sin —> " Sin '

Cos — " Cos "

Tan —> " Tan ") ~ string of expr expl
119 | Binop(ex1l,binop,ex2) —> string_of__expr exl ~
(match binop with

121 Add —> "+ ° | Sub —> " — " | Mult —> " % "
| Div—> " /" | Mod —> " % " | Expn —> " = " | Tens —> " @ "
23 | Eg=> " =" | Neg —> " I=" | Lt > " <"
| Leq => "<=" | Gt = " > " | Geq = " >="
125 | Xor = " XOR " | And —> " & " | Or — " || ") ~ string_ of expr ex2
| Assign(str,expr) —> str = " = " 7 string of expr expr
27 | Call(str,expr_list) —> "Calling " = str = " on " “string_of exprs expr_list
| Noexpr —> "'
129
and string_ of mat 1 =
131 let row strs =
List .map string_of row 1
133 in
"[" 7 String.concat "' row_strs = "]"
13
and string_of_row r =
137 let row_str =
String.concat "," (List.map string of expr r)

139 in
n (n -~ rOWﬁStI‘ -~ Yl) n

and string_of exprs exprs =
143 String.concat "\n" (List.map string_ of expr exprs)

145 and string_ of stmt = function

Expr(exp) —> string_of_expr exp =~ "\n'

147 | Block(stmt_list) —> "{\n" = string_of stmts stmt_ list = "\n}"

| If(e, s, Block([])) —> "if (" 7 string of expr e = ")\n" 7 string of stmt s

149 | If(e, sl, s2) — "if (" 7 string of expr e = ")\n" “string of stmt sl = "else\n" ~
string__of__stmt s2

| For(exl,ex2,ex3,ex4,stmt) —> "For args
ex2 " "7 string_of_ expr ex3 ~

151 " "7 string_ of expr ex4
string_ of _stmt stmt

| While(expr,stmt) —> "While condition : " 7 string_of_ expr expr
string_ of _stmt stmt

| BreakCont(t) —> string of breakcont t

" noon

~ string_ of__expr exl string_ of expr

"\ nstatement :\n" =

~ o~

"\ nstatement

155/ and string_ of_ breakcont t =
if (t = 0) then

57 "break"

else

159 "continue"

161land string_of stmts stmts =
String.concat "\n" (List.map string of stmt stmts)

and string_of_ var_decl var_decl =

60

"

"vdecl: typ:
(match var_decl.typ with

Int —> "int," = " name: " = var_decl.name” " '
| Float —> "float ," = " name: " = var_decl.name” " "
| Comp —> "comp," = " name: " 7 var_decl.name” " '
| Mat —> "mat," © " name: " ~ var_decl.name” " ")

and string_of fdecl fdecl =
"\nfdecl:\nret_ typ: "
(match fdecl.ret_typ with
Int — " int "
| Float —> " float "
| Comp —> " comp "
| Mat —> " mat ")
"\nret_name: "

"

" -~

"\ nfunc_name: fdecl.func_name = "\n("
String .concat (List .map string of var decl fdecl.formal params) = ")\n{\n" ~
String.concat "" (List.map string of var_decl fdecl.locals) = "\n"
String.concat "" (List.map string_of_stmt fdecl.body) = "}

fdecl.ret_name

(]

and string_of_ program (funcs) =
"program:\n" = String.concat "\n"' (List.map string of fdecl funcs)

B.4 Analyzer

analyzer.ml

(* Christopher Campbell x)
open Ast
open Sast

(s sk st sk s s sk ok ok sk ok ok ok ok ok
* Environment x
kKoK KK K KK Kk ok ok)

type symbol_table =
{ ret_typ : Sast.sdata_type;

ret_nam : string;

func_nam : string;

mutable formal_ param : svar_decl list;
mutable local : svar_decl list;
builtin : svar_decl list; }

type environment =
{ scope : symbol_ table;
mutable functions : Sast.sfunc_decl list; }

let builtin_ vars =

[{ styp = Sast.Float; sname = "e"; builtinv = true; };
{ styp = Sast.Float; sname = "pi"; builtinv = true; };
{ styp = Sast.Mat; sname = "X"; builtinv = true; };

{ styp = Sast.Mat; sname = "Y"; builtinv = true; };
{ styp = Sast.Mat; sname = "Z"; builtinv = true; };
{ styp = Sast.Mat; sname = "H"; builtinv = true; };
{ styp = Sast.Mat; sname = "IDT"; builtinv = true; };]

let builtin_ funcs =
[{ sret_typ = Sast.Void;

sret_name = "null";
sfunc_ name = "print";
sformal params = [{ styp = Sast.Poly; sname = "print_ val"'; builtinv = true; };];

61

35 slocals = [];
sbody = [Sast.Sexpr(Sast.Expr(Sast.Noexpr, Sast.Void))];
37 builtinf = true; };

39 { sret_typ = Sast.Void;

sret_name = "null";
11 sfunc_ name = "printq";

sformal params = [{ styp = Sast.Mat; sname = "printq_val"; builtinv = true; };];
43 slocals = [];

sbody = [Sast.Sexpr(Sast.Expr(Sast.Noexpr, Sast.Void))];

A5 builtinf = true; };

7 sret__typ = Sast.Int;
y

sret_name = "null";
19 sfunc_name = "rows";

sformal params = [{ styp = Sast.Mat; sname = "rows_val"; builtinv = true; };];
51 slocals = [];

sbody = [Sast.Sexpr(Sast.Expr(Sast.Noexpr, Sast.Void))];

builtinf = true; };

{ sret_typ = Sast.Int;

sret_name = "null";
57 sfunc_name = "cols";

sformal_params = [{ styp = Sast.Mat; sname = "rows_val"; builtinv = true; };];
59 slocals = [];

sbody = [Sast.Sexpr(Sast.Expr(Sast.Noexpr, Sast.Void))];

61 builtinf = true; };

63 { sret_typ = Sast.Comp;

sret_name = "null";
65 sfunc_ name = "elem";
sformal params = [{ styp = Sast.Mat; sname = "elem mat"; builtinv = true; };
67 { styp = Sast.Int; sname = "elem_ row"; builtinv = true; };
{ styp = Sast.Int; sname = "elem_col"; builtinv = true; };];
69 slocals = [];
sbody = [Sast.Sexpr(Sast.Expr(Sast.Noexpr, Sast.Void))];
71 builtinf = true; };]
731 let root__symbol_table =
{ ret_typ = Sast.Void;
75 ret_nam = "";
func_nam = "";
77 formal__param = [];
local = [];
79 builtin = builtin_vars; }
81| let root_ environment =
{ scope = root_symbol_table;
83 functions = builtin_ funcs; }

85| (ko o o ok ok ok ok ok ok ok ok ok
* Exceptions x
BT | sk sk ok skt ok skok s okok sk ok)

20| exception Except of string

91| let matrix_error t = match t with
0 —> raise (Except("Invalid matrix: incorrect type"))
93 | _ —> raise (Except("Invalid matrix"))

95| let qub__error t = match t with

0 —> raise (Except("Invalid qubit: incorrect use of |expr>"))
97 | 1 —> raise (Except('Invalid qubit: incorrect use of <expr|"))
| _ —> raise (Except("Invalid qubit"))

99

62

let assignment__error s =
101 raise (Except("Invalid assignment to variable: " 7 s))

103] let var__error s =
raise (Except("Invalid use of a variable: " = s 7 ' was not declared"))

let func_error s =
107 raise (Except("Invalid function call: " 7 s = " was not declared"))

109 let var_ decl error s =
raise (Except("Invalid variable declaration: " = s = " was already declared"))

let func_decl_ error s =

113 raise (Except("Invalid function declaration: " 7 s 7= " was already declared"))
115/ let unop__error t = match t with
Ast.Neg —> raise (Except('"Invalid use of unop: '—expr’'"))

| Ast.Not —> raise (Except("Invalid use of unop: ’'Not(expr)’"))

| Ast.Re —> raise (Except("Invalid use of unop: ’Re(expr)’"))

| Ast.Im —> raise (Except("Invalid use of unop: ’Im(expr)’"))

| Ast.Norm —> raise (Except("Invalid use of unop: ’Norm(expr)’"))

| Ast.Trans —> raise (Except("Invalid use of unop: ’'Trans(expr)’"))

| Ast.Det —> raise (Except("Invalid use of unop: ’'Det(expr)’"))

| Ast.Adj —> raise (Except("Invalid use of unop: ’Adj(expr)’"))

| Ast.Conj —> raise (Except("Invalid use of unop: ’Conjexpr)’"))

| Ast.Unit —> raise (Except("Invalid use of unop: ’Unit(expr)’"))

| Ast.Sin —> raise (Except("Invalid use of unop: ’Sin(expr)’"))

| Ast.Cos —> raise (Except("Invalid use of unop: ’'Cos(expr)’"))

| Ast.Tan —> raise (Except("Invalid use of unop: ’'Tan(expr)’"))

129

let binop_error t = match t with

131 Ast.Add —> raise (Except("Invalid use of binop: ’expr + expr
| Ast.Sub —> raise (Except("Invalid use of binop: ’expr — expr
| Ast.Mult —> raise (Except("Invalid use of binop: expr * expr
| Ast.Div —> raise (Except("Invalid use of binop: ’expr / expr’
| Ast.Mod —> raise (Except("Invalid use of binop: ’expr % expr’
| Ast.Expn —> raise (Except("Invalid use of binop: ’expr ~ expr
| Ast.Or —> raise (Except("Invalid use of binop: ’expr or expr’")
| Ast.And —> raise (Except("Invalid use of binop: ’expr and expr’'))

139 | Ast.Xor —> raise (Except("Invalid use of binop: ’expr xor expr’'))
I)
|
|
|
|
|

—

)

— e

Ast.Tens —> raise (Except("Invalid use of binop: ’expr @ expr’'")
Ast .Eq —> raise (Except("Invalid use of binop: ’expr eq expr’'"))
Ast.Neq —> raise (Except("Invalid use of binop: ’expr neq expr’'"))
Ast.Lt —> raise (Except("Invalid use of binop: ’expr 1t expr’"))
Ast.Gt —> raise (Except("Invalid use of binop: ’expr gt expr’")
Ast.Leq —> raise (Except('"Invalid use of binop: ’expr leq expr’"))
Ast.Geq —> raise (Except("Invalid use of binop: ’expr geq expr’'"))
let expr_error t = match t with

