Photoshop--

A drawing and animation language for aspiring programmers

Created by
Gilbert Feig (grf2108)
David Figueroa (df2442)
Alana Ramjit (amr2235)

Class
Programming Languages and Translators
Columbia University
Fall 2014
Professor
Stephen A. Edwards

Teaching Assistant
Vaibhav Jagannathan

Table of Contents

1. Introduction

1.1. Overview

1.2. Name Origin

1.3. What Constitutes a Photoshop-- Program
2. Language Tutorial

2.1. Getting Started

2.2. Compiling and Running
2.3. Drawing Shapes

2.4. Manipulating Shape Location, Size, and Appearance
2.6. If/Else Statements and Blocks
2.7. Next Steps
3. Photoshop-- Language Reference Manual
3.1. Lexical Conventions
3.1.1 Tokens
3.1.2 Comments
3.1.3 Identifiers
3.1.4 Keywords
3.1.5 Constants
3.2. Syntax
3.2.1 Keyword Glossary
3.2.2 Basic Types
3.3. Expressions
3.3.1 Operators
3.3.2 Block Calls
3.4 Declarations
3.4.1 Declarations of int and bool
3.4.2 Declarations of shape objects rect and ellipse
3.4.3 Declarations of functions
3.5 Statements and Execution
3.5.1 Statements and Expressions
3.5.2 Execution
3.6 Execution
4. Project Plan
4.1. Process of Planning, Specification, Development, and Testing

4.2. Programming Style Guide
4.3. Project Timeline

4.4, Team Roles and Responsibilities
4.5. Development Environment, Tools, and Languages
4.6. Project Log

5. Architectural Design

5.1. Translator Components

5.2. Component Interfaces

5.3. Individual Contributions
6. Test Plan

6.1. Overview

6.2. Test Suites

6.3. Test Cases

6.4. Individual Contributions
7. Lessons Learned

7.1. Group Lessons Learned

7.2. Lessons Learned by Gil Feig

7.3 Lessons Learned by David Figueroa
7.4. Lessons Learned by Alana Ramjit
7.4. Advice for Future Teams

8. Appendix
8.1. scanner.mll

8.2. parser.mly
8.3. astml

8.4. semantic.ml
8.5. codegen.ml

8.6. pmmc.ml

1. Introduction

1.1. Overview

One of the most troublesome aspects of learning to program is the lack of visualization. After
“hello world,” programs quickly become more complex, adding steps in the production of each
output. Photoshop-- poses a solution to the widening gap between number of lines of code and
the amount of feedback given for each.

Graphical user interfaces can provide immediate responses to changes in data, but are not within
the scope of what new developers are capable. Nonetheless, the visual feedback from developing
code that produces an animation is a rewarding introduction to programming. Photoshop-- is a
graphics and animation programming language that focuses on rapid learning and ease of use.
Developers create shape objects that are automatically displayed on the canvas at runtime.

A shape-manipulation block is automatically run sixty times per second. After each update, the
canvas is redrawn. This approach is simple, yet powerful, enabling the most basic of static images
to complex physically realistic animations.

1.2. Name Origin

The name Photoshop-- was chosen carefully with the developer target in mind. Firstly, the name
makes the language feel more familiar by using the name of a common piece of software. At the
same time, Photoshop provides context, indicating that this is a graphical language. Finally, the
decrementer “--” is a play on C++, implying simplicity of use and less complex functionality.

1.3. What Constitutes a Photoshop-- Program

A file becomes a compilable Photoshop-- program simply by implementing the draw1 oop block.
Implementing shapes, basic types, blocks, and statements within blocks and drawloop are all
optional.

2. Language Tutorial

This tutorial was created with the beginning programmer in mind. It starts from the basics,
introducing the structure of a Photoshop-- program. As you progress, you’ll learn how to make
custom rectangles and ellipses. Lastly, you'll see how simple it is to implement all the logic
necessary to animate your shapes around the canvas.

2.1. Getting Started

As mentioned in Section 1, the simplest program that the Photoshop-- compiler can compile and
run is nothing more than the required animation block, indicated by the keyword drawloop:

drawloop {
~ This is a comment.. it is ignored by the compiler ~

This block contains a comment, enclosed within two ~ symbols. The compiler ignores comments,
so it’s as if it weren't there. After you have written this, choose a name for it and save itas a.pmm
file. That's it, you've just written your first Photoshop-- program!

2.2. Compiling and Running
To see your first animation, run:

./pmmc <your-file-name.pmm>

Where <your-file-name.pmm> is replace by the name of your file. Unsurprisingly, this program
doesn’t do much more than display a blank canvas. The next sections will introduce you to some
basic techniques for drawing shapes and altering their location, size, and appearance.

2.3. Drawing Shapes

Photoshop-- supports drawing both rectangles and ellipses. To place shapes shapes your canvas,
add lines with the following format to the very top of your code file:

<shape-type> <name> = <x-origin>, <y-origin>, <width>, <height>,
<color>;

~ Example: Blue rectangle named myRect with the origin (400, 400),
a width of 100, and a height of 200 ~

rectangle myRect = 400, 400, 100, 200, blue;

There are two options for <shape-type>: ellipse and rectangle. Name is a string that is
entirely up to you. The integer values you specify for <x-origin>, <y-origin>, <width>,
and <height> will be used to place and size the shape according to a coordinate system where
(0, 0) represents the top left corner, and (700, 700) represents the bottom right:

@ @ My Animation Coded in Photoshop--
(0,0) =——>» x

(700, 700)

Lastly, for <color>, provide the red, green, and blue values for the desired color from 0-255 in
the format (<red>, <green>, <blue>). As a means for quick development, instead of
providing the comma-separated RGB colors in parentheses, you may use the keywords red,

green, or blue alone.

2.4. Manipulating Shape Location, Size, and Appearance
A shape’s x-origin, y-origin, width, height, and fill color can all be changed after it has been
created. There are several convenient ways to do this using action notation:

~ Change the origin of myShape to (100, 200)~
put myShape at 100, 200;

~ Move myShape up by 10 pixels ~
move myShape up 10;

In the second example, notice the keyword up. This may be replaced by any of the other three
supported directions: down, left,and right.

You can also perform the same actions using dot syntax, where you refer to the property with the
format <shape-name>.<property-name>. The compiler recognizes the properties x, y
width, height, and color.

The following example performs the exact same modifications as those shown in action notation
above, but through the use of dot syntax:

~ Change the origin of myShape to (100, 200)~
myShape.x = 100;
myShape.y = 200;

~ Move myShape up by 10 pixels ~
myShape.y = myShape.y - 10;

2.5. Your First Animation
Recall from the language introduction that every Photoshop-- program must have a drawloop.

drawloop {

}

This is what makes the animation magic happen. Everything contained within the braces after
drawloop will happen sixty times per second. For your first animation, you will make a circle in
the top left move to the bottom right as it grows in size.

First, we need to create the circle. We must carefully choose the point of origin to ensure that it is
drawn in the correct starting position on the canvas.

circle myFirstCircle = 0, 0, 100, 100, blue;

drawloop {

When you compile and run, you'll see the blue circle in the top-left corner of the canvas, but it
remains static. This is to be expected, as drawloop enables you to perform animations, but yours
is empty. Let’s fix that by moving the shape down one and right one. At the same time, let’s
increase its width and height.

ellipse myFirstCircle = 0, 0, 100, 100, blue;

drawloop {
~ Move the circle right and down ~
move myFirstCircle down 1;
move myFirstCircle right 1;

~ Increase the size of the circle ~
myFirstCircle.width = myFirstCircle.width + 1;
myFirstCircle.height = myFirstCircle.height + 1;

Compile and run, and you should see your first animation! It looks great, but you may have
noticed one big issue -- the shape eventually moves off the canvas. For the next and final portion
of the tutorial, you will learn the concepts necessary to make a ball bounce back and forth
between the left and right edges.

2.6. If /Else Statements and Blocks
In order to make the ball bounce, we need to somehow detect when it has hit a wall. While there
is no magical solution to this problem, there is a way to do it.

A group of code within braces, { }, is called a block. This should look familiar, as your first
animation has a drawloop, which is a special type of block. When the program starts running
through the block, it continues until it reaches the end.

