Nifty50

Concise Programming Language

A M Sarwar Jahan
aj2599@columbia.edu
CVN Student - COMS W4115
Fall 2014

Table of Contents

Section Page
1. Language White Paper 2
2. Language Tutorial for Beginners 6
3. Language Reference Manual 7
4. Project Plan 16
5. Architecture 20
6. Test Plan 22
7. Lessons Learned 24
8. Appendix - Source Codes 25

Nifty50
I would have written a shorter program but I did not have time. - A programmer

1. Motivation:

Anyone who has ever read a computer program written by someone else has one
complaint in common - the code is too long. With increasing code space available to
programmers on target devices, the emphasis is no longer on writing succinct lines
of code that does more. This has caused the source codes to become less modular,
longer, and harder to debug.

Nifty50 is a high level programming language that allocates exactly fifty lines of
instruction for each module in a program. The language will be object oriented
where each module is considered as an object and every source code will have a
single, unique, top module (think of it as the main function in C). The objects, or
modules, will take arguments and return a single value or no value. The scope of the
variables can be set to global or local to the module. But does this mean Nifty50 is
just another version of a regular programming language that forces the program to
be in sets of 50 or less lines?

Not really. The goal of this language is to increase readability, lessen debugging time
and the time needed to convert pseudo-code to actual working source code. It is a
language where engineering managers and directors (years away from their
programming days) will look at the top module and understand just how the
program works. The language will optimize algorithms like sorting, searching, array
manipulation into easy to read (and implement) function-like structures.

The language attempts to do the following:

* Provide conciseness in the way programmer write code.

* Be a programming language of choice for simple embedded systems.

* Provide ease of use in terms of using common algorithms.

* Reduce the time between developing pseudocode and actual program code.

2. Common Algorithms in Nifty50:

a. Loops: these are one of the most frequently used constructs in a source code.
A for loop in C has the following syntax:

for (variable initialization; condition; wvariable
update) {
Code to execute while the condition is true

}

In the proposed language, the conditions of the for loop are more effectively
expressed as:

For (Condition, {Code to execute if Condition is
true});

The variable is also initialized in the condition section and the variable
update is done in the statement to be executed rather than as part of the loop
syntax. Also, the statement can execute a module.

Array Manipulation: the language can be used to perform common array
manipulations like insert, reverse, or search very easily. A reverse operation
can be described as a global method inside an array object. Since the scope of
the method is global it can be invoked with any array as long as it is of the
correct type. An example of a reverse algorithm in C for an array named ‘@’ is:

for (c n-1,d=20; c¢c > 0; c--, d++)
b[d] = a[c];
for (¢ = 0; ¢ < n; c++)

afc] = b[c];

In the proposed language, the list/array reverse function will be simple. See
section 3.2 on how to add reverse as a method to an array object.

b = a.reverse; //reverse all elements of a to new
array b.
a = b;

Search: the algorithm for searching through an array or any data structure is
also quite simple in the new language. An example of a search algorithm in an
array containing characters is:

i=0;
while (i < ‘c’&& ch != a[i]) {
i++;

}

But for the new language, the search function will return a Boolean which
will be 1 if search returns a result or a 0 if otherwise. The

bool search = a(‘c’);//search is initialized to
search for ‘c’ in a

search.query = ‘c’; //search parameter has value
‘c’, the query
search.index = 4; //the query is found in index

4.

3. Special Features of the language
3.1. Modules in Nifty50:

Modules are the building blocks of any program written in the language. A
programmer can decide to divide a big program into modules that each performs a
single function. Although each program can have multiple modules, every module
should be declared in the main and contain an include statement. The program end
statement must be in the top module.

3.2. Objects in Nifty50:

Since Nifty50 is an object oriented language, all variables and literal classes are
objects with member functions. There are two methods associated with each object
which is the address and swap methods. Additional user defined methods can be
used to perform specific action on a single or all objects of the same type.

3.3. Interrupts:

Since the language is to be used for embedded systems, interrupts are an important
feature. Interrupts can be easily declared in the main module or any of external
module with the source specified. The source is a method defined in all interrupts
that defines the signal or the expression handled by the interrpt.

4. Sample Program in Nifty50:

The programming language is designed to be used in particular for embedded
systems application. For the sample program below, a 8 bit microcontroller is used
for an occupancy sensor which detects movement in a certain peripheral area by
using a PIR sensor and turns on a load (light bulb) if movement is detected. Also, the
microcontroller has an ambient light sensor which it continually monitors and if
there is enough ambient light, the load would not turn on for a movement. The
sensor has some user inputs such as light sensitivity and light brightness that they
can set externally using physical settings such as a knob.

//Sample program for an occupancy sensor

//Line

1. main() {

2. int module calcAmbient (int ambience), calcBright
(int level);

3. bool module calcMovement (int PortC, int

sensitivity); //takes two arguments, the values
read in from the PIR sensor is at Port C of
microcontroller and sensitivity is set by the
module calcAmbient)

4. sensitivity = calcAmbient (PortB); //PortB reads
user set ambient light sensitivity

5. turnOn: PortD.1l= 1 //PortD pin 1 controls the
load

6. turnoff: PortD.1 = 0

7. level = calcBright (PortA); //PortA reads user
set brightness

8. if (calcMovement, turnOn, turnoff); }//the if
statement evaluates the calcMovement which is the
condition and turns on the load if it is true or
turns off if the condition (movement) is false.

5.Conclusion:

It seems that the sample program is short enough to be taken as a pseudo-code
implementation. The primary goal of the new language is to reduce the time a
programmer takes to write the top module that will form the skeleton of the main
program and then work on the little details in the individual modules. It is
imperative that the new language is easy to read and debug. The compiler for it will
evaluate the syntax and semantics of each module that will aid in debugging the
software as each module can be debugged independently. The dot (.) operator can
be used to invoke other modules and used to perform frequently used algorithms.
Overall, Nifty50 will be a object oriented programming language with user-defined
modules of 50 lines of instruction or less.