149 —> raise (Except('Invalid expression"))

1511 let call _error t = match t with
0 —> raise (Except("Invalid function call: function undeclared"))
| 1 —> raise (Except('"Invalid function call: incorrect number of parameters"))
| 2 —> raise (Except("Invalid function call: incorrect type for parameter"))
55 | _ —> raise (Except("Invalid function call"))
571 let stmt error t = match t with
0 —> raise (Except("Invalid use of statment: ’if "
159 | 1 — raise (Except('"Invalid use of statment: ’for
| 2 —> raise (Except('"Invalid use of statment: ’while’"))
161 | _ —> raise (Except("Invalid statement"))
163 let program__error t = match t with
0 —> raise (Except("Missing ’compute’ function"))

63

165 | 1 —> raise (Except("’compute’ function must be of type int"))
| _ —> raise (Except('"Invalid program"))

(3 3k sk s o sk ok ok ok ook oK oK K KKK K K
160 * Utility Functions =

*********************)

let var__exists name scope =

173 if (List.exists (fun vdecl —> name = vdecl.sname) scope.formal param) then true
else if (List.exists (fun vdecl —> name = vdecl.sname) scope.formal param) then true
75 else List.exists (fun vdecl —> name = vdecl.sname) scope.builtin

771 let func__exists name env =
List . exists (fun fdecl —> name = fdecl.sfunc_name) env.functions

let lookup_ var name scope =

181 let vdecl found =
try List.find (fun vdecl —> name = vdecl.sname) scope.formal_param
183 with Not_ found —>
try List.find (fun vdecl —> name = vdecl.sname) scope.local
185 with Not_ found —>
try List.find (fun vdecl —> name = vdecl.sname) scope.builtin

with Not found —> var_ error name in
vdecl found

let lookup_ func name env =
191 let fdecl found =

try

193 List.find (fun fdecl —> name = fdecl.sfunc_name) env.functions
with Not_found —> func_ error name

195 in

fdecl found

(CEEEETETEEE T
1909| * Checks *
stk ok ok ok ok ok K ok ok)
201

let rec check_qub_expr i =

203 let t = i mod 10 in

if (r =0 || r=1) then
205 let i =1 / 10 in

if (i !=0)
207 then
check__qub_ expr i

209 else 1

else 0

and check _qub i t =

213 let int__expr =

int__of string i

215 in

if (check_qub_expr int_expr = 1) then

217 (match t with

0 —> Sast.Expr(Sast.Lit_qub(i, 1), Sast.Mat)
219 | 1 —> Sast.Expr(Sast.Lit_qub(i, 0), Sast.Mat)
| _ —> qub_error 2)

221 else

qub__error t

and check mat 1 env =

225 let mat =

List .map (fun row —> check_mat_rows row env) 1
227 in

Sast.Expr(Sast.Mat(mat), Sast.Mat)

64

269

289

291

293

and check mat rows 1 env =
let row =
List .map (fun e —> check _mat_row e env)
in row

5land check mat_ row e env =

let se =
check_ expr env e
in
match se with
Sast.Expr(_, t) —>
match t with
Sast.Int —> se
| Sast.Float —> se
| Sast.Comp —> se
| _ —> matrix_error 0

and check id name env =
let vdecl =
lookup_ var name env.scope
in
let typ = vdecl.styp in
Sast .Expr(Sast.Id (name), typ)

and check_ unop op e env =
let e = check_expr env e in
match e with

Sast.Expr(q, t) —>
(match op with
Ast.Neg —>

(match t with

Sast.Int —> Sast.Expr(Sast.

| Sast.Float —> Sast.Expr(Sast.Unop(op, e),
| Sast.Comp —> Sast.Expr(Sast.Unop(op, e),

| _ —> unop_error op)
| Ast.Not —>
(match t with
Sast.Int —> Sast.Expr(Sast.
| _ —> unop__error op)
| Ast.Re —>
(match t with

Sast .Comp —> Sast.Expr(Sast.Unop(op, e),

| _ —> unop_error op)
| Ast.Im —>
(match t with

Unop (op,

Unop (op,

e), Sast.Int)

Sast . Float)

Sast .Comp)

e), Sast.Int)

Sast .Comp)

Sast.Comp —> Sast.Expr(Sast.Unop(op, e), Sast.Comp)

| _ —> unop_error op)
| Ast.Unit —>
(match t with
Sast.Mat —> Sast.Expr(Sast
| _ —> unop_error op)
| Ast.Norm —>
(match t with
Sast.Mat —> Sast.Expr(Sast
| _ —> unop_error op)
| Ast.Det —>
(match t with
Sast.Mat —> Sast.Expr(Sast
| _ —> unop_error op)
| Ast.Trans | Ast.Adj —>
(match t with
Sast.Mat —> Sast.Expr(Sast
| _ —> unop_error op)
| Ast.Conj —>
(match t with

.Unop(op,

.Unop(op,

.Unop(op,

.Unop (op,

65

e)7

Sast

Sast

Sast

Sast

.Int)

.Float)

.Comp)

.Mat)

299

301

303

307

309

329

Sast .Comp —> Sast.Expr(Sast.Unop(op, e), Sast.Comp)
| Sast.Mat —> Sast.Expr(Sast.Unop(op, e), Sast.Mat)
| _ —> unop_error op)
| Ast.Sin —>
(match t with
Sast.Int —> Sast.Expr(Sast.Unop(op, e), Sast.Int)
| Sast.Float —> Sast.Expr(Sast.Unop(op, e), Sast.Float)
| Sast.Comp —> Sast.Expr(Sast.Unop(op, e), Sast.Comp)
| _ —> unop_error op)
| Ast.Cos —>
(match t with
Sast.Int —> Sast.Expr(Sast.Unop(op, e), Sast.Int)
| Sast.Float —> Sast.Expr(Sast.Unop(op, e), Sast.Float)
| Sast.Comp —> Sast.Expr(Sast.Unop(op, e), Sast.Comp)
| _ —> unop_error op)
| Ast.Tan —>
(match t with
Sast.Int —> Sast.Expr(Sast.Unop(op, e), Sast.Int)
| Sast.Float —> Sast.Expr(Sast.Unop(op, e), Sast.Float)
| Sast.Comp —> Sast.Expr(Sast.Unop(op, e), Sast.Comp)
| _ —> unop_error op))

and check_binop el op e2 env =
let el = check_expr env el and e2 = check_expr env e2 in
match el with
Sast.Expr(_, tl) —>
(match e2 with
Sast.Expr(_, t2) —>
(match op with
Ast.Add | Ast.Sub —>
(match t1 with
Sast.Int —>
(match t2 with
Sast.Int —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| Sast.Float —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Float)
| Sast.Comp —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Comp)
| _ —> binop_error op)
| Sast.Float —>
(match t2 with
Sast.Int —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| Sast.Float —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Float)
| Sast.Comp —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Comp)
| _ —> binop_error op)
| Sast.Comp —>
(match t2 with
Sast.Int —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| Sast.Float —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Float)
| Sast.Comp —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Comp)
| _ —> binop_error op)
| Sast.Mat —>
(match t2 with
Sast .Mat —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Mat)
| _ —> binop_error op)
| _ —> binop_error op)
| Ast.Mult | Ast.Div —>
(match t1 with
Sast.Int —>
(match t2 with

Sast.Int —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| Sast.Float —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Float)
| Sast.Comp —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Comp)

| Sast.Mat —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Mat)
_ —> binop__error op)
| Sast.Float —>
(match t2 with

66

Sast.Int | Sast.Float —> Sast.Expr(Sast.Binop(el, op, e2), Sast.
Float)
| Sast.Comp —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Comp)
| Sast.Mat —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Mat)
| _ —> binop_error op)
| Sast.Comp —>
(match t2 with
Sast.Int | Sast.Float | Sast.Comp —> Sast.Expr(Sast.Binop(el, op,
e2), Sast.Comp)
| Sast.Mat —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Mat)
| _ —> binop_error op)
| Sast.Mat —>
(match t2 with
Sast.Int | Sast.Float | Sast.Comp | Sast.Mat —> Sast.Expr(Sast.
Binop(el, op, e2), Sast.Mat)
| _ —> binop_error op)
| _ —> binop_error op)
| Ast.Mod | Ast.Expn —>
(match t1 with
Sast.Int —>
(match t2 with
Sast.Int —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| Sast.Float —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Float)
| Sast.Comp —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Comp)
| _ —> binop_error op)
| Sast.Float —>
(match t2 with
Sast.Int | Sast.Float —> Sast.Expr(Sast.Binop(el, op, e2), Sast.
Float)
| Sast.Comp —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Comp)
| _ —> binop_error op)
| Sast.Comp —>
(match t2 with
Sast.Int | Sast.Float | Sast.Comp —> Sast.Expr(Sast.Binop(el, op,
e2), Sast.Comp)
| _ —> binop_error op)
| _ —> binop_error op)
| Ast.Tens —>
(match t1 with
Sast .Mat —>
(match t2 with
Sast .Mat —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Mat)
| _ —> binop_error op)
| _ —> binop_error op)
| Ast.Eq | Ast.Neq —>
(match t1 with
Sast.Int —>
(match t2 with
Sast.Int —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| Sast.Float —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| Sast.Comp —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| _ —> binop_error op)
| Sast.Float —>
(match t2 with
Sast.Int —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| Sast.Float —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| Sast.Comp —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| _ —> binop_error op)
| Sast.Comp —>
(match t2 with
Sast.Int —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| Sast.Float —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| Sast.Comp —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| _ —> binop_error op)
| Sast.Mat —>