Using an if/else statement, we can execute blocks of code based on a condition. In this case, we
want to know if the ball has reached the right side or the left, and based on that, set the direction
of the ball:

ellipse mySecondCircle = 0, 0, 100, 100, blue;
int velocityX = 1;

drawloop {

~ Set the velocity of the ball ~

if (mySecondCircle.x < 0) {
~ The ball is at the left wall; make it move right ~
velocityX = 1;

} else if (mySecondCircle.x + mySecondCircle.width > 700) {
~ The ball is at the right wall; make it move left ~
velocityX = -1;

mySecondCircle.x = mySecondCircle.x + velocityX;

Run this code and you'll see the ball move from left to right indefinitely, bouncing off the walls.
There are two new concepts here. Firstly, a variable is declared at the top with the syntax int
veloxityX = 1;. This tells the compiler that velocityX is a variable that stores an integer
value, and initially holds the value 1. This value can be changed, and that’s just how the bouncing
is accomplished.

if (mySecondCircle.x > 0) determines whether the x-origin of the circle is less than the
x-value of the left wall. If so, it sets velocityX to positive 1, forcing it to move to the right. If the
first block doesn’t run, then the second if statement condition is evaluated. In a similar manner, it
checks if the right side of the ball (it's x-origin added to its width) is at an x-value greater than
that of the right wall. If this is the case, it changes the velocity to -1, bouncing the ball back to the
left. Lastly, velocityX is summed with the x-origin of the circle, moving its origin in the desired
direction.

2.7. Next Steps

You're now a Photoshop-- pro! These tutorials have given you the skills necessary to create just
about any animation. Though you have learned a good chunk of the language, there is still more
you can add to enhance your code, increase organization, and utilize other features. The following
Language Reference Manual provides a list of these. Some notable topics to consider reading over
are:

Creating and running custom blocks
The bool (true/false) variable type
Styling Photoshop-- code (see section 4.2)

9
->
9
- Challenge: implement a ball bouncing with gravity

3. Photoshop-- Language Reference Manual

3.1. Lexical Conventions

3.1.1 Tokens

There are three main categories of tokens not mentioned in the other lexical conventions:
whitespace, block separators, and semicolons. Whitespace includes the tab, newline, and
space characters. Block separators are the {* and ‘}’ symbols that enclose the component
statements of a block. Semicolons indicate the end of an expression, and also indicate that
the expression is a statement.

Whitespace is used to separate tokens which can be identifiers, keywords, constants,
operators, and comments.

3.1.2 Comments

Comments are strings that are ignored by the compiler. Indicate the start with a single ‘~’
character. Comments may be several lines in length, and are terminated by another single ‘~’
character.

3.1.3 Identifiers
Identifiers are a series of letters and/or digits, always beginning with a letter. The maximum
length is 20 characters.

3.1.4 Keywords
Keywords are reserved for special use cases, and may not be used as identifiers or anything
else unintended. These consist of:

at green rect
background if red
block int right
blue left rotate
bool drawloop run
down main true
ellipse move up
else put while
false print

An explanation of what each of these individual words mean is found in Section 2.

3.1.5 Constants

The only constants supported are base decimal integer constants. All integers are signed and
may be stored in variables of type int only.

10

3.2. Syntax

3.2.1 Keyword Glossary

at - used in combination with “put” and an identifier to designate an x, y coordinate at which to
move a shape.

background - used to change the background color with a tuple

block - declares a function. Must be followed by an ID and a set of braces that group together
the statements to be executed when that block is called.

blue - primary color constant representing (0, 0, 255)

bool - declarator for a type that holds either true or false. Used to construct conditional
statements.

down - increases the y coordinate of a shape object

drawloop - the special block; any statements in this block will be executed at rate of 60 times
per second to enable animation

ellipse - basic round shape type

else - statements to be executed if a preceding “if’ clause condition is not true

false - not true, used to construct negative statements in conditionals

green - primary color constant representing (0, 255, 0)

if - indicates a block that are to be executed once if the condition following it is true

int - declarator for a type that holds integer values

left - decreases the x coordinate of a shape object

main - the block of code that is run in the output

move - offsets a shape object in the given direction by the given amount

put - sets the origin of a shape object at the provided x and y values

rect - basic rectangular shape type

red - primary color constant representing (255, 0, 0)

right - increases the x coordinate of a shape object

rotate - offsets a shape object by the given angle

true - not false, used to construct positive statements in conditions

up - increases the y coordinate of a shape object

while - type of loop that continues as long as the given conditional is true

3.2.2 Basic Types

There are four fundamental types: bool, int, rect,and ellipse.

The bool type may only take values true and false.

The int type may take any signed integer values.

The rect and el1ipse types have the following properties which may be set or

retrieved using dot notation:
o x -the x coordinate of the top left corner of the containing frame (defaults to 0)
o vy -the y coordinate of the top left corner of the containing frame (defaults to 0)
o width - the width of the shape

11

height - the height of the shape

color - the color of the shape; ex: Accessing properties

myRect.x = 100; ~Sets frame x coordinate position to 100~
int i = myrect.x; ~myRect.x returns 100 and sets i to 100~

3.3. Expressions

3.3.1 Operators
Multiplicative Operators
The multiplicative operators are * and / and group from left-to-right.
multiplicative-expression:

multiplicative-expression * int

multiplicative-expression / int
The operands of * and / must be of type int.
The * operator denotes multiplication and returns a product of the operands as an int.
The / operator denotes division. If the divisor does not equally divide the dividend, then the
integer quotient is returned.

Additive Operators
The additive operators are + and - and group from left-to-right.
additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression
The + operator denotes addition and returns the sum of the operands.
The - operator denotes subtraction and returns the difference of the operands.

Relational Operators
The relational operators <, <=, >, >= evaluate to either true or false and group left-to-right
such that x>y>z is parsed as (x>y) >z.
relational-expression:

additive-expression

relational-expression < additive-expression

relational-expression <= additive-expression

relational-expression > additive-expression

relational-expression >= additive-expression
The operators < (less), <= (less or equal), > (greater), and >= (greater or equal) return true if
the relation is true and false otherwise. The return type is of type bool.

Equality Operators
The equality operators == and != evaluate to either true or false

equality-expression:

12

relational-expression

equality-expression == relational-expression

equality-expression != relational-expression
The operators == (equal) and != (not equal) return true if the equality comparison is true and
false otherwise. The return type is of type bool.

Animation Operator
The animation operators move (1left, right, up, and down) and put at modify the x or y
position of objects.
animation-expression:

move identifier left additive-expression

move identifier right additive-expression

move identifier up additive-expression

move identifier down additive-expression

put identifier at additive-expression additive-expression
The animation operators change the location of objects. The move operator changes the x
position of an object with the keywords 1eft and right and changes the y position of an
object with the keywords up and down. The put operator changes both the x and y position
of an object to the position x,y after at.

3.3.2 Block Calls

A block is called by calling run followed by the name of the block.

ex.

run myBlock; ~function named myFunction is being called~

3.4 Declarations

Declarations of an identifier can be associated with one of the four basic types or a function.
All declarations must be accompanied by an initial value or declaration. All variables and
functions must be declared before they are referenced.

3.4.1 Declarations of int and bool

Identifiers of type int are declared as int <identifier> = with an assignmentto a
constant integer value. Identifiers or type bool are declared in the same manner bool
<identifier> = but are assigned to either false, true, or the value of some boolean
expression.

ex:

int 1 = 0;

bool b = true;

13

3.4.2 Declarations of shape objects rect and ellipse

Shape objects rect and el1lipse are declared in a similar format of <t ype>
<identifier> = . They must be assigned initial properties in order: an x position, a 'y
position, a height, a width, and a color (using keywords red, green, blue, or an rgb triple).
These properties are separated by commas.

ex.

rect r = 10, 10, 10, 10, red;

ellipse e = 10,10,10,10, (255,255,0);

3.4.3 Declarations of functions

Declarations of functions are specified by the keyword “block” followed by an identifier and
curly braces containing the group of statements associated with that block. Statements are
discussed in section 5.1 of this reference manual.

Note that the block drawloop is a special block, and therefore does not take the block
declarator.

3.5 Statements and Execution

3.5.1 Statements and Expressions
An expression is a syntactically valid variable declaration, boolean or relational evaluation,

arithmetic expression, function call, or animator operation on a shape as discussed in section
3.

A statement is any expression that is terminated with a semi-colon. Expressions such as
variable declarations, function calls, and animator operations must always end with a
semi-colon and are always statements. Relational evaluations, or arithmetic expressions may
evaluated as part of a declaration or as a condition within an if block. if, block, while, and
drawloop, are all followed by braces that must group together a set of statements.

ex.

block myBlock { <stmt-list> }

drawloop { <stmt-list> }

3.5.2 Execution

Execution begins at the top of the file. The file must include the special block drawloop in
order to compile. All statements within the drawloop block will be executed continuously at a
rate of 60 frames per second, enabling animation simulation.