2. Language tutorial for beginners.

Nifty50 is a concise programming language for simple embedded systems. Before
you start, it is helpful to know that a single module in the program restricts the
number of instructions you can use to 50 lines.

Here are the steps required to begin programming in the new language.

* Download the source files for the project from the class website. Available in
COMS W4115 Fall 2014 class website.

* Unzip the tar file.

* Open the terminal window.

* Use the command cd <path to the project files>

* Use the command make, this will compile the language and generate an
executable.

* Compile a source file to be used with the language. Name it with .mc
extension.

* The executable will be name Nifty50. Type ./Nifty50 <path to source.mc>

* The terminal will execute your new language and show any outputs.

Language Reference Manual

1. Nifty50 - The Core Concept:

Nifty50 is a concise programming language for embedded system applications that
is designed to present a computer program in blocks of 50 lines or less. The concept
behind the restriction is to divide the program into multiple modules with a unique
top level module that presents an overview of the program. Nifty50 is targeted
mainly for embedded systems development on a microcontroller. The programming
tenets of the language can be summarized below:

1.1. Object-oriented: Nifty50 is an object oriented programming language
where types are modeled as objects that include primitives. Basic types such
as integers, characters, strings, and arrays can also be treated as objects.

1.2. Strong 1/0 support: Since, the language is designed to be used in
embedded systems, Nifty50 supports convenient input scanning and output
methods.

1.3. Versatile: The language allows a programmer to place custom algorithms
in the program to perform computations in a powerful way.

1.4. Compact: Each module is restricted to 50 instructions but the program is
not divided into modules because of increased length but for different
functionality. Each module performs specific tasks or algorithms and is
connected to the top level module.

The motivation of the new language is to reduce the time a programmer takes to
write the program that will form the skeleton of the main program and then work
on the little details in the individual modules. It is imperative that the new language
is easy to read and debug. The compiler for it will evaluate the syntax and semantics
of each module that will aid in debugging the software as each module can be
debugged independently.

2. Lexical Conventions:

2.1. Whitespace: The language will convert all space, new line, form feed, carriage
return, and tab characters as whitespace. At least one of these characters is required
to separate tokens, constants, and identifiers.

2.2 Comments: Nifty50 uses C-style comments. The language describes the
comments within the /* and */ characters. Anything in between these set of
characters is ignored by the compiler. The comments do not count as part of the 50
lines for a module. Comments can be single line or multi line.

/* This is a comment */

2.3. Identifiers: Identifiers are used for the distinction of variables, methods and
types. An identifier is a sequence of alphanumeric characters, uppercase and
lowercase, and underscores. For Nifty50, the identifiers must start with a letter and
cannot start with a numeric or a special character. An identifier is case sensitive and
characters like underscore (_) count as alphabetic.

2.3. Keywords: Keywords cannot be used as identifiers and are reserved for use.
Keywords are special set of strings that perform a specific function in the language.
The language has the following keywords:

return if else for while int
double string void port Source Map
Interrupt Enum Address Swap true false
type and or XOor nand not
include as

2.4. Operators: The operators in this language are listed below. It has a mix of unary
and binary operators.

+ - * / = ==
= < <= > >= <<
>> and or Xor nand nor
not

2.5. Literal Classes: Literal classes are the fundamental units of the program. A
literal class is a value that may be expressed in code without the use of a new
keyword.

2.5.1. Integer Literals: An integer is a sequence of digits only. Examples of integers
are:-

2.5.2. Float Literals: A float literal is a sequence of digits and exactly one decimal
point/period. It contains an integer or a fraction part or both seperated by a decimal
‘” point. It can also be expressed as an exponent ‘€’ which can be signed or unsigned.
There must be at least one digit before the decimal point and at least one digit after
the decimal point.

2.5.3. Boolean Literals: A boolean literal can be expressed as true or false and also as
its binary form.

2.5.4. String Literals: A string literal consists of a single character or a sequence of
characters in double quotes. A string literal can have space, new line escape

sequence within it but cannot have a new line, form feed, or vertical tab within it.
The addition “+” operator can be used to concatenate two string literals.

2.6. Seperators: The seperators used in this language delineates various aspects of
program organization. Each statement is terminated with the ‘;” seperator. Function
arguments are declared within ‘()’. Arrays indexes are declared within ‘[]’. The
brace characters { }’are used to enclose groups of statements in a module only.

3. Semantics
3.1. Types and Variables

The variables in Nifty50 are always declared with a type and identifier. The types
are static and will be known at compile time. The variable holds a reference to an
instance of the declared type. Since, Nifty50 is an object oriented language, all
variables are objects.

3.1.1 Object types: An Object type is the most fundamental type in the language and
all other types can be derived from the Object type. An Object type shall have an
address associated with it. An Object type can have variables declared inside and
have methods to perform specific functions. To access an object’s method, the
method shall be prefixed with the Object name followed by *.". It is important to note
that all objects have global scope but the methods declared inside can have local or
global scopes. All objects have two inherent methods that can be called anytime -
Address and Swap.

3.1.2. Array types: Arrays are 1-dimensional representation of a collection of objects
of the same type. Arrays are always fixed size, indexable, and mutable. Arrays shall
allow access to an item via an index, represented by an unsigned integer expression
enclosed by ‘[’ and ‘]’. Arrays are only available for the fundamental types.

3.1.3. Fundamental Type: The four fundamental types are Int (signed 32 bit integer),
Double (64 bit floating point number), String (A string of characters), Port (One byte
of data, 8 bits unsigned).

3.1.4. New types: Nifty50 shall allow new types to be declared and created. The new
types shall inherit from the Object type, thus each new type shall have the Address
and Swap method. Types shall contain variables and function definitions. The
declaration of a type is done by ‘type’ keyword.

3.3. Expressions:

An expression (expr) shall be composed of identifiers, string literals, constants and
can be enclosed in parentheses. The expressions in the language can be an integer
expression, floating-point expression, variable-name-expression (contains a
variable identifier), string expression, variable-integer expression (contains a
variable and integer constants).