67

129

149

161

163

(match t2 with
Sast.Mat —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| _ —> binop_error op)
| _ —> binop_error op)
| Ast.Lt | Ast.Gt | Ast.Leq | Ast.Geq —>
(match t1 with
Sast.Int —>
(match t2 with
Sast.Int —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| Sast.Float —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| _ —> binop_error op)
| Sast.Float —>
(match t2 with
Sast.Int —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| Sast.Float —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| _ —> binop_error op)
| _ —> binop_error op)
| Ast.Or | Ast.And | Ast.Xor —>
(match t1 with
Sast.Int —>
(match t2 with
Sast.Int —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| Sast.Float —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| Sast.Comp —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| _ —> binop_error op)
| Sast.Float —>
(match t2 with
Sast.Int —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| Sast.Float —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| Sast.Comp —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| _ —> binop_error op)
| Sast.Comp —>
(match t2 with
Sast.Int —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| Sast.Float —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| Sast.Comp —> Sast.Expr(Sast.Binop(el, op, e2), Sast.Int)
| _ —> binop_error op)
| _ —> binop_error op)))

and check__assign name e env =
let vdecl = lookup_var name env.scope in
let e = check_expr env e in
match e with
Sast.Expr(_, tl) —>
let t2 = vdecl.styp in
if (t1 = t2) then
Sast . Expr(Sast . Assign (name, e), tl)
else
assignment__error name

and check_ call_params formal params params =
if ((List.length formal params) = 0)
then true
else
let fdecl _arg = List.hd formal params in
let param = match (List.hd params) with
Sast.Expr(_, t) —> t in
if (fdecl arg.styp = Sast.Poly || (fdecl_arg.styp = param))
then check_call _params (List.tl formal_ params) (List.tl params)
else false

and check_call name params env =
let fdecl =
try
lookup_ func name env

68

185 with Not_ found —> call__error 0 in

let params = List.map (check_expr env) params in
187 if ((List.length fdecl.sformal params) != (List.length params))
then call error 1
189 else
if ((check_call_params fdecl.sformal params params) = true)
191 then Sast.Expr(Sast.Call(name, params), fdecl.sret_ typ)
else

193 call__error 2

195/ and check__expr env = function
Ast.Lit_int (i) —> Sast.Expr(Sast.Lit_int (i), Sast.Int)
| Ast.Lit_ float(f) —> Sast.Expr(Sast.Lit_float(f), Sast.Float)
| Ast.Lit comp(fl, f2) —> Sast.Expr(Sast.Lit _comp(fl, f2), Sast.Comp)
| Ast.Lit_qub(i, t) —> check _qub i t
| Ast.Mat(1l) —> check_mat 1 env
| Ast.Id(s) —> check_id s env
| Ast.Unop(op, e) —> check unop op e env
| Ast.Binop(el, op, e2) —> check_ binop el op e2 env
| Ast.Assign(s, e) —> check_assign s e env
| Ast.Call(s, 1) —> check call s 1 env
| Ast.Noexpr —> Sast.Expr(Sast.Noexpr, Sast.Void)

and check block stmts env =
509 let sstmts = List.map (fun stmt —> check stmt env stmt) stmts in
Sast . Block (sstmts)

and check if e sl s2 env =

513 let se = check_expr env e in

match se with

515 Sast .Expr(_,t) —>

(match t with

517 Sast.Int —>

let ssl = check stmt env sl in
519 let ss2 = check stmt env s2 in
Sast . If(se, ssl, ss2)

521 | _ —> stmt_error 0)

523land check_ for el e2 e3 e4d s env =

let sel = check_expr env el in

525 match sel with

Sast.Expr(Sast.Id(_), Sast.Int) —>

527 let se2 = check_expr env e2 in

(match se2 with

529 Sast .Expr(_, Sast.Int) —>

let se3 = check_ expr env e3 in

531 (match se3 with

Sast .Expr(_, Sast.Int) —>

533 let se4 = check_expr env e4 in
(match se4 with

Sast.Expr(_, t) —>

(match t with

537 Sast.Int —>

let ss = check stmt env s in
539 Sast.For(sel, se2, se3, sed, ss)
| Sast.Void —>

541 let ss = check stmt env s in
Sast.For(sel, se2, se3, Sast.Expr(Sast.Lit_int(1), Sast.Int), ss)
543 | _ —> stmt_error 1))

| _ —> stmt_error 1)

545 | _ —> stmt_error 1)

| _ —> stmt_error 1

and check while e s env =
549 let se = check_expr env e in

69

match se with

551 Sast . Expr(Sast.Binop(_, op, _), Sast.Int) —>

(match op with

553 Ast.Eq | Ast.Neq | Ast.Lt | Ast.Gt | Ast.Leq | Ast.Geq —>
let ss = check stmt env s in

Sast . While (se, ss)

| _ —> stmt_error 2)

557 | _ —> stmt_error 2

550l and check stmt env = function

Ast.Expr(e) —> Sast.Sexpr(check expr env e)

| Ast.Block(1l) —> check_ block 1 env

| Ast.If(e, sl, s2) —> check_if e sl s2 env

563 | Ast.For(el, e2, e3, e4d, s) —> check for el e2 e3 e4d s env
| Ast.While(e, s) —> check_while e s env

| Ast.BreakCont(t) —> Sast.BreakCont(t)

567|and vdecl to__sdecl vdecl =

match vdecl.typ with

569 Ast.Int —> { styp = Sast.Int; sname = vdecl.name; builtinv = false; }

| Ast.Float —> { styp = Sast.Float; sname = vdecl.name; builtinv = false; }
571 | Ast.Comp —> { styp = Sast.Comp; sname = vdecl.name; builtinv = false; }

| Ast.Mat —> { styp = Sast.Mat; sname = vdecl.name; builtinv = false; }

and formal_ to_sformal scope formal param =

575 let found = var__exists formal_ param.name scope in
if found then var__decl_error formal param .name

577 else let sdecl = vdecl_to_sdecl formal param in
let new_ formals = sdecl :: scope.formal_ param in

579 let new_scope =
{ ret_typ = scope.ret_typ;

581 ret__nam = scope.ret_nam;
func_nam = scope.func_nam;

583 formal param = new_ formals;
local = scope.local;

585 builtin = scope.builtin; } in

new__scope

and formals_to_ sformals scope formal params =

589 let new_ scope =

if (formal_params = []) then scope

591 else List.fold_left formal to_sformal scope (List.rev formal params) in
new_ scope

and local_to_slocal scope local =

595 let found = var__exists local.name scope in
if found then var decl error local.name

597 else let sdecl = vdecl to_ sdecl local in
let new__locals = sdecl :: scope.local in

599 let new_ scope =
{ ret_typ = scope.ret_typ;

601 ret_ nam = scope.ret_nam;
func_nam = scope.func_nam;

603 formal param = scope.formal param;
local = new__locals;

605 builtin = scope.builtin; } in

new_ scope
607
and locals_to_slocals scope locals =

609 let new_scope = List.fold left local to_slocal scope (List.rev locals) in
new__scope

and ret_to_sret scope ret_typ =
613 let sret_typ =
match ret_typ with

70

615 Ast.Int —> Sast.Int

| Ast.Float —> Sast.Float
617 | Ast.Comp —> Sast.Comp

| Ast.Mat —> Sast.Mat

619 in

let new__scope =

621 { ret_typ = sret_typ;

ret__ nam = scope.ret_nam;
623 func_nam = scope.func_nam;

formal param = scope.formal_ param;
625 local = scope.local;

builtin = scope.builtin; } in

627 new__scope

620l and rname__to__srname scope ret_name =
let new_scope = { ret_typ = scope.ret_typ;

631 ret__ nam = ret_name;
func_nam = scope.func_nam;
633 formal param = scope.formal_param;
local = scope.local; builtin = scope.builtin; } in

635 new__scope

637 and fname_ to_sfname scope func_name =
let new_scope = { ret_typ = scope.ret_typ;

639 ret__nam = scope.ret_nam;
func_nam = func_name;

641 formal_param = scope.formal_ param;
local = scope.local;

643 builtin = scope.builtin; } in

new__scope
645
and ret_to_slocal scope name typ =

647 let vdecl = { typ = typ; name = name; } in

let sdecl = wvdecl to_sdecl vdecl in
649 let new_locals = sdecl :: scope.local in
let new_scope ={ ret_typ = scope.ret_typ;
651 ret__nam = scope.ret__nam;
func_nam = scope.func_nam;
653 formal param = scope.formal param;
local = new_locals;
655 builtin = scope.builtin; } in

new__scope

and fdecl to sdecl fdecl env =

659 let new_scope = ret_to_slocal env.scope fdecl.ret_name fdecl.ret_typ in
let new_scope = formals_to_ sformals new_scope fdecl.formal params in
661 let new_scope = locals_to_slocals new_scope fdecl.locals in
let new_scope = ret_to_sret new_scope fdecl.ret_typ in
663 let new__scope = rname_to_srname new_ scope fdecl.ret_name in
let new__scope = fname_to_sfname new_scope fdecl.func_name in
665 let new_env = { scope = new_scope; functions = env.functions; } in

let stmts = List.map (fun stmt —> check stmt new_env stmt) fdecl.body in
667 { sret_typ = new_scope.ret_typ;

sret__name = new_ scope.ret_nam;

669 sfunc__name = new_ scope.func_nam;

sformal params = new_scope.formal param;

671 slocals = new__scope.local;

sbody = stmts;

673 builtinf = false; }

675\ and check_function env fdecl =

let found = func_ exists fdecl.func name env in

677 if found then func decl error fdecl.func name

else let sfdecl = fdecl to sdecl fdecl env in

679 let new_env = { scope = env.scope; functions = sfdecl :: env.functions; } in

71

new_ env

and check_compute_fdecl fdecls =
let fdecl = List.hd (List.rev fdecls) in
let name = fdecl.func_name in
if (name = "compute") then fdecls
else program__error 0

and check_ program fdecls =
let fdecls = check_compute_fdecl fdecls in

let env = List.fold_ left check function root_ environment fdecls in
let sfdecls = List.rev env.functions in
sfdecls

B.5 SAST

sast.ml

(* Sankalpa Khadka x)
open Ast

type sdata_type =
Int

| Float

| Comp

| Mat

| Poly

| Void

type expr_ wrapper —
Expr of sexpr = sdata_type

and sexpr =
Lit_int of int

| Lit_float of float

| Lit_comp of float x float

| Lit_qub of string * int

| Mat of expr_wrapper list list

| Id of string

| Unop of Ast.un_op #* expr_wrapper

| Binop of expr_wrapper * Ast.bi_op * expr__wrapper

| Assign of string x expr_wrapper

| Call of string * expr__wrapper list

| Noexpr

and sstmt =
Sexpr of expr_wrapper
| Block of sstmt list
| If of expr_wrapper * sstmt x sstmt
| For of expr__wrapper * expr_wrapper * eXpr_wrapper * expr_wrapper * sstmt
| While of expr wrapper % sstmt
| BreakCont of int

and svar_ decl =
{
styp : sdata_type;

sname : string;
builtinv : bool;