All variables and blocks must be declared before they are referenced in a non-declarative
statement following it in the execution path.

14

3.6 Execution

Any variable declared within a block, understood to mean a group of statements between
braces, is only visible within those braces. If a block is nested within another block, and a
variable is declared with the same name in the inner block as a variable in the outer block,
then the inner block copy takes precedence and the outer block copy is rendered invisible.

Global variables are visible within any block but must be declared at the beginning of the file
before any block declarations.

15

4. Project Plan

4.1. Process of Planning, Specification, Development, and Testing
The initial plan for our language was to generate a semantically-checked intermediate C or C++
source file. The set of recognized key words was relatively small, as our language pared down
programming concepts to the essentials needed to write descriptive algorithms.

The outlines for the scanner, ast, and parser were completed in late October, and early November
fine-tuning the syntax for our language. Naturally, some of our initial plans for the syntax were
modified to help ease shift/reduce and reduce/reduce conflicts. Examples of this include
introducing comma separators between initializers for shapes, the inclusion of the tuple format
for RGB values, and the drawloop syntax.

Researching various C and C++ graphics library pinpointed GTK+ for hardware rendering paired
with Cairo for drawing and SDL as the two most viable C-compatible libraries. However, the code
generation developer had issues installing and using these libraries, and given that Java has
generally universal hardware rendering capabilities and is a familiar language, the decision was
made to use Java on our backend.

The first major concern for testing was to make sure our ast was correctly parsing our language
and translating every keyword and possible valid statement construction into the correct
corresponding Java code. During this and the next phase of testing, we assume a beneficent and
always correct user. The next phase was ensuring that we could correctly express simple
algorithms and mathematical expressions, such as in the collision test file. Finally, the last phase
is making sure that malicious or incorrect input is handled safely, handled by the error test cases.

4.2. Programming Style Guide

The conventions for our programming followed the basics rules of ocaml. Specific conventions
are as follows.

Names of Variables
- Names of variables are concise but with some easy-to-recognize pattern for what they
represent. For instance, “whitespace” is too long but “ws” is an appropriate name for a
tokenizing regex as it is easy to recall what it might stand for.

- The members of structs usually start with the letter of the struct type to differentiate it

from the general type, i.e. “color” represents an RGB tuple int * int * int but the
corresponding member of the shape type is scolor.

16

= Duplicate variable names were allowed for things that represented similar objectives,
such as f_decl and func_decl as long their usage was clear in context.

Names of Functions
- Function names are generally more descriptive and longer because they are used less
frequently.

- Code generating functions that were at some point to be injected in the Java source all
include “string” somewhere in their name. Validity checks are indicated usually by “is” or
“check’.

Spacing and Indentation
= Used liberally. Ocaml tends to have layers of nested functions but in otherwise, code
should be uniformly indented and well-spaced. We as a group believe that readability
should be valued.

4.3. Project Timeline

Rough goals and milestones:

Mid November - solidify language syntax and write scanner

End of November - finish front-end, pick a graphics library, and set up files for code generation
Early December - finish code generation, produce working programs and an executor, and begin
writing tests

Mid December - implement semantic checking, resolve test issues, and write demos

4.4. Team Roles and Responsibilities

Lana - Originally the systems and language guru, but also team manager in assigning tasks and
general nagging about due dates. Had initial idea for a visual educational language, designed
front-end of compiler, wrote large part of ast, parser, scanner, makefile, shell script, and
pmmc.ml, and general background research and architecture.

David - Originally test writer and stayed pretty true to testing. Generally pointed out
inconsistencies in syntax and animation ideas, responsible for test suite, helped resolve errors in
parser/ast, wrote ast-traversal code-generative functions in the latter half of the ast, demo
programs, contributed to makefile and basic semantic checker.

Gil - Originally manager; wrote codegen, a basic semantic checker, and the Java backend using
Swing with threaded animations. Responsible for the entirety of the static code and
code-injection functions. Also wrote the demo programs like “hello,” and contributed extra
functionality to parser, ast, and scanner, not included in original language scope, such as rotation
and background.

17

4.5. Development Environment, Tools, and Languages

Each of used personal laptops, so for Gil and David these were Mac OS and for Lana, Linux’s
Ubuntu 14.04. We all have our personal favorite text editor (Sublime vs vim). We used git version
control software to push updates and merge code. The original repository is hosted on Lana’s
github at https://github.com/alanamramjit/Photoshop--. Informally, Facebook messenger group
chats played a large role in group communication and task distribution. The front-end is of course
coded in ocaml, the backend in Java using the Swing graphics library, and the swift compiler is a
bash script.

4.6. Project Log

Early November
The skeleton for our code was created in mid-November and design ideas discussed.

Mid November

Small and mostly boilerplate portions of code completed. Researching typical syntax for
front-end, hashing out what the syntax and goals of our language should look like in finer
granularity.

Late November
A basic, complete first attempt at a parser, ast, and scanner. Largely incorrect but needed testing.
Research into C/C++ graphics libraries.

Early December

Completed the front end, and also began debugging the ast
Completed the static Java code

Implemented a broader range of functionality

Created an executor to generate combined files

Code injection and shell script compile Java code with options
Added basic semantic checking and tests

18

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Falanamramjit%2FPhotoshop--&sa=D&sntz=1&usg=AFQjCNHNpRzzIpnj993X_1H4WA4dUnYU4g

5. Architectural Design

5.1. Translator Components

‘ Lexer H Parser }.; AstiCodegen

A

Y
3

Semantic Check

—_—

5.2. Component Interfaces

The flow of a PMM program happens as follows: running ./pmmc <name of file> causes the .ppm
source file to be scanned in tokens, parsed into the ast and semantically checked at a very basic
level. Then the codegenerator traverses the semantic tree, translating each node into a
corresponding Java statement which is injected into a larger, static Java string with a predefined
graphics framework. This is written to a .java source file. The pmmc file, which is really just a
bash script, then compiles and executes the generated class file.

5.3. Individual Contributions
Lana
Implemented grammar construction (parsing/lexing, ast), and execution architecture.

David
Created test suites and contributed to scanner, parser, and ast.

Gil

Implemented codegen, semantic checking, and Java graphics. Also contributed to scanner, parser,
and ast with additional functionality.

19

6. Test Plan

6.1. Overview

Our initial tests started off simple and short to ensure that we had the ability to compile a simple
program with the minimum amount of code to compile a test. Our goal was then to build on those
tests to ensure that each of our keywords and key functionalities worked individually as well as
when put together for more complex programs.

6.2. Test Suites

We have divided out tests into two suites: test programs and sample programs.

The test programs directory includes tests of basic functionality in which we isolate the
functionality we want to focus on. We also created tests that we purposefully fail to ensure we
cannot compile and output generated code with errors. These tests are numbered with the prefix
error.

The sample_programs directory holds some of our early tests in which we wanted to manipulate
created objects from the moment our compiler started to work. These include some more
interesting programs such as a collision, explosion, and our most complex program
hello featuring a bouncing multicolored hello created solely from the ellipses and rectangles
that can be created in Photoshop--.

6.3. Test Cases
Below are three test cases: simple rect, blocks,and hello.

The simple rect test displays a simple red rectangle in the middle of the screen and shows
how simple it can be to put something on the screen with Photoshop--.

simple rect

~Simple Rectangle~
rect r = 300,300,100,100, red;

drawloop {}

simple rect Java output:

import java.awt.Color;

import java.awt.Dimension;

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.awt.Rectangle;

import java.awt.geom.Ellipse2D;
import java.awt.geom.Rectangle2D;
import java.awt.geom.AffineTransform;

20

import java.util.ArrayList;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.SwingUtilities;
public class PSMMAnimator ({

public static void main (String[] args) {
SwingUtilities.invokeLater (new Runnable () {
public void run() {

createAndDisplayGUI () ;

1)

}

public static void createAndDisplayGUTI () {
JFrame frame = new JFrame ("My Animation Coded in

Photoshop--") ;

frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
PSMMAnimatedPanel panel = new PSMMAnimatedPanel () ;
frame.add (panel) ;
frame.pack () ;
frame.setVisible (true) ;
Thread t = new Thread(panel)
t.start ()

}

class PSMMAnimatedPanel extends JPanel implements Runnable ({
private static final long serialVersionUID = 1L;
public ArrayList<Shape> shapes;
Shape r = new Shape (new Rectangle (300, 300, 100, 100), new
Color (255, 0, 0), Shape.Type.RECTANGLE) ;
public PSMMAnimatedPanel () {
shapes = new ArrayList<Shape> () :;
// Create and add shapes
shapes.add(r) ;
}
public void drawloop () {