3.3.1. Function Calls: A function call is a postfix expression that consists of variable
expression, and a list of arguments enclosed in parenthesis. The return keyword
follows the argument list and indicates the type or name of the variable that the
function returns.

3.3.2. The expression rules of this language are given next. Note that the precedence
of the expression is followed by the order of the table.

Operator Function Expression Rule
() Enclose expression (expr, expr, ..)
! Not, check for false statement !expr
/ Division expr / expr
* Multiplication expr * expr
+ Addition expr + expr
- Subtraction expr - expr
<< Bit shift left expr << 1 or 0
>> Bit shift right expr >> 1 or 0
> Greater than expr > expr
< Less than expr < expr
>= Greater than or equal to expr >= expr
<= Less than or equal to expr <= expr
I= Not equal to expr != expr

Or expr | expr
== Equal to expr == expr
= Assignment expr = expr

3.5. Statements

Statements are sequences of code that can be executed to perform a specific
function. There can be four types of statements: expression, compound, if, and
iteration.

3.5.1. Expression Statements: An expression statement shall be an expression
terminated by the ‘;’ symbol. An expression symbol can be empty.

3.5.2. Compound Statements: A compound statement can be multiple statements
enclosed by {* and ‘}". It can contain declarations and statements. A compound
statement can be a function call with an argument list and return type.

3.5.3. If statement: If statement is a conditional statement that allows simple flow
control. The expression enclosed in a parentheses is evaluated. In the case, the
expression returns 1 or is true, the first statement is executed. Otherwise the second
statement is evaluated. There is no need of an else keyword and the first and the
second statement can either by empty but both the statements cannot be empty at
any time.

if (expr, statementl, statement2);

3.5.4. Iteration Statements: These statements consist of the for and while loop
statements. In the for statement, there can be three expressions, the first expression
shall be evaluated once initially, the second expression shall be repeatedly evaluated
as long as third expression expression is true. The while statement evaluates one or
more expressions enclosed in parenthesis and executes the statements that follow
as long as the expression is true.

For (exprl, expr2, expr3) {expr};

While (expr) {expr};

3.6. Methods

Methods are code that can be used inside an object. These can be function
definitions that can be invoked using the *." operator. If a method is declared to be
global, it can be invoked with any object using the ‘." operator. If the a method is
declared to be local, then the method can only be invoked with its associated
operator.

4. Syntax
The syntax for this language can be defined with essential and optional elements.

For the following definitions any expression enclosed within ‘[]" are optional
elements. The words in bold are essential parts of the syntax and has to be included.

4.1 Declarations

Declarations are used within function definitions to specify the interpretation which
Nifty50 gives to each identifier; they do not necessarily reserve storage associated
with the identifier.
4.1.1 Variable
A variable is assigned a type and a value in the same line
variable_type identifier = expression
4.1.2. Array
An array is assigned type, identifier and expression within the same line
array_type identifier[index number] = expression
4.1.3. Method
All method objects are globally defined and are declared as
[global] method method_name (argument list) {statement};
The global key-word is optional and will allow the scope of the method to be
invoked with any object. If the global keyword is missing, all methods have local
scopes and are bound to the object where it is declared.
4.1.4. Function Declaration
A function can be declared as
function name (argument list) return ([void|type|name])
Functions must declare what they are returning at the time of instantiation. A
function that returns nothing is indicated by using the void keyword. A function can

only return one value.

4.1.5. Interrupt Declaration

The keyword Interrupt shall denote a function used to handle interrupts. An
Interrupt shall not return anything or receive any arguments. An interrupt has a
inherent method called handle which can be used to assign the expression or signal
that the interrupt will handle. And interrupt is declared as:

interrupt interrupt name() {handle = expression };
4.1.6. Type Declaration
The language allows declaration of a new type that composes of one or more of the
fundamental types. A type declaration shall start with the keyword type followed by
its name and its constituents. A type cannot be composed of another type and it does

not support inheritance.

type type_name {typel, type2, ..};

4.2 Others
4.2.1. Print
The print function can be invoked as:
print (“example string”) ;

(134

The Print function will print anything within the to the terminal window. C-style
variables can be inserted into strings by using the %i, %d, %f, etc. symbol.

5. Program

A program shall consist of two sections: a section to contain all definitions to be
used in the program and a section to contain the main where the entry point of the
program resides. There are no delination between the two sections but all
definitions must be declared before they are used in the program.

5.1. Definition

The definition section of the program will contain all variable and object
declarations.

5.2. Main

The Main function is the entry point of the program and shall contain variables,
objects, and function expressions. The main program can also call functions that
reside in other modules.

5.3. Modules

Since Nifty50 can only contain 50 lines of instruction per module (that includes
main and definition section above), additional modules can be added in the
program. These modules shall contain function definitions and statements that can
be included and invoked from the main. The additional modules are used in the
program by using the Include keyword.

6. Scope Rules

To summarize the scope rules in the language:
* all objects are globally scoped.
* the methods in an object can be locally or globally scoped.
* the variables in an object are always bound to the object it is in.
* variables declared in a function are locally scoped.
* all types are globally scoped regardless of which module they are declared in.

4. Project Plan
Process for Planning, Specification, Development, and Testing:

This project was carried out by a one person team and therefore proper planning was
required so that all deliverables can be submitted on time. In order to complete the project,
the following actions were outlined:

* Maintain a weekly deadline to complete smaller assignments in the project.
* Communicate with the professor and TAs regarding project specification.

* Use feedback from the teaching staff in the specification and development.
* Use an easy-to-use IDE (Eclipse OcallDE) to aid in Ocaml development.

* Develop a comprehensive testing plan to test software.

Although, a lot of time was spent in the first three stages of the project, more time could
have been devoted to test the language in detail especially the project could have had a
greater focus on the testing for corner and exceptional cases.

Programming Style Guide:

The style guide for this project was heavily influenced from the programming style used in
microC. The project was initialized by taking microC as a template and adding additional
features as time progressed. Also, the OcalIDE has Ocaml syntax colorization and
indentation which helped in stylizing the codes written for the project. Here are the basic
style guides used:

* Comments before (almost) every block of code. Ocaml code is indecipherable in a
week after being written and comments were heavily used to indicate code
functionality.