72

66

30

88

90

94

100

102

104

106

and sfunc decl

{

sret__typ sdata_ type;
sret__name string ;
sfunc_ name string ;

sformal_params svar__decl list;

slocals svar__decl list;
sbody sstmt list;
builtinf bool;

}

type sprogram =
sfunc_decl list

(x Prety Printer x)

let rec string_of unop op e =
(match op with
Neg —> " —'
| Not —> " I "
| Re => " Re "
| Im —> " Im "
| Norm —> " Norm "
| Trans —> " Trans "
| Det —> " Det "
| Adj —> " Adj "
| Conj —> " Conj "
| Unit —> " Unit "
| Sin —> " Sin "
| Cos —> " Cos "
| Tan —> " Tan ") = string_of_ expr__wrapper e

and string_ of_ binop el op e2 =
string of expr_wrapper el ~
(match op with

Add — " + " | Sub —> " —
| Div—> " /" | Mod —> " %
| Bg—> " = " | Neq —> " 1= "
| Leq —> " <= " | Gt —> " > "
| Xor = " XOR " | And —> " && '

and string of mat 1
let row_ strs
List .map string_of row 1

in

" [n

and string_of_row r
let row_str =
String.concat ","
in

n(u

and string_ of_ sexpr = function
Lit_int (i) —> string_of int i
| Lit_float(f) —> string_of_ float f
Lit_comp(fl, f2) —> string_ of floa

[N}

String . concat row_ strs *

"]

~ row_str © ")"

Lit_qub(i, t) —> i
Mat (1) —> string of mat 1
Id(s) — s

~ ‘

"

Tens —> " @ "

"

| Mult — " *
| Expn —> "
| Lt > " <
| Geq —> " >="
| Or — "

"

t fl

"

4o

Binop(el, op, e2) —> string_of_ binop el op e2

" "

Assign (name, e) —> name
Call (name, params) —> "Calling
Noexpr —> "noexpr"

"

|
|
|
|
| Unop(op, e) —> string of unop op e
}
|
|

~ name

73

"

on

"

")

~ string_ of _expr_ wrapper e2

(List .map string of expr_wrapper r)

~ s

string_ of_float f2 i

~ string_of expr_ wrapper e

string__of__sexprs params

108

120

126

130

164

166

168

and
1

and

"svdecl: styp:

and

string_of expr_wrapper w =
et sexpr =
match w with
Expr(Lit_int(i), Int) —> Lit_int (i)
| Expr(Lit_float(f), Float) —> Lit_float (f)
| Expr(Lit_comp(fl, f2), Comp) —> Lit_comp(fl, f2)
| Expr(Mat(1l), Mat) —> Mat (1)
| Expr(Id(name), typ) —> Id(name)
| Expr(Unop(op, e), _) —> Unop(op, e)
| Expr(Binop(el, op, e2),) —> Binop(el, op, e2)
| Expr(Assign(name, e), tl1) —> Assign(name, e)
| Expr(Call(name, params), _) —> Call(name, params)
| Expr(Lit_qub(i, t),) —> Lit_qub(i, t)
| _ —> Noexpr
in
string_ of sexpr sexpr

string__of _svar__decl svar_decl =
"

(match svar_decl.styp with

Int —> "int," = " name: " ~ svar_decl.sname = " "
| Float —> "float ," = " name: " ~ svar_decl.sname =~ " '
| Comp —> “comp," = " name: " 7 svar_decl.sname T " '
| Mat 7> "mat," = " name: " ~ svar_decl.sname = " "
| —

")

string_of sexprs e =

String.concat "\n" (List.map string of expr_wrapper e)

and

string_ of sstmt = function

Sexpr(e) —> string_of expr_wrapper e = "\n'
Block (1) —> "{\n" = string of sstmts 1 = "\n}"
If (e, s, Block([])) — "if (" = string of expr_wrapper e =~ ")\n" = string of sstmt s
If(e, sl, s2) —> "if (" 7 string of expr_ wrapper e ~ ")\n" “string of sstmt sl = "else\
n" 7 string_of sstmt s2

For(el, e2, e3, e4, s) —> "For args : " 7 string_of_expr_wrapper el
string_ of _expr__wrapper e2 ~ " "7 string_of_ expr__wrapper e3
string_ of expr_ wrapper e4

o~

["\nstatement :\n'"

string_ of sstmt s

While(e,s) —> "While condition : " 7 string_of expr_wrapper e = "\nstatement
string_ of sstmt s

BreakCont(t) —> string_of breakcont t

[

and string_ of breakcont t =
if (t = 0) then
"break"
else
"continue"
and string_of_ sstmts sstmts =

String.concat "\n" (List.map string of sstmt sstmts)

and

"\ nsfdecl:\ nsret_typ:

string_ of__sfdecl sfdecl =
(match sfdecl.sret__typ with
Int — " int '
| Float —> " float "
| Comp —> " comp "
| Mat —> " mat "
= °
"\nsret_name: " 7 sfdecl.sret_name = "\nsfunc_name: sfdecl.sfunc_name = "\n(" =
String.concat "" (List.map string of svar decl sfdecl.sformal params) = ")\n{\n'
String.concat "" (List.map string of svar_decl sfdecl.slocals) = "\n" 7
String.concat "" (List.map string of sstmt sfdecl.sbody) = "}"

"

74

and string_of sprogram (1) =
70 "program:\n" = String.concat "\n" (List.map string_of_sfdecl 1)

B.6 Generator

generator.ml

(* Winnie Narang, Jonathan Wong, Sankalpa Khadka x)
2| open Sast

open Printf

open String

6| let builtin_funcs = ["print";" printq";"rows";" cols ";"elem "]
sl let is builtin func name =
List . exists (fun func_name —> func_name = name) builtin_ funcs

(x get type x)

12| let type_of (a : Sast.expr_ wrapper) : Sast.sdata_ type =
match a with

14 | Expr(_,t)—> t

16| (+ get expression from expression wrapper)
let expr_of (a : Sast.expr_ wrapper) : Sast.sexpr =
18 match a with
| Expr(e,)—> e
20
(* generate type x)
22| let rec cpp_from_type (ty: Sast.sdata_type) : string =
match ty with
2 | Int —> "int"
| Float —> "float"
26 | Comp —> "complex<float >"
| Mat —> "MatrixXecf"
| Poly | Void —> " "

30| (x write program to .cpp file x)

and writeToFile fileName progString =

32 let file = open_out (fileName = ".cpp") in
fprintf file "%s" progString

(* entry point for code generations)
36| and gen__program fileName prog =

let cppString = writeCpp prog in
38 let out = sprintf "

#include <iostream>

10 #include <complex>

#include <cmath>

12 #include <Eigen/Dense>
#include <qlang>

14 using namespace Eigen;

using namespace std;

16 %s" cppString in
writeToFile fileName out;

(* list of function declarationx)

s0land writeCpp funcList =

let outStr =

52 List.fold left (fun a b —> a = (cpp_funcList b)) "" funcList
in

75

80

88

90

100

102

104

106

108

110

sprintf "%s" outStr

(* generate functions x)
and cpp_ funcList func =
if func.builtinf then

"o

else
let cppFName = func.sfunc_name
and cppRtnType = cpp_ from_type func.sret_typ
and cppRtnValue = func.sret_ name
and cppFParam = if (func.sformal params = []) then "" else cppVarDecl func.

sformal_params "'

and cppFBody = cppStmtList func.sbody
and cppLocals = cppVarDecl func.slocals ";\n\t"
in
if cppFName = "compute" then
sprintf "\nint main ()\n{\n\t%s\n\t%s\n\tstd :: cout << %s << endl;\n\n\
treturn 0;\n}" cppLocals cppFBody cppRtnValue
else
if (cppFParam = "") then
sprintf "\n%s %s ()\n{\n\t%s\n%s\n\treturn %s;\n}" cppRtnType cppFName cppLocals
cppFBody cppRtnValue
else
sprintf "\n%s %s (%s)\n{\n\t%s\n%s\n\treturn %s;\n}" cppRtnType cppFName cppFParam
cppLocals cppFBody cppRtnValue

(x generate variable declarations)
and cppVarDecl vardeclist delim =
let varDecStr =
List . fold left (fun a b —> a = (cppVar b delim))
in
let varDectrun = String.sub varDecStr 0 ((String.length varDecStr)—1)
in
sprintf "%s

"

vardeclist

"

varDectrun

(x generate variable declaration x)

j|and cppVar var delim =

if not var.builtinv then
let vartype =
cpp_from_type var.styp
in
sprintf "%s %s%s" vartype var.sname delim

"

else

(x generate list of statements x*)
and cppStmtList astmtlist =
let outStr =
List.fold left (fun a b —> a = (cppStmt b)) "' astmtlist
in
sprintf "%s" outStr

(x generate statement x)
and cppStmt stmts = match stmts with
Sast . Sexpr (expr_wrap) —> "\t" 7 cppExpr (expr_of expr_wrap) = ";\n'
| Sast.Block(sstmt) —> cppStmtBlock sstmt
| Sast.If(expr_wrap , sstmtl, sstmt2) —> writelfStmt (expr_of expr_wrap) sstmtl sstmt2
| Sast.For(var,init, final, increment, stmt) —> writeForStmt var init final increment stmt
| Sast.While(expr_wrap , sstmt) —> writeWhileStmt (expr_of expr_ wrap) sstmt
| Sast.BreakCont(t) —> writeBreakCont t

(x generate break/continue statement x)
and writeBreakCont t =

if (t =0) then

sprintf "break;"

else

76

sprintf "continue;"

(* generate expression x)
118|and cppExpr expr = match expr with
Lit_int(lit) —> string of int lit
120 | Lit_float (flit) —> string_of_ float flit
| Lit_comp(re,im) —> " complex<float >(" ~
") " (% Not sure how to do this x)

Unop(op, expr) —> writeUnop op expr
Binop (exprl, op, expr2) —> writeBinop exprl op expr2
Lit_qub(vec, t) —> writeQubit vec t
Mat (expr_wrap) —> writeMatrix expr_wrap
Id(str) —> str
Assign (name, expr) —> name " = " 7 cppExpr (expr_of expr)
Call (name, 1) —>

if is__builtin_ func name then
130 writeBuiltinFuncCall name 1
else
132 name ~ "(" 7 writeFunCall 1 = ")"
| Noexpr —> "'

non

string_of_float re = "," 7 string_of_ float im

126

(x generate built—in function call x)
136)and writeBuiltinFuncCall name 1 =
match name with