@Override
public void run () {
while (true) {
recalculateShapes () ;
repaint () ;
try {
Thread.sleep (1000 / 60);

} catch (InterruptedException e) {
}

21

}

private void recalculateShapes () {
// Do stuff to shapes
drawloop () ;

}

public Dimension getPreferredSize () {
return new Dimension (700, 700);

}

@Override

public void paintComponent (Graphics g) {
super.paintComponent (g) ;
Graphics2D g2 = (Graphics2D) g;
for (Shape shape : shapes) {

AffineTransform old = g2.getTransform();
shape.angle %= 360; g2.rotate (Math.toRadians (shape.angle));
g2.setTransform(old) ;

g2.setPaint (shape.color) ;

Rectangle frame = shape.frame;

if (shape.type == Shape.Type.ELLIPSE) {

g2.fill (new Ellipse2D.Double (frame.x, frame.y,
frame.width, frame.height));

} else if (shape.type == Shape.Type.RECTANGLE) {

g2.fill (new Rectangle2D.Double (frame.x,
frame.y, frame.width, frame.height));

}

}
class Shape {
public enum Type {
RECTANGLE, ELLIPSE
}
public Rectangle frame;
public Color color;
public Type type;
public int angle;
public Shape (Rectangle frame, Color color, Type type) {
this.frame = frame;
this.color color;
this.type = type;
this.angle = 0;

22

The blocks test displays is a slightly more complex program that tests the ability to create and

run blocks. We create two blocks,

one called checkAndIncrement

and the other

putInQuadrant2or4. By running them consecutively after 30 runs of the drawloop, the
check will change the boolean value which changes the location of the rectangle in the put block.

blocks:

~Test blocks~
rect r = 10,10,330,330, red;
bool b = true;

int 1 = 0;

block checkAndIncrement ({

if (i == 30) {
if(b) |
b = false;
} else {
b = true;
}
i = 0;
}
i = 1i+1;

block putInQuadrant2oréd {
if(b) |
~Quadrant 4~
put r at 360,360;
} else {
~Quadrant 2~
put r at 10,10;

drawloop {
run putInQuadrant2or4;
run checkAndIncrement;

blocks Java output:

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;

23

import java.awt.Graphics2D;

import java.awt.Rectangle;

import java.awt.geom.Ellipse2D;
import java.awt.geom.Rectangle2D;
import java.awt.geom.AffineTransform;
import java.util.ArrayList;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.SwingUtilities;
public class PSMMAnimator ({

public static void main (String[] args) {
SwingUtilities.invokelLater (new Runnable () {
public void run() {

createAndDisplayGUI () ;

1)

}

public static void createAndDisplayGUI () {
JFrame frame = new JFrame ("My Animation Coded in

Photoshop--") ;

frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
PSMMAnimatedPanel panel = new PSMMAnimatedPanel () ;
frame.add (panel) ;
frame.pack() ;
frame.setVisible (true) ;
Thread t = new Thread(panel)
t.start();

}

class PSMMAnimatedPanel extends JPanel implements Runnable {
private static final long serialVersionUID = 1L;
public ArrayList<Shape> shapes;
Shape r = new Shape (new Rectangle (10, 10, 330, 330), new Color (255,
0, 0), Shape.Type.RECTANGLE) ;
boolean b = true;
int 1 = 0;
public PSMMAnimatedPanel () {
shapes = new ArrayList<Shape>();
// Create and add shapes
shapes.add(r) ;
}

public void checkAndIncrement () {
if (i == 30)

{

if (b)

{

b = false;}

24

o
Il

public void putInQuadrant2or4d () {

{

if (b)

r.frame.x = 360; r.frame.y = 360;}

else

{

r.frame.x

}

10; r.frame.y = 10;}

public void drawloop () {

putInQuadrant2or4 () ;
checkAndIncrement () ;

@Override
public void run () {
while (true) {
recalculateShapes () ;
repaint () ;
try {
Thread.sleep (1000 / 60);

} catch (InterruptedException e) {
}

}

private void recalculateShapes () {
// Do stuff to shapes
drawloop () ;

}

public Dimension getPreferredSize () {
return new Dimension (700, 700);

}

@Override

public void paintComponent (Graphics g) {
super.paintComponent (g) ;
Graphics2D g2 = (Graphics2D) g;
for (Shape shape : shapes) {

AffineTransform old = g2.getTransform();

¢

shape.angle %= 360; g2.rotate (Math.toRadians (shape.angle));
g2.setTransform(old) ;

25

g2.setPaint (shape.color) ;
Rectangle frame = shape.frame;

if (shape.type == Shape.Type.ELLIPSE) {
g2.fill (new Ellipse2D.Double (frame.x, frame.y,

frame.width, frame.height));

} else if (shape.type == Shape.Type.RECTANGLE) {
g2.fill (new Rectangle2D.Double (frame.x,

frame.y, frame.width, frame.height));

}

}
class Shape {
public enum Type {
RECTANGLE, ELLIPSE
}
public Rectangle frame;
public Color color;
public Type type;
public int angle;
public Shape (Rectangle frame, Color color,
this.frame = frame;
this.color color;
this.type = type;
this.angle = 0;

Below are three test cases: simple rect, blocks,and hello.

Type type) {

Below is a more complex program, hel1o, that tests more complex capabilities of Photoshop--.

hello:

~ PHYSTCS VARIABLES~

int height = 200;

int minY = 50;

int maxY = minY + height;
int minX = 100;

int maxX = 100;

int velocityY = 1;

int velocityX

Il
'_\
~.

~ BACKGROUND ~
int bgCounter = 474;

~ B o~

26

rect hlLeft = minX, minY, 30, height, red;
rect hMiddle = minX, minY + 85, 90, 30, red;
rect hRight = minX + 60, minY, 30, height, red;

~ B ~
rect elLeft = minX + 100, minY, 30, height, (255, 127, 0);
rect eTop = minX + 100, minY, 90, 30, (255, 127, 0);

rect eMiddle = minX + 100, minY + 85, 90, 30, (255, 127, 0);
rect eBottom = minX + 100, maxY - 30, 90, 30, (255, 127, 0);

~ I, ~
rect firstLLeft = minX + 200, minY, 30, height, (255, 255, 0);
rect firstLBottom = minX + 200, maxY - 30, 90, 30, (255, 255, 0);

~ I, ~
rect secondLLeft = minX + 300, minY, 30, height, green;
rect secondLBottom = minX + 300, maxY - 30, 90, 30, green;

~ 0 ~
ellipse oOuter = minX + 400, minY, 90, height, blue;

ellipse oInner = minX + 430, minY + 30, 30, height - 60, (236, 230,
236) ;

drawloop {
velocityY = velocityY + 1;

~ Bounce HELLO if it is at the bottom of the screen and make
it stick a bit ~
if (hlLeft.y + hLeft.height >= 700) {
if (velocityY > 30) {
velocityY = 30;
}
velocityY = velocityY - 2 * velocityY¥;

~ Horizontal motion ~

if (oOuter.x + oOuter.width >= 700) {
velocityX = -1;

} else if (hlLeft.x <= 0) {
velocityX = 1;

run updatePositions;
run updateBackgroundColor;

~ Updates shape positions ~

27

block updatePositions {

put
put
put

put
put
put
put

put

hLeft at hlLeft.x + velocityX, hlLeft.y + velocityY;

hMiddle at hMiddle.x + velocityX, hMiddle.y + velocityY;

hRight at hRight.x + velocityX, hRight.y + velocityY;

eleft at eleft.x + velocityX, eleft.y + velocityY;

eTop at eTop.x + velocityX, eTop.y + velocityY;

eMiddle at eMiddle.x + velocityX, eMiddle.y + velocityY;
eBottom at eBottom.x + velocityX, eBottom.y + velocityY;

firstLLeft at firstLLeft.x + velocityX, firstLLeft.y +

velocityY;

put firstLBottom at firstLBottom.x + velocityX, firstLBottom.y

+ velocityY;

put secondLLeft at secondLLeft.x + velocityX, secondLLeft.y +

velocityY;
put secondLBottom at secondLBottom.x + velocityX,
secondLBottom.y + velocityY;

put oOuter at oOuter.x + velocityX, oOuter.y + velocityY;
put oInner at olInner.x + velocityX, olInner.y + velocityY;

~ Updates the background color ~
block updateBackgroundColor {

~ Set the background color ~

if (bgCounter > 575) {
background red;
oInner.color = red;

} else if (bgCounter > 550) {
background (255, 127, 0);
oInner.color = (255, 127, 0);