* Indentation level is increased when declaring a function with at least an argument.

* When pattern matching, every case is in a separate line with the indentation aligned
with the previous line.

* Function names are in lower case and names describe what they do.

* Underscores are used to separate words in names.

e A commented header for file name, author, class

* An end of file comment.

An example of the style guide is given from the Nifty50.ml file.

1 (* Nifty50.ml by Aamir Sarwar Jahan, COMS W4115%*)

3 (* use the Ast.ml and Compile.ml file *)

! type action = Ast | Compiler

blet _ =

let action = if Array.length Sys.argv > 1 then
List.assoc Sys.argv.(1) [("-a", Ast);

) ("-c", Compiler)]
18 else Compiler in
11 let lexbuf = Lexing.from_channel stdin in
1. let program = Parser.program Scanner.token lexbuf in
12 match action with
14 Ast -> let listing = Ast.string_of_program program
15 in print_string listing
16 | Compiler -> Execute.execute_prog (Compiler.translate program)
17
18 (* End of File *)

Project Timeline:

The front-end development was mainly divided into four sections.

* Proposal [September 2rd and 3rd week]
e LRM [October 3rd and 4th week]

* Parser [October 3rd and 4th week]

* Lexer [October 4th week]

Additional sections of the project and most of the heavy lifting was done during November
and December.

* Type of compiler [November 21 weeK]
* Semantic Checking [November 2rd week]
* Test Hello World [November 3rd week]

e ASTtoC [December 1st week]
* LRM update [December 1st week]
* Testsuites [December 2rd week]

* Final Report [December 2rd and 3rd week]

Software Development Environment (tools and language):

To develop this language, the following software tools were used on a Macintosh OS X
10.10:

a. OCalIDE: this is an Ocaml plug-in for Eclipse which has source editor for modules (.ml),
interfaces (.mli), parsers (.mly) and lexers (.mll) files. The plug-in can be used in eclipse.

b. Ocaml version 4.01.0
c. Ocaml OPAM package: this is the open-source package manager edited by OcamlPro.

d. Git Version control: this is used as the subversion client to manage the project.

Project Log:

The project history from the Git repository is given below. Some repeated commits have
been omitted for conciseness.

Aamir Jahan 2014-12-17 20:39:08 -0500 style fix

Aamir Jahan 2014-12-17 19:01:23 -0500 update language reference manual
Aamir Jahan 2014-12-17 08:37:28 -0500 removed dead code

Aamir Jahan 2014-12-16 21:44:26 -0500 added test

Aamir Jahan 2014-12-16 19:03:25 -0500 removed some unused functionality
Aamir Jahan 2014-12-16 19:41:52 -0500 added conditional test

Aamir Jahan 2014-12-16 18:05:20 -0500 test for include files

Aamir Jahan 2014-12-16 12:54:58 -0500 Added a couple of tests for exceptions.
Aamir Jahan 2014-12-16 12:48:23 -0500 precedence change for < >

Aamir Jahan 2014-12-16 15:47:17 -0500 Print compiler errors to stderr.
Aamir Jahan 2014-12-16 15:35:01 -0500 unclosed comment raise exception
Aamir Jahan 2014-12-16 02:51:18 -0500 cleanup

Aamir Jahan 2014-12-16 01:37:58 -0500 asm test pretty

Aamir Jahan 2014-12-16 01:33:02 -0500 small asm change

Aamir Jahan 2014-12-16 00:45:41 -0500 check for scopes.

Aamir Jahan 2014-12-15 20:09:35 -0500 sast: forgot a variable check

Aamir Jahan 2014-12-15 19:44:13 -0500 cleanup

Aamir Jahan 2014-12-15 14:14:57 -0500 removed test directory

Aamir Jahan 2014-12-15 14:06:09 -0500 more tests

Aamir Jahan 2014-12-15 12:10:25 -0500 cleanup

Aamir Jahan 2014-12-15 12:09:25 -0500 catch exception on syntax error
Aamir Jahan 2014-12-15 10:41:14 -0500 ast printer removed

Aamir Jahan 2014-12-14 12:28:08 -0500 cleanup

Aamir Jahan 2014-12-14 12:37:41 -0500 precedence test added

Aamir Jahan 2014-12-14 11:26:43 -0500 operator precedence fixed

Aamir Jahan 2014-12-14 07:13:02 -0500 sign tests added for arithmetic binops
Aamir Jahan 2014-12-13 17:33:28 -0500 cleanup

Aamir Jahan 2014-12-13 15:14:11 -0500 exception implemented

Aamir Jahan 2014-12-13 10:03:40 -0500 basic try/catch/throw implementation
Aamir Jahan 2014-12-13 09:12:36 -0500 Operators implemented and tested
Aamir Jahan 2014-12-13 07:43:56 -0500 comment scanner fixed

Aamir Jahan 2014-12-12 09:20:40 -0500 added multiline comments

Aamir Jahan 2014-12-12 00:08:43 -0500 Added test for variable declarations.
Aamir Jahan 2014-12-11 23:03:12 -0500 Implemented proper labels for loops. Added break and continue
keywords. Added tests.

Aamir Jahan 2014-12-10 22:01:00 -0500 Removed interpreter.

Aamir Jahan 2014-12-10 20:04:34 -0500 Implemented proper labels.

Aamir Jahan 2014-12-10 11:04:02 -0500 Added .gitignore.

Aamir Jahan 2014-12-09 14:21:43 -0500 removed test from make

Aamir Jahan 2014-12-02 00:35:04 -0500 new test case, cleanup

Aamir Jahan 2014-12-02 00:11:25 -0500 microc deleted

Aamir Jahan 2014-11-22 02:14:32 -0500 Added .gitignore.

Aamir Jahan 2014-11-22 02:11:46 -0500 Added microc.