"

138 "print" —> writePrintStmt 1

| "printq" —> writePrintqStmt 1
140 | "rows" —> writeRowStmt 1

| "cols" —> writeColStmt 1
142 | "elern —> writeElemStmt 1

I -

(* generate row statement x*)

16| and writeRowStmt 1 =

let expr_wrap = List.hd 1 in

148 let expr = cppExpr (expr_of expr_wrap) in
sprintf "%s.rows ()" expr

(x generate col statement x*)

152|and writeColStmt 1 =

let expr_wrap = List.hd 1 in

154 let expr = cppExpr (expr_of expr_wrap) in
sprintf "%s.cols ()" expr

(* generate elem statement)

158l and writeElemStmt 1 =

let ewl = List.hd 1 in

160 let el = cppExpr (expr_of ewl)

and ew2 = List.hd (List.tl 1) in

162 let e2 = cppExpr (expr_of ew?2)

and ew3 = List.hd (List.tl (List.tl 1)) in
164 let e3 = cppExpr (expr_of ew3) in

sprintf "%s(%s,%s)" el e2 e3

166
(x generate print statement x)

63| and writePrintStmt 1 =

let expr_wrap = List.hd 1 in

170 let expr = cppExpr (expr_of expr_wrap) in

match expr_wrap with

72 Sast.Expr(_,t) —>

(match t with

174 Sast.Mat —> sprintf "cout << %s << endl" expr
| _ —> sprintf "cout << %s << endl"' expr)

(* generate qubit print statement x)
17| and writePrintqStmt 1 =

77

186

190

192

194

196

198

200

202

206

208

216

220

N
X

226

240

242

let expr_wrap = List.hd 1 in
let expr = cppExpr (expr_of expr_wrap) in
match expr__wrap with
Sast .Expr(_,t) —>
(match t with
Sast.Mat —> sprintf "cout << vectorToBraket(%s) << endl"' expr
| _ —> sprintf "cout << %s << endl"' expr)

(* generate block =x)

and cppStmtBlock sstmtl =

let slist = List.fold_left (fun output element —>
let stmt = cppStmt element in
output ~ stmt T "\n") "' sstmtl in

“\n\t{\n" ~ slist ~ "\t}\n"

(x generate if statement x*)
and writelfStmt expr stmtl stmt2 =
let cond = cppExpr expr in
let body = cppStmt stmtl in
let ebody = writeElseStmt stmt2 in
sprintf " if(%s)%s%s" cond body ebody

(x generate else statements x)
and writeElseStmt stmt =
let body =
cppStmt stmt
in
if ((String.compare body "\t;\n'") = 0) then
sprintf "\n"
else
sprintf "\telse%s" body

(* generate while statement =x)
and writeWhileStmt expr stmt =
let condString = cppExpr expr
and stmtString = cppStmt stmt in
sprintf "while (%s)\n%s\n" condString stmtString

(x generate for statements x)
and writeForStmt var init final increment stmt =

let varname = cppExpr (expr_of var)
and initvalue = cppExpr (expr_of init)
and finalvalue = cppExpr (expr_of final)
and incrementval = cppExpr (expr_of increment)
and stmtbody = cppStmt stmt
in
sprintf "
for (int %s = %s; %s < %s; %s = %s + %s){
Fos

}" varname initvalue varname finalvalue varname varname incrementval stmtbody

(* generate unary operators x)
and writeUnop op expr =
let exp = cppExpr (expr_of expr) in

let unopFunc op exp = match op with
Ast.Neg —> sprintf " —%s" exp
| Ast.Not —> sprintf " !(%s)" exp
| Ast.Re —> sprintf " real(%s)" exp (* assumes exp is matrixx*)
| Ast.Im —> sprintf " imag(%s)" exp
| Ast.Norm —> sprintf " %s.norm()" exp
| Ast.Trans —> sprintf " %s.transpose()" exp
| Ast.Det —> sprintf " %s.determinant ()" exp
| Ast.Adj —> sprintf " %s.adjoint ()" exp
| Ast.Conj —> sprintf " %s.conjugate()" exp
| Ast.Unit —> sprintf " (%s.conjugate()*%s).isIdentity ()" exp exp (% till

78

here

244 | Ast.Sin —> sprintf " sin((double)%s)" exp
| Ast.Cos —> sprintf " cos((double)%s)" exp
246 | Ast.Tan —> sprintf " tan((double)%s)" exp

in unopFunc op exp

(* generate binary operations x)

250l and writeBinop exprl op expr2 =

let el = cppExpr (expr_of exprl)

252 and t1 = type_of exprl

and e2 = cppExpr (expr_of expr2) in

25 let binopFunc el tl1 op e2 = match op with
Ast .Add —> sprintf "%s + %s" el e2

| Ast.Sub —> sprintf "%s — %s" el e2

| Ast.Mult —> sprintf "%s * %s" el e2

| Ast.Div —> sprintf "%s / %s" el e2

| Ast.Mod —> sprintf "%s %% %s" el e2

| Ast.Expn —> sprintf "pow(%s,%s)" el e2
| Ast.Tens —> sprintf "tensor(%s, %s)" el e2
| Ast.Eq —> equalCaseWise el t1 e2

| Ast.Neq —> sprintf "%s != %s" el e2

|

|

|

|

|

|

260

Ast. Lt —> sprintf "%s < %s" el e2
Ast .Gt —> sprintf "%s > %s" el e2
Ast.Leq —> sprintf "%s <= %s" el e2
Ast.Geq —> sprintf "%s >= %s" el e2
Ast.Or —> sprintf "%s || %s" el e2
Ast . And —> sprintf "%s && %s' el e2
Ast.Xor —> sprintf "%s T %s" el e2
in binopFunc el t1 op e2

264
266

268

(x generate equality expressions (structural equality is used) x)
274| and equalCaseWise el tl e2 = match tl with

Sast.Mat —> sprintf "%s.isApprox(%s)" el e2

276 | _ —> sprintf "%s = %s" el e2

278| (*# generate matrix)
and writeMatrix expr_wrap =

280 let matrixStr = List.fold_left (fun a b —> a = (writeRow b)) "" expr_wrap in
let submatrix = String.sub matrixStr 0 ((String.length matrixStr)—1) in
282 sprintf "(Matrix<complex<float >, Dynamic, Dynamic>(%d,%d)<<%s) . finished ()" (rowMatrix

expr_wrap) (colMatrix expr_wrap) submatrix

284| (* generate matrix row x)

and writeRow row__expr =

286 let rowStr = List.fold left (fun a b —> a = (cppExpr (expr_of b)) = ",") "' row_expr
sprintf "%s" rowStr

288
(* generate column matrix x)

200l and colMatrix expr__wrap =

List .length (List.hd expr_wrap)

(* generate row matrix x)
204l and rowMatrix expr__wrap =
List .length expr_wrap

296
(* generate function call x)
298| and writeFunCall expr_wrap =

if expr_wrap = [] then

300 sprintf "'
else

302 let argvStr = List.fold_left (fun a b —> a = (cppExpr (expr_of b)) = ", ") "' expr_wrap
in

let argvStrCom = String.sub argvStr 0 ((String.length argvStr)—1) in
304 sprintf "%s" argvStrCom

79

(* generate qubits x)

and writeQubit expr bra=
(* let exp = string_ of int expr in x)
sprintf "genQubit(\"%s\",%d)" expr bra

B.7 Scripts

B.7.1 Makefile
Makefile

#Christopher Campbell, Jonathan Wong
#stuff for compiling cpp files

CXX = g++

CPPDIR = ./cpp

INC = $(CPPDIR) ./includes/headers
INCLUDES =$ (INC:%=—1%)

CXXFLAGS = —g —Wall $(INCLUDES)

OBJS = ast.cmo sast.cmo parser.cmo scanner.cmo analyzer.cmo generator.cmo qlc.cmo
.PHONY: default

default: qlc cpp/qlang.o

qlec : $(OBJS)
ocamlc —g —o qlc $(OBJS)

scanner . .ml : scanner.mll
ocamllex scanner.mll

parser . .ml parser.mli : parser.mly
ocamlyacc parser.mly

%.cmo @ %.ml
ocamlc —g —c $<

%.cmi : %.mli
ocamlc —g —c $<

cpp/qlang.o:
$(MAKE) —C $(CPPDIR)

.PHONY : clean

clean
rm —f qlc parser.ml parser.mli scanner.ml *.cmo *.cmi
$ (MAKE) —C $(CPPDIR) clean

Generated by ocamldep *.ml x.mli

analyzer.cmo: sast.cmo ast.cmo

analyzer.cmx: sast.cmx ast.cmx

generator .cmo: sast.cmo

generator.cmx: sast.cmx

parser .cmo: ast.cmo parser.cmi

parser .cmx: ast.cm parser.cmi

qlc.cmo: scanner.cmo sast.cmo parser.cmi ast.cmo analyzer.cmo
qlc.cmx: scanner.cmx sast.cmo parser.cmx ast.cmx analyzer.cmx
sast.cmo: ast.cmo

80

sast .cmx: ast.cmx
scanner.cmo: parser.cmi
scanner .cmx: parser.cmx
parser.cmi: ast.cmo

B.7.2 Compilation script

glc.ml

(¥ Christopher Campbell, Winnie Narang)
type action = Ast | Sast | Gen | Debug

let =
let action =
List.assoc Sys.argv.(1l) [("—a", Ast); ("—s", Sast); ("—g", Gen); ("—d", Debug) ;]
in
let lexbuf = Lex
ing.from channel (open in Sys.argv.(2)) (xstdin %) and
output_file = String.sub Sys.argv.(2) 0 (String.length(Sys.argv.(2))—3) in
let program = Parser.program Scanner.token lexbuf in
match action with
Ast —> print_string (Ast.string_ of program program)
| Sast —>
let sprogram =
Analyzer.check_program program
in
print_string (Sast.string of sprogram sprogram)
| Gen —> Generator.gen_program output_ file (Analyzer.check_program program)
| Debug —> print_string "debug"