} else if (bgCounter > 520) {
background (255, 255, 0);
oInner.color = (255, 255, 0);

} else if (bgCounter > 500) {
background green;
olnner.color = green;

} else if (bgCounter > 475) {
background blue;
oInner.color = blue;

} else {
background (236, 236, 236);
oInner.color = (236, 236, 230);

28

~ Decrement bgCounter 600 -> 0 and then back to 600 ~
if (bgCounter < 0) {

bgCounter 600;
} else {

bgCounter = bgCounter - 1;

hello Java output:

import java.awt.Color;

import java.awt.Dimension;

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.awt.Rectangle;

import java.awt.geom.Ellipse2D;
import java.awt.geom.Rectangle2D;
import java.awt.geom.AffineTransform;
import java.util.ArrayList;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.SwingUtilities;
public class PSMMAnimator ({

public static void main (String[] args) {
SwingUtilities.invokelLater (new Runnable () {
public void run() {

createAndDisplayGUI () ;

1)

}

public static void createAndDisplayGUI () {
JFrame frame = new JFrame ("My Animation Coded in

Photoshop--") ;

frame.setDefaultCloseOperation (JFrame.EXIT ON CLOSE) ;
PSMMAnimatedPanel panel = new PSMMAnimatedPanel () ;
frame.add (panel) ;
frame.pack() ;
frame.setVisible (true) ;
Thread t = new Thread(panel)
t.start();

}

class PSMMAnimatedPanel extends JPanel implements Runnable {
private static final long serialVersionUID = 1L;
public ArrayList<Shape> shapes;

29

int height = 200;

int minY = 50;

int maxY = minY + height;

int minX = 100;

int maxX = 100;

int velocityY = 1;

int velocityX = 1;

int bgCounter 474 ;

Shape hlLeft = new Shape (new Rectangle (minX, minY, 30, height), new
Color (255, 0, 0), Shape.Type.RECTANGLE) ;

Shape hMiddle = new Shape (new Rectangle (minX, minY + 85, 90, 30),
new Color (255, 0, 0), Shape.Type.RECTANGLE) ;

Shape hRight = new Shape (new Rectangle (minX + 60, minY, 30,
height), new Color (255, 0, 0), Shape.Type.RECTANGLE) ;

Shape elLeft = new Shape (new Rectangle (minX + 100, minY, 30,
height), new Color (255, 127, 0), Shape.Type.RECTANGLE) ;

Shape eTop = new Shape (new Rectangle (minX + 100, minY, 90, 30), new

Color (255, 127, 0), Shape.Type.RECTANGLE) ;
Shape eMiddle = new Shape (new Rectangle (minX + 100, minY + 85, 90,
30), new Color (255, 127, 0), Shape.Type.RECTANGLE) ;
Shape eBottom = new Shape (new Rectangle (minX + 100, maxY - 30, 90,
30), new Color (255, 127, 0), Shape.Type.RECTANGLE) ;
Shape firstLLeft = new Shape (new Rectangle (minX + 200, minY, 30,
height), new Color (255, 255, 0), Shape.Type.RECTANGLE) ;
Shape firstLBottom = new Shape (new Rectangle (minX + 200, maxY - 30,
90, 30), new Color (255, 255, 0), Shape.Type.RECTANGLE) ;
Shape secondLLeft = new Shape (new Rectangle (minX + 300, minY, 30,
height), new Color (0, 255, 0), Shape.Type.RECTANGLE) ;
Shape secondLBottom = new Shape (new Rectangle (minX + 300, maxY -
30, 90, 30), new Color (0, 255, 0), Shape.Type.RECTANGLE) ;
Shape oOuter = new Shape (new Rectangle (minX + 400, minY, 90,
height), new Color (0, 0, 255), Shape.Type.ELLIPSE) ;
Shape oInner = new Shape (new Rectangle (minX + 430, minY + 30, 30,
height - 60), new Color (236, 236, 236), Shape.Type.ELLIPSE);
public PSMMAnimatedPanel () {

shapes = new ArrayList<Shape>();

// Create and add shapes
shapes.add (hLeft) ;
shapes.add (hMiddle) ;
shapes.add (hRight) ;
shapes.add (elLeft) ;
shapes.add (eTop) ;
shapes.add (eMiddle) ;
shapes.add (eBottom) ;
shapes.add (firstLLeft) ;
shapes.add (firstLBottom) ;
shapes.add (secondLLeft) ;

30

shapes.add (secondLBottom) ;
shapes.add (oOuter) ;
shapes.add (oInner) ;
}
public void drawloop () {
velocityY = velocityY + 1;
if (hLeft.frame.y + hLeft.frame.height >= 700)
{
if (velocityY > 30)
{
velocityY

307}

velocityY = velocityY - 2 * velocityY;}

if (oOuter.frame.x + oOuter.frame.width >= 700)
{
velocityX = -2;}
else
if (hLeft.frame.x <= 0)
{
velocityX = 1;}

updatePositions () ;

updateBackgroundColor () ;
}
public void updatePositions () {

hLeft.frame.x = hlLeft.frame.x + velocityX; hLeft.frame.y =
hlLeft.frame.y + velocityY;

hMiddle.frame.x = hMiddle.frame.x + velocityX; hMiddle.frame.y
= hMiddle.frame.y + velocityY;

hRight.frame.x = hRight.frame.x + velocityX; hRight.frame.y =
hRight.frame.y + velocityY;

eleft.frame.x = eleft.frame.x + velocityX; eleft.frame.y =
eleft.frame.y + velocityY;

eTop.frame.x = eTop.frame.x + velocityX; eTop.frame.y =
eTop.frame.y + velocityY;

eMiddle.frame.x = eMiddle.frame.x + velocityX; eMiddle.frame.y
= eMiddle.frame.y + velocityY;

eBottom.frame.x = eBottom.frame.x + velocityX; eBottom.frame.y
eBottom. frame.y + velocityY;
firstLLeft.frame.x = firstlLLeft.frame.x + velocityX;

firstLLeft.frame.y = firstlLlLeft.frame.y + velocityY;

firstLBottom.frame.x = firstLBottom.frame.x + velocityX;
firstLBottom.frame.y = firstLBottom.frame.y + velocityY;

secondLLeft.frame.x = secondLLeft.frame.x + velocityX;
secondLLeft.frame.y = secondLLeft.frame.y + velocityY;

secondLBottom. frame.x = secondLBottom.frame.x + velocityX;

31

secondLBottom. frame.y = secondLBottom.frame.y + velocityY;

oOuter.frame.x = oOuter.frame.x + velocityX; oOuter.frame.y
oOuter.frame.y + velocityY;
oInner.frame.x = olInner.frame.x + velocityX; olnner.frame.y

olnner.frame.y + velocityY;

}

public void updateBackgroundColor () {
if (bgCounter > 575)

{

setBackground (new Color (255, 0, 0));

oInner.color = new Color (255, 0, 0);}

else

if (bgCounter > 550)

{

setBackground (new Color (255, 127, Q)):;

oInner.color = new Color (255, 127, 0);

else

if (bgCounter > 520)

{

setBackground (new Color (255, 255, 0))

oInner.color = new Color (255, 255, 0)

else

if (bgCounter > 500)

{

setBackground (new Color (0, 255, 0));

oInner.color = new Color (0, 255, 0);}

else

if (bgCounter > 475)

{

setBackground (new Color (0, 0, 255));

oInner.color = new Color (0, 0, 255);}

else

{

setBackground (new Color (236, 236, 236));

oInner.color = new Color (236, 236, 236);}

}

14
14

}

if (bgCounter < 0)
{
bgCounter
else

{
bgCounter = bgCounter - 1;}

600; }

@Override
public void run() {
while (true) {

recalculateShapes () ;
repaint () ;
try
Thread.sleep (1000 / 60);
} catch (InterruptedException e) {
}

}

private void recalculateShapes () {
// Do stuff to shapes
drawloop () ;

}

public Dimension getPreferredSize () {
return new Dimension (700, 700);

}

@Override

public void paintComponent (Graphics g) {
super.paintComponent (g) ;
Graphics2D g2 = (Graphics2D) g;
for (Shape shape : shapes) {

AffineTransform old = g2.getTransform();
shape.angle %= 360; g2.rotate (Math.toRadians (shape.angle));
g2.setTransform(old) ;

g2 .setPaint (shape.color) ;

Rectangle frame = shape.frame;

if (shape.type == Shape.Type.ELLIPSE) {

g2.fill (new Ellipse2D.Double (frame.x, frame.y,
frame.width, frame.height));

} else if (shape.type == Shape.Type.RECTANGLE) {

g2.fill (new Rectangle2D.Double (frame.x,
frame.y, frame.width, frame.height)):;

}

}
class Shape {
public enum Type {
RECTANGLE, ELLIPSE
}
public Rectangle frame;
public Color color;
public Type type;
public int angle;
public Shape (Rectangle frame, Color color, Type type) {
this.frame = frame;
this.color = color;
this.type = type;

33

this.angle = 0;

6.4. Individual Contributions

Gil

Created several demo programs such as “hello,” contributed to finding and fixing parsing and
logic issues.