Aamir Jahan 2014-11-22 02:10:36 -0500 Put some file in nifty, moved testing code to nifty
Aamir Jahan 2014-10-17 01:24:07 -0400 Give error if test file is empty given.
Aamir Jahan 2014-10-17 00:39:13 -0400 Adding test-gcc.txt.

Aamir Jahan 2014-10-17 00:24:50 -0400 Various fixes. Tester works.

Aamir Jahan 2014-10-17 00:09:09 -0400 Cleanup. Added microc as template.

5. Architectural Design
Interface Between Components:

The translator has the functional blocks as described in the diagram in next page. At
first, when a source code is fed to the scanner, lexical analysis converts the character
streams into tokens as specified by the language. The parser then performs a syntax
analyzer on the tokens to make sure that the source code is syntatically correct. The
output of the syntax analyzer is an abstract syntax tree constructed from the
grammar specified in the language.

The semantic analyzer performs a check on the syntatically correct abstract syntax
tree and creates symbol table from the compiler.ml file. The intermediate code is
generated by execute.ml and bytecode.ml. These are modules taken from the MicroC
project that converts the Nifty50 instructions to three adresss code that performs
operation on a virtual stack. Finally, a number of C functions are used to convert the
intermediate representation into C code.

Nifty50 Translator: Block Diagram

[Source Code

Character Stream

Lexical Analyzer
(Scanner)
File: scanner.mll

Token Stream

Syntax Analyzer
(Parser)
File: parser.mly

Syntax Tree

Semantic Analyzer
(compile)
File: Compiler.ml

Syntax Tree

v

Intermediate Code Generator
File: execute.ml, bytecode.ml

Intermediate Three Address Code

" C Library
Functions

A
\ 4

Nifty50 Executable

6. Test Plan
Description of test cases:
The test plan to carry out experiments on the compiler was based on the following:

* Test code to carry out the basic arithmetic on the language.

* Test code to carry out basic printing on the language.

* Test code to carry out conditional statement (if) on the language.

* Test code to execute iteration statement (while and for) on the language.

* Test code to check for scoping: local and global.

* Test code to carry out a complete funciton with arguments and return value.
* Test code to check if the number of instructions is 50 or less.

As can be realized from above, only test cases to check the functional aspects of the
languae was carried out. More time or better planning was required to carry out
testing on little details that can induce unknown behavior or compiler error.

Automation in test procedure:

A shell script was used to test all the cases listed above and output was checked
visually in an output file. The shell script was same as the one used in MicroC
project.

Example test scripts:
/* tests math */

int main()
{
Int example = 0;
If (1) print(1l);
print (42 / 1 * 2 - 6 + 3);
Return example;

}

/*tests condition*/

int main()

{

int example;

int a = 3;

if (a<=3, example = 42, example 0);
Return example;

}

/* tests iteration */

int main()

{

int 1 = 0;

int example = 0;
int j = 0;

int example2 =1

for(i=0;i<3;i +1) {example = example + 1};
print (“example”)

while(j<3,]j + 1) {example = example + 1};

}
/* test printing */

int main()

{
print (“Hello World”);

}

7. Lessons Learned

Since, | have undertaken this project as a CVN student, | am a one-man team that has

avoided the usual pitfalls of working with others but at the same time [have missed out on

positives that arise out of working in an effective team. Some of the key lessons that I have

learnt along the way are:

Stick strictly to the weekly plan: Since, the project was announced at the very start
of the semester and I knew that I had to work on it alone, I made the plan of dividing
the project into weekly assignments with short-term goals eventually working

towards the completion of the project. While I did reasonably well to perform my
weekly tasks for most weeks, I feel that | have not done enough on the projects on
weeks which had weekly assignments due for this class or the other. By far, this has
been the biggest road-block for me since I realized I have spent an entire week on a
homework assignment without doing any legwork on the project. Even though
significant work could not be performed, I could send emails to TAs and the
professor to sort out problems from previous weeks.

Perform the easy tasks first: At the beginning of the project, | was too concerned

with carrying out the syntactic sugar in my language. I quickly realized that I should
start from a more generic based approach and focus on getting the easier parts of
the language first. I started using the MicroC compiler as a base and it has been
easier to add features to a platform rather than starting with something completely
new.

Having a team can help: This was my first software project that [have done as a

single member team. I realized that having other members certainly helps since you
can get and provide assistance on topics that do not require the next level of support
(TA’s and professor).

My advice to future CVN students undertaking this project will be the following:

Have a weekly plan: I had to balance my full-time work with this project as well as

project from another class. The only way I could have succeeded is by breaking the
big task (project) into smaller weekly deliverables.
Get used to the development environment as soon as possible: Ocaml is a new

language and getting used to compiling programs in command line or IDE (I used
Eclipse) takes time. Sooner you acclimatize yourself, the more time you can spend
doing actual development.

Get as much assistance from TA and Professor: Since you will be working alone, do

not hold back questions to the teaching faculty.
Start early: this of course requires no explanation. There are steep learning curves
involved and the earlier you start, the better off you will be.

8. Appendix

All source codes except:
* bytecode.ml from MicroC project
e executeml from MicroC project
* testall.sh from MicroC project
* testcases in /tests folder

Ast.ml

1 (*Ast.ml file for Nifty5@0 by Aamir Jahan, COMS W4115, Fall 2014*)

2

3 (* declaring all the binary and unary operator type in Nifty50 *)

4 type binop = Add | Sub | Mult | Div | Equal | Neq | Less | Leq |
Greater | Geq | Bsl | Bsr | And | Or

51 Xor | Nand | Nor

6

7 type unop = Not

8

9 (* declare modules for the language *)

10 type modules = Variable | Class | Function | Interrupt

11

12 (* declare all data types *)

13 type datatypes = Array of datatypes * string | Int | Double |
String | Port | Void |NewType of string

14

15 (* declaring type expression; an expr can be:- *)