B.7.3 Testing script

runTests.sh

#Christopher Campbell, Winnie Narang
#!/bin/bash

AST=0
SAST=0
GEN=0
COMP=0
EXEC=0

if [$1 = "clean"]

then

rm —f ast__error_log sast_error_log gen_error_log comp_error_log ast_log sast_log ast_output
sast__output exec_output

rm —f SemanticSuccess/*.cpp SemanticSuccess/*.0

rm —f SemanticFailure/*.cpp SemanticFailure/*.0

rm —f Analyzer /+.cpp Analyzer/*.o0

else

if [$1 = "a" |
then

AST=1

fi

81

o3[if [$1 = "s"]
then

251 SAST=1

fi

o[if [$1 = "g"] || [81 = "c¢"] || [$1 = "e"]
then

29| GEN=1

fi

if [$1 = "¢"]
then

33| COMP=1

fi

sl if [81 = "e"]
then

7| EXEC=1

fi

if [$2 = "ss"]

11| then

files="SemanticSuccess /*.ql"

13| cfiles="SemanticSuccess /*.cpp"
elif [$2 = "sf"]

15| then

files="SemanticFailures /*.ql"
47| c¢files="SemanticFailures /*.cpp'
elif [$2 = "al"]

19| then

files="Algorithms /*.ql"

51| cfiles="Algorithms /*.cpp"

fi
ASTCheck ()
eval "../qlc —a $1" 1>> ast_output 2>> ast_error_log
57 wc ast_error_log | awk ’'{print $1}’
}
9
SASTCheck ()
6
eval "../qlc —s $1" 1>> sast_output 2>> sast_error_log
63 wc sast_error log | awk ’'{print $1}’
}
6
GenerationCheck ()
67
eval "../qlc —g $1" 2>> gen_ error_ log
69 wc gen_error_log | awk '{print $1}’
}
71
CompilationCheck ()
73| {
eval "g++ —w 81 —I../includes/headers —L../includes/libs —lqlang" 2>> comp_error_log
75 wc comp_error_log | awk ’{print $1}’
}
ExecutionCheck ()
7ol {
output=3$(eval "./a.out")
81 echo " " >> exec_output

echo "Output: >> exec_output

83 echo "S$output" >> exec_output
echo "S$output"

85 }

87| #Check AST

82

8¢

91

99

101

103

105

107

109

129

if [$AST =1]

then

echo "x AST Generation x*"

rm —f ast__error_log ast_output
errors=0

prev__errors=0

for file in $files

do

errors=0

errors=$(ASTCheck $file)

if ["S$errors' —le "$prev_errors"
then

count=1

echo "Pass " $file
else

echo "Fail " $file
fi
prev_errors=$errors
done

echo "'

fi

#Check SAST
if [$SAST = 1]
then

;| echo "% SAST Generation x"

rm —f sast__error_log sast_output
errors=0

prev__errors=0

for file in $files

do

errors=$(SASTCheck $file)

if ["$errors" —le "$prev_errors"
then

echo "Pass: " $file

else

echo "Fail: " $file

fi

prev_errors=$errors

done
echo
fi

(]

#Check Generation
if [$GEN = 1 |

;| then

cd ../cpp

5| make

cd ../ test

7| echo "x Code Generation x*"

rm —f gen__error_log
errors=0
prev__errors=0

for file in $files

do

errors=$(GenerationCheck $file)
if ["$errors' —le "$prev_errors"
then

echo "Pass: " $file

else

echo "Fail: " $file

fi

prev__errors=$errors

done

echo "'

]

]

]

83

fi

#Check Compilation

if [$COMP = 1]

then

echo "x Compilation *"

rm —f comp_ error_log

errors=0

prev__errors=0

for file in $cfiles

do

errors=$(CompilationCheck $file)
if ["Serrors" —le "S$prev_errors' |
then

echo "Pass: " $file

else

echo "Fail: " $file

fi

prev__errors=3$errors

done
echo
fi

(]

Execution check

if [SEXEC = 1]

then

echo "x Compilation and Execution =
rm —f comp_error_log exec_ output
errors=0

prev__errors=0

exec_output=0

for file in $cfiles

do

errors=$(CompilationCheck $file)
if ["$errors" —le "$prev_errors" |
then

echo "Pass (compilation): " $file
exec_output=$(ExecutionCheck)

if ["$exec_output" != "0"]

then

echo "Pass (execution): " $file
echo $exec_ output

else

echo "Fail (execution): " $file
fi

else

echo "Fail (compilation): " $file
fi

prev__errors=$errors

done

fi

fi

B.8 Programs

B.8.1 Demo
demol.ql

84

Sankalpa Khadka
def compute() : mat output{

mat
mat
mat
mat

)
)

)

o oo

)

a [11>;
b = |0>;
k <0l;

c =a @ b;
printq(c);

¢ = Hxb;
printq(c);

output = bxk;

demo2.ql

Sankalpa Khadka
def measure(mat top): mat outcomef{
mat ad;

ad = adj(top);

outcome = top=ad;
}
def outcomezero(mat bottom) : float probability{
mat top;
mat input;
mat had;

mat cnot;
mat ynot;
mat output;
mat meas;

top = [0>;
input = top @ bottom;

had = H @ IDT;

cnot = [(1,0,0,0)
(0,1,0,0)
(0,0,0,1)
(0,0,1,0)];

output = (ynotx(cnot+*(hadxinput)));
printq (output);

probability = norm(output);

85

9

}

def compute () float outcome{

mat bottom;
bottom = |1>;
outcome = outcomezero (bottom) ;

print (outcome) ;

bottom = |0>;
outcome = outcomezero (bottom);

demo3.ql

Sankalpa Khadka
simulation of Deutsch’s Algorithm
def measure (mat top) mat outcome{

returns the measurement
mat ad;
ad = adj(top);
outcome = top * ad;
}
def hadamard (int n) mat gate{
returns Hadamard gate for n qubit
int i;
gate = H;
for (i from 0 to n—1 by 1){

gate = gate @ H;

}
}

def topqubit (int n) mat input{

return zero qubit for n qubit system
int i;
input = [0>;

for (i from 0 to n—1 by 1){
input = input @ |0>;
}

}
def deutsch (int n, mat U)

mat bottom; mat top;
mat hadtop; mat meas;

mat input;

bottom = |1>;
top = topqubit(n);
input = top @Q bottom;

hadtop = hadamard(n);

input = (hadtop @ H)x*input; # application
input = U % input; # application
input = (hadtop @ IDT)x*input;

meas = measure (top);

input = (meas @ IDT)x* input;
outcomeZero = norm(input);

input qubit ,

system

float outcomeZero{

application

measure zero on top
likelihood of getting zero on top

86

matrix for top qubit

tensor of top and bottom

of Hadamard gate

of the Oracle U
of Hadamard on top only,

register

IDT—Identity

register

69

N

~

def compute () float outcome{

int n; mat Ub; mat Uc;
test for n =lI
n=1;
Ub balanced , Uc — Constant Oracles
Ub = ;

1;
E

Uc

[(1,0,0,0)(0,1,0,0)(0,0,0,1)(0,0,1,0)
[(1707070)(0717070) (0707170)(0707071)

outcome = deutsch(n, Ub);
print (outcome) ;

outcome = deutsch(n, Uc);
print (outcome) ;

#test for n=2

n = 2;

Ub = [(1,0,0,0,0,0,0,0)
(0,1,0,0,0,0,0,0)
(0,0,1,0,0,0,0,0)
(0,0,0,1,0,0,0,0)
(0,0,0,0,0,1,0,0)
(0,0,0,0,1,0,0,0)
(0,0,0,0,0,0,0,1)
(0,0,0,0,0,0,1,0)];

outcome = deutsch(n, Ub);

}

demo4.ql

Sankalpa Khadka

Simulation of Grover’s Algorithm for f(0) =1
def measure (mat top) mat outcome{

measurement matrix for top qubit

mat ad;

ad = adj(top);

outcome = top * ad;

}
def ntensor (int n, mat k) mat gate{

return k@Qk@...@k n times
int i;
gate = k;

for (i from 0 to n—1 by 1){
gate gate @ k;
}

}

def prepareU (int n)
Prepare the Uw of
mat 1i;
mat u;

mat gate {
grover oracle

87

u = ntensor (n+1, i);
30 gate = ntensor (n+1,IDT)—2xu;

}

def prepareG (int n) : mat gate{
34 # Prepare grover defusive operator
mat s; mat sa; mat i; mat h;

s = ntensor (n,|0>);
38 sa = adj(s);

i = ntensor (n,IDT);
10 gate = 2xsxsa — i;

h = ntensor(n, H);
12 gate = hxgatexh;

gate = gate @ IDT;
4] }

16| def grover (int n) : float outcomeZero{
18 mat bottom; mat top; mat input;
mat hadtop; mat u; mat g; mat go; mat meas;
50 int i;
52 bottom = |1>;
top = ntensor(n, [0>);
5 input = top @ bottom; # input is tensor of top and bottom registers

56 hadtop = ntensor(n, H);

input = (hadtop @ H)*input; # apply Hadamard gate
58 u = prepareU(n);

g = prepareG(n);

60

go = gx*u; # Grover Operator
62

for (i from 0 to n by 1){ # Apply grover operator over iteration
64 input = gox*xinput;

}

66

meas = measure (top);
68 input = (meas @ IDT)* input; # measure on top register
outcomeZero = norm(input); # likelihood to find 0 on top register
0| }
def compute () : float outcome{

74 #simulate the grover for f(0)=1

76 int n; mat Ub; mat Uc;

n = 1;
73

outcome = grover (n);
80 print (outcome) ;
82 n = 2;

outcome = grover(n);

B.8.2 Successful Test cases

binop_ comp_ matrix.ql

88

#Winnie Narang

def test_func(comp a, comp b, comp ¢, comp d) : mat ret_val {

mat X;
X = [(a,b)(c,d)};

ret_val = [(a,c)(d,b)];

ret_val = ret_val x x;
ret__val = ret_val 4+ x;
ret_val = ret_val — x;
ret_val = ret_val / 2;
}
def compute() : mat ret_val {
comp a;
comp b;
comp c;
comp d;
mat k;
a =C(4.4+45.1);
b =C(6.+6.1);
c =C(7.48.1);
d =C(9.410.1);

ret_val = test_func(a, b, ¢, d);

binop_ float__matrix.ql

#Winnie Narang
def test_func(float a, float b, float c, float d)

mat x;