David

Implemented all of the tests above, finding many issues and determining the appropriate course
of action.

34

7. Lessons Learned

7.1. Group Lessons Learned

One of the main lessons we learned is just how powerful OCaml can really be. While its
highly-functional syntax appeared unfamiliar, we grew to really love just how ideal it is for
pattern matching and building a compiler. We also learned the importance of starting early when
given such a large assignment.

7.2. Lessons Learned by Gil Feig

[gained a true understanding for the way compilers work, by at least contributing to every step
along the compilation path. Furthermore, I realized just how important communication is, as this
project is not easily separable. Though there are components that can be written and grouped in
separate files, every piece of the system depends on every other. With this, I learned how critical
it is to use more of Git's rich functionalities. Working with a group on such a large project
requires absolute cooperation, and I realized the importance of committing and pushing often,
merging properly, and using branches.

7.3 Lessons Learned by David Figueroa

The major lesson I learned while working on this project was how important it is to start early
and seek help from the TAs as they are a great resource. I believe I am walking away from this
course with a true understanding of the process of writing and the structure of a compiler. [have
gained very valuable experience working on this large project in a group and have learned the
many advantages of using Git and working with others who are familiar with the tool.

7.4. Lessons Learned by Alana Ramyjit

-You really can fix most problems by adding another level of indirection

-An understanding of the capabilities of ocamlyacc for implementing CFGs

-When faced with a huge task and not knowing where to start, start somewhere

-Also, ask for help early on. Being more proactive about setting up weekly meetings with Vaibhav
and checking in with the professor and TAs about progress and what steps to take next in
retrospect would have made a world of difference and would have been much more useful
early-on.

-the interdependency of all the parts--one “finished” and working section of code could easily
become unfinished if someone else updated or added another file. Ex: building a working,
type-matching top-level to read compiler flags could be reverted to a much earlier stage by the
addition of a semantic checking file, and many sections of the AST /parser were continually under
revision as other group members contributed to their sections.

7.4. Advice for Future Teams

Start as early as possible. Even if that means reading through past years’ projects just to get an
understanding of the scope of the assignment, do not wait until the last couple weeks.

35

Communicate at least weekly throughout the semester, and determine who will work on what,
and how those pieces will be connected.

8. Appendix

8.1. scanner.mll

{ open Parser }

let letter = ['a'-"z' '"A' - 'Z']

let digit = ['0'=-"9"]

let identifier = (letter) (letter | digit)*
let stringy = (letter | digit)*

let ws = [' "'"\t' "\r' '"\n']

rule token = parse

['" ' "\t' '"\r' "\n'] token lexbuf }
comment lexbuf }
SEMICOLON }
LBRACE }
RBRACE }
LPAREN }
COMMA }
RPAREN }
ASSIGN }
LTHAN }
GTHAN }
NOT }
TIMES}
PLUS }
MINUS }
EQ }
PLUS }
MINUS }
EQ }
NEQ }
LEQ }
GEQ }
GETANGLE }

LIS |

”v\
e e e e N e N e N e e T e N e N T e N e N

w__mn

—~

|

|

|
|+t
| —
|| -

| r<="

| m>=r

| ".angle"

| "ox" GETX }
| ".y GETY }
|
|
|
|
|

e e e i e N e e T e N e N

".width" WIDTH }
".height" { HEIGHT }
".coloxr" { GETCOLOR }
"at" { AT }
"background" { BACKGROUND }

36

"block" { BLOCK }

|
| "blue" { BLUE }
| "bool" { BOOL }
| "down" { DOWN }
| "drawloop" { DRAWLOOP }
| "ellipse" { ELLIPSE }
| "else" { ELSE }
| "false" { FALSE }
| "green" { GREEN }
| "if" { IF }
| "int" { INT }
| "left" { LEFT }
| "main" { MAIN }
| "move" { MOVE }
| "print" { PRINT }
| "put" { PUT }
| "rect" { RECT }
| "red" { RED }
| "right" { RIGHT }
| "rotate" { ROTATE }
| "run" { RUN }
| ""'"(letter | digit)+(letter | digit | ws)*'"' as str
{ STRING(str) }
| "true" { TRUE }
| "right" { RIGHT }
| "run" { RUN }
| "true" { TRUE }
| "up" { UP }
| "while" { WHILE }
| identifier as lxm { ID(1lxm) }
| eof { EOF }
| digit+ as 1lxm { LITERAL(int of string lxm) }
| as char { raise
(Failure ("Illegal Character: " » Char.escaped char)) }
and comment = parse
Ul { token lexbuf }
| { comment lexbuf }
| eof { raise (Failure

("Unclosed Comment: All comments must have both opening and closing
squiggles")) 1}

37

8.2. parser.mly

%{ ope

%token
$token
$token
$token
%token
QUOTE

%token
$token
%token
$token

%nonas
%nonas
snonas
sright
$left
%left
sleft
$left
$left

Sstart
Ftype

o
o

n Ast %}

SEMICOLON LBRACE RBRACE LPAREN RPAREN EQ LTHAN GTHAN

NOT TIMES NEQ LEQ GEQ AT BLOCK BLUE DOWN INT NOELSE EOF
ELSE FALSE GREEN IF LEFT LOOP MAIN MOVE PUT ELLIPSE COMMA
RED RIGHT RUN TRUE UP WHILE ASSIGN BOOL RECT DRAWLOOP DOT
GETX GETY WIDTH HEIGHT GETCOLOR GETANGLE PLUS MINUS PRINT

BACKGROUND ROTATE
<string> ID

<int> LITERAL
<string> STRING

soc NOELSE

soc ELSE

soc COMMA

ASSIGN

EQ NEQ

LTHAN GTHAN LEQ GEQ
PLUS MINUS

TIMES DIVIDE

MOVE

program
<Ast.program> program

program:
{1, 01}
| program vdecl { $2::fst $1, snd S$1 }
| program fdecl { fst $1, $2 :: snd $1}
fdecl:

BLOCK ID LBRACE stmt list RBRACE

{

fname = $2;
body = List.rev $4;

38

| DRAWLOOP LBRACE stmt list RBRACE

{
{

fname = "drawloop";
body = List.rev $3;

color
RED { (255, 0, 0) }
GREEN { (0, 255, 0) }
BLUE { (0, 0, 255) }

|

|

| LPAREN LITERAL COMMA LITERAL COMMA LITERAL RPAREN { ($2, $4,
$6) }
shape:

RECT { Rect }
| ELLIPSE { Ellipse }

vdecl:
shape ID ASSIGN expr COMMA expr COMMA expr COMMA expr COMMA color

SEMICOLON

{ Shape (
{

stype = $1;
sname = $2;
x = $4;

y = $6;

w = $8;

h = $10;

scolor = $12;
}
)}

| INT ID {Def (Int, $2, Literal(0))}
| BOOL ID {Def (Bool, $2, Literal(0))}
| INT ID ASSIGN expr SEMICOLON {Def (Int, $2, $4)}

| (

BOOL ID ASSIGN expr SEMICOLON {Def (Bool, $2, $4)}

stmt list:
{ [11}
| stmt list stmt { $2 :: S1 }
stmt:
expr SEMICOLON { Expr(s1) }
| LBRACE stmt list RBRACE { Block(List.rev $2)

39

IF LPAREN expr RPAREN stmt %prec NOELSE { If£($3,
Block ([])) }

IF LPAREN expr RPAREN stmt ELSE stmt

WHILE LPAREN expr RPAREN stmt
RUN ID SEMICOLON
PUT ID AT expr COMMA expr SEMICOLON

MOVE ID LEFT expr SEMICOLON
MOVE ID RIGHT expr SEMICOLON
MOVE ID UP expr SEMICOLON
MOVE ID DOWN expr SEMICOLON
ROTATE ID expr SEMICOLON

vdecl
PRINT STRING SEMICOLON

BACKGROUND color SEMICOLON

LTITERAL
MINUS LITERAL

ID

TRUE

FALSE

expr PLUS expr
expr MINUS expr
expr TIMES expr
expr DIVIDE expr
expr EQ expr
expr NEQ expr
expr LTHAN expr
expr LEQ expr
expr GTHAN expr
expr GEQ expr