16 (* int, binary, hexadecimal, port, string, binop, assignment, call
*3

17 type expr =

18 ILiteral of int

19 FLiteral of float

20 SLiteral of string

21 Variable of datatypes

22 Id of string

23 Unop of unop * expr

24 Binop of expr * binop * expr

25 Assign of string * expr

26 CastType of datatypes * expr (* check this later *)

|
|
|
I
|
|
|
I
27 | Address of string * expr
|
|
I
|
|
|
|
|
|

28 GetAddress of string

29 ArrayIndex of string * string

30 Method of expr * expr

31 Swap of string

32 Signal of string * expr

33 Map of string * string * expr * expr

34 Call of string * expr list

35 MethodCall of string * string * expr list
36 Noexpr

37

38 (* statement can be a block, expression, if, for, while *)

Page 1

Ast.ml

39 type stmt =

40 Block of stmt list

41 | Expr of expr

42 | Return of expr

43 | If of expr * stmt * stmt
I
I

44 For of expr * expr * expr * stmt list
45 While of expr * stmt
46

47 (* declaring variable data types *)
48 type variable_declaration = {

49 vtype: datatypes;

50 vname: string;

51 }

52 (* function declarations are fname, formals, locals, body *)
53 type function_declaration = {

54 rtype : datatypes;

55 fname : string;

56 formals : variable_declaration list;
57 locals : variable_declaration list;
58 body : stmt list;

59 }

60

61 (* declaring interrupt type *)

62 type interrupt_declaration = {

63 iname : string;

64 1ilocals : variable_declaration list;
65 1ibody : stmt list;

66 }

67

68 type type_declaration = {

69 ytype: datatypes;

70 yname: string;

71 yproperties: variable_declaration list;
72 yfunctions: function_declaration list;
73}

74

751let first = fun (a,b,c,d) -> a

76 let second = fun (a,b,c,d) -> b

77 let third = fun (a,b,c,d) -> ¢

78 1et fourth = fun (a,b,c,d) -> d

79

Page 2

Ast.ml

80

81

82 (* program returns a list of strings and func_decl list *)

83 type program = function_declaration list * type_declaration list

84 * interrupt_declaration list * variable_declaration
list

85

86 (* End of File*)

Page 3

1 (* Scanner for Nifty50 by Aamir Jahan, COMS W4115, Fall 2014 *)

Scanner.mll

IAI_'IZ'I 1@'_'9' 'l_'l]*
" digits? exp? | digits

2

3 { open Parser LineCount}

4

5 (* declare digits, exponent, lxms, doubles, and strings *)

6let digits = ['0'-"9']+

7let exp = "e'("+'1"'-")? digits

8let 1xm = ['a'-"'z" '"A'-'"Z']['a'-"2Z"

9 let double = (digits exp? | digits '
exp)

10 1ok skr = "S5 [ARREIE RS

11

12

13 rule token = parse
" '\n" '\r"] {token lexbuf} (*these tokens are
considered as whitespace*)
{comment lexbuf}

comment*)
16 (* Groupings, Separators, Punctuators *)

14

15>

17 1
18 |
19 |
20 |
21|
22 |
23 |
24 |
25 |
26 (*
27 |
28 |
231
30 |
311
321
331
34 |
351
36 |
37 1
38 |

[l\t'l

N/*

f(l

L) L

Opera

L) L

+

L

et W e Wt W e Wt W e W ot W et W

LPAREN }
RPAREN }
LBRACE }
RBRACE }
SEMI }
COMMA }
LBRACKET }
RBRACKET }
METHOD }

tors, Binary and Boolean *)

H
|
{

{
{
 §
|
{
{
{
{

PLUS }
MINUS }
TIMES }
DIVIDE }
ASSIGN }
EQ }

NEQ }
S

LEQ }

GT }

GEQ }
{ BSL }

Page 1

(*denotes start of a

L]

Scanner.mll

391 Mus" { BSR }
49 | "and" { AND }
411 "or" {OR }

42 | "xor" { XOR }
43 | "nand" { NAND }
44 | "nor" { NOR }
451 "not" { NOT }
46 (* Conditional Statements, Loops *)
47 | "return" { RETURN }
48 1 “1f" { IF }

49 | "else" { ELSE }
581 “for"™ { FOR }
511 "while" { WHILE }
52 (* data types *)

= e § | { INT }
54 | "double" { DOUBLE }
551 “string® { STRING }
56 | "port" { PORT }
52 | "voia™ { VOID }
581 "True" { TRUE }
59| "False" { FALSE }

60 (* Special Functions *)

611 "Source” { SOURCE }
62 | "Map" { MAP }

63 | "Interrupt” { INTERRUPT }
64 | "Enum" { ENUM }

65 | "Address" { ADDRESS }
66 | "Swap" { SWAP }

67 1 "Type" { TYPE }

68 (* digits, identifiers *)

69 | digits as integer { ILITERAL(int_of_string integer) }

70 | double as dble { FLITERAL(float_of_string dble) }

711 1xm as id {ID(id) }

72 | str as slit {SLITERAL(slit)}

73 (* EOF functions *)

74 | eof { EOF }

75 | as char { raise (Failure("Illegal Character " A Char.escaped

char)) }
76

77 and comment = parse
78 "*¥/" [token lexbuf }

Page 2

Scanner.mll

791 _ { comment lexbuf }
80

81 (* End of File *)

82

Page 3

LineCount.ml

1 (* Module to count lines in Nifty50 *)
Z open Scanner

3

41let lines = ref @

5

6 rule count = parse

7 '"n' {incr lines; count lexbuf }

8 {

91let main()
10 let lexbuf = Lexing.from_channel stdin in

11 count lexbuf;

12 1if lines > 50 then raise (Failure("More than 50 instructions™))
13}

Page 1

Parser.mly

1/* Parser for Nifty50 by Aamir Jahan, COMS W4115, Fall 2014 */
2

3%{ open Ast %}

4

5/* tokens expressed in nifty5@, same as the ones in scanner */
6 %token SEMI LPAREN RPAREN LBRACE RBRACE LBRACKET RBRACKET COMMA