X = [(a’b)(cvd)h

ret_val = [(a,c)(d,b)];
ret_val = ret_val x x;
ret__val = ret__val + x;
ret_val = ret_val — x;
ret_val = ret_val / 2;
}
def compute() : mat ret_val {
float a;
float b;
float c;
float d;
a = 3.4;
b= 6.;
c = 5.6;
d = 100.0;

89

mat ret__val {

ret_val = test_func(a, b, c, d);

}

binop__int__arith.ql

#Winnie Narang

def func_test(int z) : int ret_name {

int a;

int b;

int d;

a = z;

b = 10;

d = atbxatb/a—b;
ret_ name=d;

}
def compute(int a): int trial {
trial = func_test (34);

}

binop__tensor.ql

#Jonathan Wong
def compute () :mat out {

mat a;
mat b
mat c;

break__continue.ql

#Winnie Narang
def func_test(int a) : int ret_name {

int i;

for (i from 0 to 2 by 1)

a=a+5;

for (i from 2 to 0 by —1)

{
a=ax10;
print(a);
break ;

}

for (i from 1 to 5)

{
print(a);
continue;
a=ax10;

90

}

ret_name = a;

}
def compute(): int trial {

trial = func_test (20);

builtin__matrix_ ops.ql

#Sankalpa Khadka
def compute(): comp trial {

int num_ rows;
int num_ cols;
comp val;

mat m;

m= [(1,2,3)(4,5,6)(7,8,9)];

num_rows = rows (m)
num_ cols = cols (m);
val = elem(m, 1,2);

print (num_rows) ;
print (num_ cols) ;

trial = val;

comp__type.ql

#Sankalpa Khadka
def compute(): comp trial {

int num_ rows;
int num_ cols;
comp val;

mat m;

m= [(1,2,3)(4,5,6)(7,8,9)];

num_rows = rows (m)
num_ cols = cols (m);
val = elem(m, 1,2);

print (num_rows) ;
print (num_ cols);

trial = val;

constants.ql

#Jonathan Wong
def test_ func(int a) : mat ret_ val

mat x;

91

mat z;
mat y;
mat w;

Y;
= IDT;

g < N M
Il

print (x);
print(z);
print(y);
print (w);

ret_val = x x z x y *x w;

}

def compute() : mat ret_val {

ret_val = test_func(0);

}

empty.ql

#Christopher Campbell
def test_ func() : mat ret_val {

mat x;

X = [(172)(374)};

ret_val = x;

}

def compute() : mat ret_val {
ret_val = test__func();

}

float__type.ql

#Christopher Campbell

def func_test(float b) : float ret name {

float a;
float c;

a = 5.0;
c =a *x b;

ret_ name = c;

}

def compute() : float trial {

trial = func_test (3.7);

92

29

~

for_stmt.ql

#Jonathan Wong

def func_test(int z) int ret_name {

int i;
int a;

for (i from 0 to 2 by 1)
a=a-+5;

for (i from 2 to 0 by —1)

{
a=ax10;
print(a);

for (i from 1 to 10 by 1)
{
}

for (i from 1 to 100){
print (ax100);

a=a—3;

ret__ name =

5;
}
def compute(int a):

int trial {

trial = func_test (20);

if stmt.ql

#Winnie Narang

def func_test(int z) int ret_name {

int a;
comment before b; just checking for
int b;
= 10;
if (z eq 5) a = 0;
a =a — 2;

a = 0;
}
else
{
a = 10;
b = 24;

if(a gt 100)

print(b); # a > 100

end of comment being

93

correct

else

print(a);

ret__name 8;

mat_ add.ql

#Sankalpa Khadka
def test_func(comp a, comp b, comp c, comp d)

mat x;
x = [(a,b)(c,d)];
ret__val = x;

}

def compute():mat trial {
comp a;
comp b;
comp c;
comp d;

o oo

mat ret_val {

trial = test_func(a, b, ¢, d)+test_func(a,b,c,d);

mat_ mult.ql

#Winnie Narang
def test_func(comp a, comp b, comp c, comp d)

mat x;
x = [(a,b)(c,d)];
ret__val = x;

}

def compute():mat trial {

mat ret_val {

comp a;
comp b;

comp c;

comp d;

mat k;

a =C(2.);

b =C(2.);

c =C(2.);

d =C(2.);

trial = test_func(a, b, ¢, d)*test_func(a,b,c,d);

94

mat__qubit.ql

#Winnie Narang

def func_test(mat a, mat b) : mat ret_name {

ret_ name = axb;

def compute(int a):mat trial {

mat zero;
mat one;

zero = [0>;
one = |1>;

trial = func_test (H, zero);
printq(trial);

trial = func_test (H,one);
printq(trial);

un_ op_det.ql

#Winnie Narang
def func_test(mat z) : mat ret_name {
mat a;
comp b;
a = [(1,9)(4,5)];
b = det(a);
ret__name = a;
}

def compute(int a):mat trial {

mat x;
x = [(1,2)(3,4)];
trial = func_test(x);

un_ op__ trans.ql

def func__test(mat z) : mat ret_name {
mat a;
mat b;
a=[(1,9,9)(4,5,5)];
b = trans(a);

def compute(int a):int trial {
trial = 8;
}

95

while__stmt.ql

#Winnie Narang

def func_test(int z) : int ret_name {
int a;
a = 5;

#now checking while with comment

while (a leq 10)

a=a-+1;
while (a neq 1)
{
Comment, inside
a = (a+1) % 42;
ret__name = a;

}

def compute():int trial{

trial = func_test(5);

}

B.8.3 Execution output of successful cases

exec__output

Output:
(-12,76) (—11.5,98)
(—10,87.5) (—6,114)

Output:
(21.46,0) (290.2,0)
(186.8,0) (600,0)

Output:
364

Output :
2

Output:
(0,0)
(1,0)
(0,0)
(0,0)

Output :

30
30

96

(6,0)

Output :
(3.52,8.6)

Output:

(0,0) (1,0)
(1,0) (0,0)
(0.707107,0)
(0.707107,0)

(0.707107,0)
(—0.707107,0)

(0,0) (—=0,-1)
(0,1) (0,0)

(1,0) (0,0)
(0,0) (1,0)
(0,-0.707107)
(0,0.707107)

Output:
0
1
0

Output:
(1,0) (2,0)
(3,0) (4,0)

Output:
18.5

Output:
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000

(0,-0.707107)
(0,-0.707107)

97

3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
3275000
5

98

Output:

Output:
10
8

Output:
20

Output:
(4,0) (4,0)
(4,0) (4,0)

Output:
(8,0) (8,0)
(8,0) (8,0)

Output:

(0.707107)|0> 4+ (0.707107)|1>
(0.707107)|0> + (—0.707107)|1>
(0.707107,0)

(—0.707107,0)

Output :
(0,0) (0,0)
(0,0) (0,0)

Output:
(4,5) (6,6)
(7,8) (9,10)

Output:
(=0,-4.5)

Output:
5
8

Output:
(0,0) (1,0) (1,0) (0,0)

Output:
<01| + <10]|
(0,0) (1,0) (1,0) (0,0)

Output:
(97_0) (57_0)

Output:
Output :

1

Output:
(1,0) (9,0)
(4,0) (5,0)
Output :

(4.5,0)
(0,4.5)

99

Output:
=5

Output:
8

Output :
1

Output:
8

Output:
8

Output:
8

Output:
1

B.8.4 Failed cases

comp_ wrong_ decl.ql

Winnie Narang
def func_test(comp vall, comp val2) : comp ret_name {

comp val3;

val3 = 1;
ret_name = vall + val2 x val3;
}
def compute() : comp ret_name {

comp compl;
comp comp?2;

if (1) {1; 2+43;} else {3+6;}

compl = C(7.51);
comp2 = C(3.2 + 1.1);

ret_name = func__test (compl, comp2);

}

func_ decl_twice.ql

Winnie Narang
def func_testl(int z) : int ret_name {
int a;
int b;
int d;
a = z;
ret_ name = z;

def func_testl(int z) : int ret_name2 {

100

ret__name2 = z;

}

def compute(int a):int trial {

trial = func_testl(4);

if stmt.ql

Winnie Narang

def func_test(int z) : int ret_name {

int a;

int b;

a = 10;

else

{

a = 10;

b = 24;

}

def compute(int a):int trial {

}

invalid_ use_ binop.ql

Winnie Narang
def compute() : int ret_name_ test

int test__int;

ret_name_test = test__int — + test__int;

mat_ type.ql

Winnie Narang

def test_func(comp a, comp b, comp ¢, comp d)

mat x;
mat f;

X = [(a’b)(cvf)};

ret__val = x;

}

def compute() : mat ret_val {

comp a
comp b;
c
d

comp
comp

101

mat ret_val {

a =C(4.45.1);
b = C(6.4+6.1);
c =C(7.48.1);
d =C(9.410.1);
ret_val = test_func(a, b, ¢, d);

mixed_ datatypes.ql

Winnie Narang
def func_test(int z)
int a;
comp b;
int d;
a = z;
b C(7.51);

d =

ret_ name=d;

}

def compute(int a):

trial = func_ tes

int ret_name {

atbxa+b/a—b;

int trial {

t(35);

no__compute.ql

Winnie Narang
def func_test(float z)

float a;

a = 5.8;

ret__name = z;

float ret_ name {

print_ stmt.ql

Winnie Narang
def func_test(int z)

int ret_name {

int a;
a = 5;
a = z;
ret__name = a;

}

def compute(int a):int trial {
printq(a);

}

un_ op_ adj.ql

102

Winnie Narang

def func_ test(mat z)
mat a;
comp b;

mat ret_name {

def compute(int a):int trial {

}

un_ op__conj.ql

Winnie Narang

def func_ test(mat z)
mat a;
float b;

a =[(1,9,9) (4

b = conj(a);

}

mat ret_name {

:5,5) 15

def compute(int a):int trial {

}

un_ op_ cos.ql

Winnie Narang
def func_ test(int z)

int a;
int b;
a = 90;
b = cos(a);
comp d;
d =C(7.51);
z = cos(d);

ret_ name=b;