ID ASSIGN expr

LPAREN expr RPAREN
color

ID GETX

ID GETY

ID WIDTH

ID HEIGHT

ID GETCOLOR

ID GETANGLE

ID GETX ASSIGN expr

ID GETY ASSIGN expr

ID WIDTH ASSIGN expr

ID HEIGHT ASSIGN expr
ID GETCOLOR ASSIGN color
ID GETANGLE ASSIGN expr

e e N e N e e N e N e e e N e N e N N e e M e e T e M e N N N N e N e N N e N e e i e N

{ Animator ($2,

Literal (
Literal (
Id(s1) }
Boolean (
Boolean (
Binop ($1
Binop (S$1
Binop (S1
Binop ($1
Binop ($1
Binop (S$1
Binop (S1
Binop ($1
Binop ($1
Binop (S$1
Vassign (
$2 '}

Rgb ($1)
Get (S$1,
Get (S$1,
Get (S$1,
Get ($1,
Get (S$1,
Get (S$1,
Set (S1,
Set ($1,
Set ($1,
Set (81,
Set (S1,
Set ($1,

I£($3,

—_~— -~

Run ($2)

{ Put(s2,
Animator ($2,
Animator ($2,
Animator ($2,
{ Animator ($2,

—,~— o~ e~

$5I

$5,

While ($3,

}

$7) 1}

$5) '}

$4,
Left, $4)
Right, $4)

Up,

$6) }

$4) }

Down, $4)

{ Vdecl ($1)
{ Print ($2)
{ Background ($2) }

$1) 1}

-1 * 2) }
"true") }
"false") }

, Add, $3

, Mult, $3

)
» Sub, $3)
)
, Div, $3)

—— e o

» Equals, $3) }

» Neq, $3)
, Less, $3)
» Leq, $3)
, Greater, $
, Geq, $3)
$1, $3)}

}

width, $4) }
Height, $4) }
Color, Rgb ($4))
Angle, $4) }

}

}
}

Degoffset, $3)

}

}

}

}

40

8.3. ast.ml

type op = Add | Sub | Mult | Div | Equals | Neqg | Less | Leq | Geg
| Greater

type animop = Left | Right | Up | Down | Degoffset

type s type = Rect | Ellipse

type sdesc = Width | Height | X | Y | Color | Angle

type color = int * int * int

type expr =
Literal of int
| Id of string
| Vassign of string * expr
| Binop of expr * op * expr
| Get of string * sdesc
| Set of string * sdesc * expr
| Rgb of (color)
| Boolean of string

type p type = Int | Bool

type shape = {
stype: s type;
sname: string;
X: expr;

y: expr;
w: expr;
h: expr;

scolor: color;

type v _decl =
Shape of shape
| Def of p type * string * expr

type stmt =
Block of stmt list
| Expr of expr
| If of expr * stmt * stmt
| While of expr * stmt
| Run of string

| Animator of string * animop * expr
| Put of string * expr * expr

| Vdecl of v decl

| Print of string

| Background of color

type £ decl = {
fname: string;
body: stmt list;
type program = v _decl list * f decl list
type prog funcs =
Var of v decl

| Fun of f decl

(* Returns a string representation of the given binary operation *)

Greater -> ">"
Geq —-> ">

let string of op = function

Add -> "+"

| Sub -> "-"

| Mult -> "*"

| Div -> "/"

| Equals -> "=="

| Neg -> "!="

| Less —-> "<"

| Leg -> "<="

|

|

(* Returns a string ID suffix for the given property *)
let string of prop = function
X => ".frame.x"

| Y -> ".frame.y"

| Width -> ".frame.width"

| Height -> ".frame.height"

| Color -> ".color"

| Angle -> ".angle"

(* Returns a string for the given basic type *)
let string of type = function
Int -> "int"
| Bool -> "boolean"

(* Returns a string ID suffix for the given move direction *)
let string of direction = function
Left -> ".frame.x —-="

| Right -> ".frame.x +="

| Up -> ".frame.y -="

| Down -> ".frame.y +="

| Degoffset -> ".angle +="

(* Returns a string for the given color *)
let string of color col =
let (r, g, b) = col in
"new Color (" ”~ string of int r ~ ", " ~ string of int g ~ ", "
~ string of int b ~ ")"
(* Returns a string identifier for the given shape type *)
let string of stype = function
Rect -> "Shape.Type.RECTANGLE"
| Ellipse —-> "Shape.Type.ELLIPSE"

(* Returns a string for the given expression *)
let rec string of expr = function
Literal(l) -> string of int 1
| Id(id) -> id
| Boolean(b) -> b
| Binop(el, op, e2) ->
string of expr el ~ " "
string of expr e2
| Vassign(el, e2) -> el ~ " =" 7~ string of expr e2
| Rgb(col) -> string of color col
| Get(id, prop) -> id ”~ string of prop prop
| Set(id, prop, ex) -> id ~ string of prop prop ~ " =" °
string of expr ex

A

string of op op * " " *

(* Returns a string for the given variable declaration *)
let string of vdecl function

Def (ty, id, ex) -> string of type ty ~" " ~ id ~ " ="
string of expr ex ~ ";\n"

| Shape (shape defn) -> "Shape " "~ shape defn.sname ~ " = new
Shape (new Rectangle (" ”~ string of expr shape defn.x ~ ", " *
string of expr shape defn.y ~ ", " ” string of expr shape defn.w "
", " ~ string of expr shape defn.h ~ "), " ~ string of color

A

shape defn.scolor ~ ", " ” string of stype shape defn.stype
") ;\n"

(* Returns a string for the given statement *)
let rec string of stmt = function
Expr (ex) -> string of expr ex ~";"
| Block(s) -> "{\n""String.concat "\n" (List.map string of stmt
s) ~ "I\n"
| If(ex, s, Block([])) -> "if (" » string of expr ex "")\n"

43

“string of stmt s

| If(ex, sl, s2) -> "if (" ”~ string of expr ex
") \n""string of stmt sl ~ "else\n" ”~ string of stmt s2

| While(ex, s) -> "while (" ” string of expr ex ~")\n""
string of stmt s

| Run (id) -> 1d™"();:"

| Put(id, exl, ex2) -> id * ".frame.x = " ” string of expr exl *
"; "~ id * ".frame.y = " ©* string of expr ex2 ~ ";"

| Animator (id, dir, ex) -> id ”~ string of direction dir *
string of expr ex ~ ";"

| Vdecl (var) -> string of vdecl var ©~ ";"

| Print(str) -> "System.out.println("*str™");"

A A

| Background (color) -> "setBackground ("

");"

string of color color

(* Returns a string add statement for the given v_decl ()->Shape *)
let string of add = function

Shape (shape defn) -> "shapes.add(" " shape defn.sname ~ ");\n"

| Def(_l o _) -> "
(* Returns a string for the given function declaration *)
let string of func f decl = "public void " #~ f decl.fname * " ()
{\n\t" » String.concat "\n\t" (List.map string of stmt f decl.body)
A "\n}"

(* Returns a single string with the program's contents *)
let program string (gl, funs) =

String.concat "" (List.map string of vdecl (List.rev gl)) ~"\n" *
String.concat "\n" (List.map string of func (List.rev funs)) ~ "\n"

(* Returns a tuple of strings in the form (v _decls, add stmts,
f decls) *)
let program string split (gl, funs) =

(String.concat "" (List.map string of vdecl (List.rev gl)),
String.concat "" (List.map string of add (List.rev gl)),
String.concat "\n" (List.map string of func (List.rev funs)) "
u\nn)

8.4. semantic.ml

open Ast

module TypeMap = Map.Make

(struct
type t = string
let compare x y = Pervasives.compare X y

44

end)
let type map = ref TypeMap.empty

let print map entry id typ =
print string(id ~ " ="

A

typ)

let print map =
TypeMap.iter print map entry !type map

(* Returns a string representation of the given binary operation *)

let string of op = function

Add -> "+"

| Sub -> "-"

| Mult -> "*"

| Div -> "/"

| Equals —-> "=="

| Neg -> "!="

| Less —-> "<"

| Leg -> "<="

| Greater -> ">"

| Geg -> ">="

(* Returns a string ID suffix for the given property *)
let string of prop = function
X => ".frame.x"

| 'Y => ".frame.y"

| Width -> ".frame.width"

| Height -> ".frame.height"

| Color -> ".coloxr"

| Angle -> ".angle"