METHOD

7 %token PLUS MINUS TIMES DIVIDE ASSIGN
8 %token EQ NEQ LT LEQ GT GEQ

9 %token AND OR XOR NAND NOR NOT BSL BSR
10 %token RETURN IF ELSE FOR WHILE

11 %token <int> ILITERAL

12 %token <float> FLITERAL

13 %token <string> SLITERAL

14 %token <string> ID

15 %token EOF

16

17 /* other operators */

18 %token ADDRESS SWAP SOURCE MAP

19 %token INT DOUBLE PORT STRING
20 %token ENUM STRING

21 %token INTERRUPT TYPE METHOD VOID

22 %token TRUE FALSE

23

24 /* associativity rules, priority increases downwards */
25 %nonassoc NOELSE

26 %¥nonassoc ELSE

27 %right ASSIGN

28 ¥left NOT

29 %¥left EQ NEQ

30 ¥left ADDRESS

31 %¥left SWAP

32 %left COMMA

33%left LT GT LEQ GEQ

34 %left AND OR XOR NAND NOR

35%left BSL BSR

36 ¥left PLUS MINUS

37 %left TIMES DIVIDE

38

39 ¥start program

4Q %type <Ast.program> program

Page 1

Parser.mly

41

42 %%

43

44

45 /* Grammar portion */

46

47 program:

48 /* nothing */ { [1, 010, 00, [1}

49 | program vdecl { List.rev ($2 :: first $1), second $1, third $1,
fourth $1 }

50 | program fdecl { first $1, List.rev ($2 :: second $1), third $1,
fourth $1 }

51 | program idecl { first $1, second $1, List.rev ($2 :: third $1),
fourth $1 }

52 | program ydecl { first $1, second $1, third $1, List.rev (%2 ::
fourth $1) }

53

54 vdecl:

55 return_type ID SEMI

56 {

57 {

58 vtype

59 vhame

60 }s

6l }

62 | return_type ID array_id SEMI

e3 {

o4 {

65 vtype

66 vname

e7 }

e8 }

69

70 fdecl:

71 return_type ID LPAREN formals_opt RPAREN LBRACE vdecl_list
stmt_list_opt RBRACE

$1:
$2;

Array($1, $3);
$2;

72 {

73 {

74 rtype = $1;
75 fname = $2;
76 formals = $4;

Page 2

Parser.mly

77 locals = List.rev $7;
78 body = List.rev $8;
79 }

80 }

81

82 idecl:

83 INTERRUPT ID LBRACE vdecl_list stmt_list_opt RBRACE
84 {

85 {

86 iname = $2;

87 ilocals = List.rev $4;

88 ibody = List.rev $5;

89 }

% }

91

92 ydecl:

93 TYPE ID LBRACE vdecl_list fdecl_opt RBRACE
94 {

a5 {

926 ytype = NewType($2);

97 yname = $2;

08 yproperties = $4;

99 yfunctions = $5;

100 }

101 1}

102

103 /*describing formals list */

104 formals_opt:

105 /* nothing */ { [] }

106 | formal_list { List.rev $1 }

107
108 formal_list:
109 formal /* nothing */ { [$1] }

110 | formal_list COMMA formal { $3 :: $1 }
111

112 formal:

113 return_type ID
114 {

115 {

116 vtype = $1;
117 vhame = $2;

Page 3

Parser.mly

118 }

119 }

120 | return_type ID array_id
121 {

122 {

123 vtype
124 vhame
125 }

126 }

127

128 /* describing variable decl list */

129 vdecl_list:

130 /* nothing */ § 1'%

131 | vdecl_list vdecl { $2 :: $1 }

132

133 /* describing array initialization*/

134 array_id:

135 LBRACKET ILITERAL RBRACKET { string_of_int $2 }
136 | LBRACKET ID RBRACKET { $2 }

137

138 array_size:

139 ILITERAL { Iliteral($l) }

140 | ID { Id(s$1) }

141

142 /* describing function declaration */

143 fdecl_list:

Array($1, $3);
¥ A

144 | fdecl { [$1] }
145 | fdecl_list fdecl { $2 :: $1 }
146

147 fdecl_opt:

148 /* nothing */ { [1] }

149 | fdecl_list { List.rev $1 }

150

151 /*describing all possible return types */
152 return_type:

153 VOID {Void}

154 | PORT {Port}

155 | INT {Int}

156 | STRING {String}

157 | DOUBLE {Double}

158 | ID {NewType($1)}

Page 4

Parser.mly

159
160 /* describing statements */
161 stmt_list_opt:

162 /* nothing */ { [}
163 | stmt_list { List.rev $1 }
lo4

165 stmt_list:

166 stmt /* nothing */ { [$1] }

167 | stmt_list stmt { $2 :: $1 }

168

169 stmt:

170 expr SEMI { Expr($1) }

171 | RETURN expr SEMI { Return($2) }

172 | LBRACE stmt_list RBRACE { Block(List.rev $2) }

173 | IF LPAREN expr RPAREN stmt %prec NOELSE { If($3, $5,
Block([1)) }

174 | IF LPAREN expr RPAREN stmt ELSE stmt 3 T#($3, 35, %7) }

175 | FOR LPAREN expr_opt SEMI expr_opt SEMI expr_opt RPAREN LBRACE
stmt_list_opt RBRACE

176 { For($3, $5, $7, $10) }

177 | WHILE LPAREN expr RPAREN LBRACE stmt_list_opt RBRACE
{ While($3, $6) }

178

179

180 expr_opt:

181 /* nothing */ { Noexpr }

182 | expr {$1}

183

184 expr:

185 | ILITERAL { Iliteral($1) }

186 FLITERAL { Fliteral($1) }

187 SLITERAL { Sliteral($1l) }

188 ID { Id($1)}

189 ID array_id {ArrayIndex($1, $2) }

190 ID METHOD ID array_id { METHOD(Id($1), (ArrayIndex($3,

|
|
|
|
|
$433) }
|
|
|
|
|

191 NOT expr { Unop(Not, $2) } /*Test this line*/
192 expr PLUS expr { Binop($1l, Add, £3) 3
193 expr MINUS expr { Binop($1l, Sub, $3) }
194 expr TIMES expr { Binop($1, Mult, $3) }
195 expr DIVIDE expr { Binop($1l, Div, $3) }