}

int ret _name {

def compute(int a):int trial {

}

undec_ func_ call.ql

Winnie Narang
def func_testl(int z)
int a;
int b;
int d;
a = z;

int ret_name {

103

ret__name

Z;

}

def compute(int a):int trial

{

trial

func_test (4);

unmatched_ args.ql

Winnie Narang
def func_testl(int z,
int a;
int b;
int d;
a = z;

int ¢) int ret_name {

ret__name = z;

}

def compute(int a):int trial

{

trial func__testl(4);

var__undeclared.ql

Winnie Narang
def compute () int ret_name_ test
int test__int;
ret__name_test = test_ float;

B.8.5 Output for failed cases

test.out

cases under SemanticFailures
Analyzer . Except ("Invalid

#generated for test
Fatal error: exception

Fatal error: exception Analyzer.Except("Invalid
declared")
Fatal error: exception Parsing.Parse_error
Fatal error: exception Parsing.Parse_error
Fatal error: exception Analyzer.Except("Invalid
Fatal error: exception Analyzer.Except("Invalid
Fatal error: exception Analyzer.Except (" Missing
Fatal error: exception Analyzer.Except("Invalid
IV)
Fatal error: exception Analyzer.Except("Invalid
Fatal error: exception Analyzer.Except("Invalid
Fatal error: exception Parsing.Parse_error
Fatal error: exception Analyzer.Except("Invalid
Fatal error: exception Analyzer.Except("Invalid

parameters")

104

assignment to variable: val3")
function declaration: func_testl was already

matrix: incorrect type")
assignment to variable: d")
’compute’ function")

function call: incorrect type for parameter
use of unop: ’Adj(expr)’")

assignment to variable: b")

function call:
function call:

func_test was not declared")
incorrect number of

15| Fatal error: exception Analyzer.Except("Invalid use of a variable: test_float was not
declared")

B.9 C+4+ Helper files

B.9.1 qlang.cpp

//Jonathan Wong
#include <Eigen/Dense>
3| #include <iostream>
#include <complex>
5|#include <string>
#include <cmath>
7|#include "qlang.hpp"

using namespace Eigen;
using namespace std;

MatrixXcf tensor (MatrixXcf matl, MatrixXcf mat2) {

5 int matlrows = matl.rows();
int matlcols = matl.cols ();
7 int mat2rows = mat2.rows () ;
int mat2cols = mat2.cols ();

MatrixXcf output(matlrows * mat2rows, matlcols * mat2cols);

//iterates through one matrix, multiplying each element with the whole
23 //2nd matrix

for(int m = 0; m < matlrows; mt+) {

25 for(int n = 0; n < matlcols; n++) {

output.block (mkmat2rows ,nxmat2cols ,mat2rows, mat2cols) =

27 matl(m,n) * mat2;

}
29 }
31 return output;

33}

15| Matrix4cf control (Matrix2cf mat) {

Matrix4cf output;

37 output.topLeftCorner(2,2) = IDT;

output.topRightCorner (2,2) = Matrix<complex<float >,2,2>::Zero () ;

39 output.bottomLeftCorner (2,2) = Matrix<complex<float >,2,2>::Zero();
output.bottomRightCorner (2,2) = mat;

41

3|}

5| MatrixXcf genQubit(string s, int bra) {

return output;

17 int slen = s.length();
int qlen = pow(2,slen); //length of vector

int baselOnum = 0;

//iterates through gstr. Whenever digit is a 1, it adds the associated

105

//power of 2 for that position to baselOnum

const char % c¢cq = s.c_str();

55 char * ¢ = new char();

for(int i = 0; i < slen; i++4) {

57 strncpy (c,cq+i,1);

baselOnum += strtol (c¢,NULL,10) * pow(2,(slen—1—i));

delete c;

//creates the vector and sets correct bit to 1
63 MatrixXcf qub;

if (bra) {

65 qub = MatrixXcf:: Zero(1,qlen);

qub (0, qlen—1-baselOnum) = 1;

67 } else if (!bra){

qub = MatrixXcf:: Zero(qlen ,1);

69 qub (baselOnum ,0) = 1;

}

return qub;
73| }
75| string vectorToBraket (MatrixXcf qub) {
int bra;

77 int qlen;

79 //determines whether bra or ket

if (qub.rows() = 1) { qlen = qub.cols(); bra = 1; }
81 else if(qub.cols() = 1) { glen = qub.rows(); bra = 0;}
else { //prints reg matrix if not row or column vector
83 //cerr << "Incorrect matrix size for vectorToBraket" << endl;
/) exit (1)
85 ostringstream test;
test << qub << endl;
87 return test.str();

}

//gets position of 1 in the qubit
91 complex<float> zero (0,0);

int xi = 0;

93 int yi = 0;

int number;

95 int index;

string result;

97 int count = O0;

for (index = 0; index < qlen; index++) {
99 if (bra) { xi = index; }

else { yi = index; }

89

101

if (qub(yi,xi) != zero) {
103 //if (bra) { number = gqlen—l—index; }
//else { number = index; }
105 number = index;

107 //converts position to binary number reversed

"o

string bin = ;

109 dO {

if ((number & 1) = 0)
111 bin += "0";

else
113 bin 4= "1";

115 number >>= 1;
} while (number);

106

int outQubLen = sqrt(qlen);

//adds necessary Os

121 for (int i = bin.length(); i < outQubLen; i++) {
bin += "0";

23 }

25 reverse (bin.begin (), bin.end()); //reverses

127 ostringstream convert;

float re = qub(yi,xi).real();
129 float im = qub(yi,xi).imag();
string oper = "";

131 string rstr = ;
string istr = ;

//adds constant expression

135 convert << "(";
if(re != 0) { convert << re; }

37 if(re != 0 && im != 0) { convert << "+"; }
if(im != 0) { convert << im << "i"; }

139 convert << ")";

141 //cleans up (1) and (1i) cases

string constant = convert.str ();
143 if (constant.compare("(1)") = 0) { constant = ""; }
else if(constant.compare('(1i)") = 0) { constant = "i"; }

//generates appropriate bra or ket representation
147 string qubstr;

if (bra) { qubstr = constant + "<" + bin + "|"; }
149 else { qubstr = constant + "|" + bin + ">"; }

151 if (count > 0) {

result += " 4+ " 4+ qubstr;

} else { result = qubstr; }
count+4+;

}

return result;

B.9.2 qlang.hpp

//Jonathan Wong
#ifndef QLANG HPP
#define QLANG HPP

using namespace Eigen;
)| using namespace std;

o

/ /CONSTANTS

const Matrix2cf H = (Matrix2cf() << 1/sqrt(2), 1/sqrt(2),

10 1/sqrt(2), —1/sqrt(2)).finished ();

const Matrix2cf IDT = Matrix2cf:: Identity () ;

2| const Matrix2cf X = (Matrix2cf() << 0, 1, 1, 0).finished();

const Matrix2cf Y = (Matrix2cf() << 0, —std ::complex<float >(0,1),
14 std :: complex<float >(0,1), 0).finished();

const Matrix2cf Z = (Matrix2cf() << 1, 0, 0, —1).finished ();

107

/ /METHODS
MatrixXcf tensor (MatrixXcf matl, MatrixXcf mat2);
Matrix4cf control(Matrix2cf mat);

MatrixXcf genQubit(string s, int bra);

MatrixXcf genQubits(string s);

string vectorToBraket (MatrixXcf qub);

#endif

108

	1 An Introduction to the Language
	1.1 Background: Quantum Computing
	1.1.1 Dirac notation for quantum computation
	1.1.2 Quantum Algorithms

	1.2 Goal and objectives

	2 QLang in practice: a Tutorial
	2.1 Basics and syntax
	2.2 Control structures, built-in functions and conversions
	2.3 Diving in: Deutsch–Jozsa Algorithm

	3 Reference Manual
	3.1 Lexical conventions
	3.1.1 Character set
	3.1.2 Literals
	3.1.3 Constants
	3.1.4 Identifier (names)
	3.1.5 Keywords
	3.1.6 Expression Operators
	3.1.7 Seperators
	3.1.8 Elementary operations and spacing

	3.2 Objects and types
	3.2.1 Objects and lvalues
	3.2.2 Valid types

	3.3 Conversions
	3.4 Expressions
	3.4.1 Operator Precedence
	3.4.2 Literals
	3.4.3 Primary Expressions
	3.4.4 Unary Operators
	3.4.5 Binary Operators
	3.4.6 Assignment Operators

	3.5 Declarations
	3.5.1 Type Specifiers
	3.5.2 Declarator List
	3.5.3 Meaning of Declarators

	3.6 Statements
	3.6.1 Expression statements
	3.6.2 The if-else statement
	3.6.3 The for loop
	3.6.4 The while loop

	3.7 Scope rules
	3.8 Constant expressions
	3.9 Examples
	3.9.1 Solving Quantum Computation Problem
	3.9.2 Simulation of Quantum Algorithm

	4 Project Plan and Organization
	4.1 Project Management
	4.1.1 Planning
	4.1.2 Specification
	4.1.3 Development
	4.1.4 Testing

	4.2 Style Guide
	4.3 Project Timeline
	4.4 Roles and Responsibilities
	4.5 Software Development Environment
	4.6 Project Log

	5 Architectural Design
	5.0.1 Block Diagram
	5.0.2 Components

	6 Test Plan
	6.1 Testing Phases
	6.1.1 Unit Testing
	6.1.2 Integration Testing
	6.1.3 System Testing

	6.2 Automation and Implementation
	6.3 Sample test programs

	7 Lesson Learned
	7.1 Christopher Champbell
	7.2 Sankalpa Khadka
	7.3 Winnie Narang
	7.4 Jonathan Wong

	A More on Quantum Computing
	A.1 Common quantum gates
	A.2 Tensor product and its properties

	B Source Code
	B.1 Scanner
	B.2 Parser
	B.3 AST
	B.4 Analyzer
	B.5 SAST
	B.6 Generator
	B.7 Scripts
	B.7.1 Makefile
	B.7.2 Compilation script
	B.7.3 Testing script

	B.8 Programs
	B.8.1 Demo
	B.8.2 Successful Test cases
	B.8.3 Execution output of successful cases
	B.8.4 Failed cases
	B.8.5 Output for failed cases

	B.9 C++ Helper files
	B.9.1 qlang.cpp
	B.9.2 qlang.hpp