(* Returns a string for the given basic type *)
let string of type = function
Int -> "int"
| Bool -> "boolean"

(* Returns a string ID suffix for the given move direction *)
let string of direction = function
Left -> ".frame.x -="
| Right -> ".frame.x +="
| Up -> ".frame.y -="
| Down -> ".frame.y +="
| Degoffset -> ".angle +="

let is valid rgb rgb =
if rgb > 255 || rgb < 0

then false
else
true

(* Returns a string for the given color ¥*)
let string of color col =
let (r, g, b) = col in

if (is_valid rgb r) && (is valid rgb g) && (is valid rgb b)

then "new Color(" * string of int r ~ ", " %
A", "~ string of int b ~ ")"
else

raise (Failure ("Invalid color! Colors must be
green, blue, or (0-255, 0-255, 0-255)"))

(* Returns a string identifier for the given shape
let string of stype = function
Rect -> "Shape.Type.RECTANGLE"
| Ellipse -> "Shape.Type.ELLIPSE"

(* Returns a string for the given expression ¥*)
let rec string of expr = function
Literal(l) -> string of int 1
| Id(id) -> 4id
| Boolean(b) -> Db
| Binop(el, op, e2) ->

string of int g

one of: red,

type *)

string of expr el ~ " " % string of ocp op ~ " " *
string of expr e2
| Vassign(el, e2) -> el ~ " =" 7~ string of expr e2

| Rgb(col) -> string of color col

| Get(id, prop) -> id ”~ string of prop prop

| Set(id, prop, ex) -> id ”~ string of prop prop
string of expr ex

A

(* Returns a string for the given variable declarat
let string of vdecl = function
Def (ty, id, ex) -> if TypeMap.mem id !type map
then raise(Failure (
of variable named " ~ id))
else
type map := TypeMap
(string of type ty) !type map;
(* print string("Pr
print map; *)
string of type ty *

A

string of expr ex ~ ";\n"

" = nw A

ion *)

"Redeclaration

.add id
inting Map:");

" " A i d A A1 =

A \AJ p—

| Shape (shape defn) -> "Shape " * shape defn.sname = new

A

Shape (new Rectangle (" string of expr shape defn.x

N w n AN
’

A

string of expr shape defn.y ~ ", " © string of expr shape defn.w
", " ~ string of expr shape defn.h ~ "), " ~ string of color
shape defn.scolor ~ ", " ” string of stype shape defn.stype
") ;\n"

A

(* Returns a string for the given statement *)
let rec string of stmt = function
Expr (ex) -> string of expr ex ~";"
| Block(s) -> "{\n""String.concat "\n" (List.map string of stmt
s) ~ "I\n"

| If(ex, s, Block([])) -> "if (" 7~ string of expr ex Ay \n"
“string of stmt s

| If(ex, sl, s2) -> "if (" ~ string of expr ex
A")\n""string of stmt sl ~ "else\n" ”~ string of stmt s2

| While(ex, s) -> "while (" ~ string of expr ex AMy\n"”
string of stmt s

| Run(id) -> 1id""();"

| Put (id, exl, ex2) -> id ~ ".frame.x = " "~ string of expr exl "
"; "~ id & ".frame.y = " © string of expr ex2 ~ ";"

| Animator (id, dir, ex) -> id ”~ string of direction dir *
string of expr ex ~ ";"

| Vdecl (var) -> string of vdecl var ~ ";"

| Print(str) -> "System.out.println ("“str™");"

| Background(color) -> "setBackground(" ”~ string of color color *

");"

(* Returns a string add statement for the given v decl ()->Shape ¥*)
let string of add = function

Shape (shape defn) -> "shapes.add(" * shape defn.sname ~ ");\n"

| Def(, ,) ->""

(* Returns a string for the given function declaration *)

let string of func f decl = "public void " ”~ f decl.fname * " ()
{\n\t" » String.concat "\n\t" (List.map string of stmt f decl.body)
A "\n}"

(* Returns a single string with the program's contents *)
let check program (gl, funs) =

ignore (List.map string of vdecl (List.rev gl));

ignore (List.map string of func (List.rev funs));

8.5. codegen.ml

open Printf

let file name = "PSMMAnimator"

47

let window size = 700

(* Returns the complete Java string given tuple of strings

(shape decls, add stmts, func decls))

let java code (s _decls, add, funs) =
"import java.awt.Color;\n" *
"import java.awt.Dimension;\n"
"import java.awt.Graphics;\n"
"import java.awt.Graphics2D;\n"
"import java.awt.Rectangle;\n"
"import java.awt.geom.Ellipse2D;\n"
"import java.awt.geom.Rectangle2D;\n"
"import java.awt.geom.AffineTransform;\n"
"import java.util.ArrayList;\n" *

A
A
A
A
AN
AN

A

AN

"import javax.swing.JFrame;\n"
"import javax.swing.JPanel;\n"
"import javax.swing.SwingUtilities;\n"

A

A

"public class " * file name ~ " {\n" *

" public static void main(String[] args) {\n" *

" SwingUtilities.invokelLater (new Runnable () {\n" %
" public void run() {\n" *

" createAndDisplayGUI () ; \n" *

1] }\nn A

" P);\n"

" }\nn A
" public static void createAndDisplayGUI () {\n" *

" JFrame frame = new JFrame (\"My Animation Coded in
Photoshop--\");\n" *

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);\n" ~

" PSMMAnimatedPanel panel = new
PSMMAnimatedPanel () ; \n" *

" frame.add (panel) ; \n"

" frame.pack () ; \n" *

" frame.setVisible (true) ; \n"

AN
A

A

" Thread t = new Thread (panel) ;\n"
" t.start () ;\n" *
" }\nn A

u}\n" A

"class PSMMAnimatedPanel extends JPanel implements Runnable
{\n" ~

" private static final long serialVersionUID = 1L;\n" "

" public ArrayList<Shape> shapes;\n" "

A

s _decls

" public PSMMAnimatedPanel () {\n" "
" shapes = new ArrayList<Shape>();\n" "

" // Create and add shapes\n" "
add *
(* Create and add shapes *)

" }\n" Ay

funs *

" @Override\n" *

" public void run() {\n" *

" while (true) {\n"

" recalculateShapes () ;\n" *

" repaint () ; \n" *

" try {\nu A

L Thread.sleep (1000 / 60);\n" *

" } catch (InterruptedException e) {\n" %

w }\I'I" A

" }\n" A

" }\n" Ay

" private void recalculateShapes () {\n" *

" // Do stuff to shapes\n" *

" drawloop () ; \n" *

" }\nn A

" public Dimension getPreferredSize () {\n" "

" return new Dimension (" ~ string of int window size
~ ", "™ » string of int window size ~ ");\n" *

w }\D" A

" @Override\n" *

" public void paintComponent (Graphics g) {\n" "
" super.paintComponent (g) ; \n" *
" Graphics2D g2 = (Graphics2D) g;\n" *

" for (Shape shape : shapes) {\n"

shape.angle %= 360;
g2.setTransform(old); \n"

frame.y, frame.width, frame.height));\n"

{\D" A

frame.y, frame.width, frame.height));\n"

"w }
"w } \n" A
" } \n" A

"class Shape {\n"

" public

A

AffineTransform old = g2.getTransform() ;

A

g2.setPaint (shape.color) ;\n"

Rectangle frame

A

shape.frame; \n"

g2.rotate (Math.toRadians (shape.angle)) ;

A

if (shape.type == Shape.Type.ELLIPSE) {\n"
g2.fill (new Ellipse2D.Double (frame.x,

A

A

} else if (shape.type == Shape.Type.RECTANGLE)

g2.fill (new Rectangle2D.Double (frame.x,

A

}\nn A

\D" A

A

A

enum Type {\n"

" RECTANGLE, ELLIPSE\n" *

" }\nn A

" public
" public
" public
" public

" public

" this.frame = frame;\n"
" this.color = color;\n"
" this.type = type;\n"
" this.angle = 0;\n"

nw }\D" A

"}\n"

(* Generates the Java code and prints it to a file *)

A

Rectangle frame;\n"
Color color;\n" *
Type type;\n" *

int angle;\n"

A

Shape (Rectangle frame, Color color,

A

A

A

A

let generate code fnv =

A

let oc = open out (file name ".java")
fprintf oc "%s" (java_code fnv);

close out oc;

in

Type type)

50

8.6. pmmc.ml

let filename = Sys.argv.(l) in
let lexbuf = Lexing.from channel (open in filename) in

let src = Parser.program Scanner.token lexbuf in

let string split = Ast.program string split src in
Semantic.check program src;
Codegen.generate code string split

51