Page 5

Parser.mly

ID METHOD SWAP LPAREN RPAREN {Swap($1)}

ID LPAREN actuals_opt RPAREN { Call($1, $3) }

ID METHOD ID LPAREN actuals_opt RPAREN { MethodCall($1l, $3,

}

ID METHOD MAP LPAREN ID COMMA expr COMMA expr RPAREN { Map($1,
$5, $7, $9)}

218 | LPAREN expr RPAREN { $2 }

219

220 actuals_opt:

221 /* nothing */ { [] }

222 | actuals_list { List.rev $1 }

196 | expr EQ expr { Binop($1, Equal, $3) }
197 | expr NEQ expr { Binop(%$1l, Neq, 13 }
198 | expr LT expr { Binop(%$1l, Less, $3) }
199 | expr LEQ expr { Binop($1, Leq, 53) 3
200 | expr GT expr { Binop($1l, Greater, $3) }
201 | expr GEQ expr { Binop(%$1l, Geq, 13) }
202 | expr OR expr { Binop($1, Or, $3) }
203 | expr AND expr { Binop(%$1, And, 53 F
204 | expr NOR expr { Binop($1l, Nor, $3)
205 | expr NAND expr { Binop($1l, Nand, $3) }
206 | expr BSR expr { Binop(%$1, Bsr, $3) ¥
207 | expr BSL expr { Binop($1, Bsl, $3) }
208 | expr XOR expr { Binop($1, Xor, 553
209 | expr ASSIGN expr { Assign($1, $3) }
21@ | ID ADDRESS { GetAddress($1)}
211 | ID METHOD SOURCE ASSIGN expr { Signal($1l, $5) }
212 | ID METHOD ADDRESS ASSIGN expr { Address($1, $5)}
213 | ID METHOD ADDRESS ASSIGN ID METHOD ADDRESS { Address($1,
(
|
|
|
)]
|

223
224 actuals_list:
225 expr { [$1] }

226 | actuals_list COMMA expr { $3 :: $1 }

Page 6

Compiler.ml

1(* Compiler.ml for Nifty50 by Aamir Jahan, COMS W4115 *)

2

3 open Ast

4 module StringMap = Map.Make(String)

5

6 (*stores global variables *)

7 type varSymbolTableEntry = {

8 data_type : datatypes;

9}

10

11 (*stores functions *)

12 type funcSymbolTableEntry = {

13 ftype : datatypes;

14 fparameters : datatypes StringMap.t;

15 flocals : datatypes StringMap.t;

16 fbodylist : stmt list;

17}

18

19 (*stores Interrupt handlers and local variables¥*)

20 type interruptSymbolTableEntry = {

21 1inlocals : datatypes StringMap.t;

22 1inbodylist : stmt list;

23}

24

25 (*stores user-defined types *)

26 type typeTableEntry = {

27 thetype : datatypes;

28 properties : datatypes StringMap.t;

29 functions : funcSymbolTableEntry StringMap.t;

30}

31

32 (*environment that describes all types*)

33 type environment = {

34 niftyVarSymbolTable : datatypes StringMap.t;

35 niftyFuncSymbolTable : funcSymbolTableEntry StringMap.t;

36 niftyInterruptSymbolTable : interruptSymbolTableEntry
StringMap.t;

37 niftyTypesSymbolTable : typeTableEntry StringMap.t;

38%

39

40 let checkFunctionBody theBody env construct =

Page 1

Compiler.ml

41
42 let rec output_function_expr = function
43 Sliteral(l) -> 1

44 | Fliteral(l) -> string_of_float 1

45 | Iliteral(l) -> string_of_int 1

46 | Pliteral(l) -> 1

47 | Id(s) -> s

48 | Binop(el, o, e2) -> "(" A

49 string_of_expr el A " " A

50 (match o with

51 Add -> "+"

52 | Sub -> "=" | Mult -> "*" | Ny -> /"

53 | Equal -> "==" | Neq -> "!="

54 | Less -> "<" | Leq -> "<=" | Greater -> ">" | Geq -> ">="

55 | Or -> "or" | And -> "and"

56 | Bsr -> ">>" | Bsl -> "<<" | Xor -> "xor") A " " A

57 string_of_expr e2 A ")"

58 | Unop(o, e)-> "(" A

59 (match o with

60 Not -> "I"

61) A output_function_expr eA")"

62 | Assign(v, e) -> output_function_expr v A " =" A
output_function_expr e

63 | Call(f, el) ->

64 (match f with

65 "print" -> "printf" A "(" A String.concat ", &" (List.map
output_function_expr el) A ")"

66 | _ -> f A "(" A String.concat ", &" (List.map
output_function_expr el) A ")"

67)

68 | MethodCall(v, f, el)->

69 (match f with

70 _ -5y KRR F R MR G SEPing. concat Y, " (List.map
output_function_expr el) A ")"

71)

72 | Noexpr -»>

73 | CastType(Ca, b)->""

74 | Address(Ca, b)-> "Util_Move((void *)(&"A a A "), (void*)(&" A
output_function_expr b A "), sizeof(" A a A "))";

75 | GetAddress(Ca)-> "(&" A a A"™)"

76 | ArraylIndex(a, b)-> a A "[" A b A "]"

Page 2

Compiler.ml

77 | Method(a, b)-> output_function_expr a A "." A
output_function_expr b

78 | Signal(a, b)-> "Interrupt_SetISR(" A a A "____Handler, &"A a
A");\n Interrupt_SetSignal("

79 A output_function_expr b A ", & A a A ")"

80 | Swap(Ca)-> "Util_Swap((void *)&" A a A ", sizeof(" A a A "))"
81 | Map(Ca, b, ¢, d)->

82 "Array_Map((void *)" AaA"™, (void (*)(void *))"AbA",
"Aoutput_function_expr cA", " A output_function_expr d A")"

83 | VariableCa)-> "" in

84

85 let rec output_function_stmts = function

86 | Block(stmts) -> "{\n" A String.concat "" (List.map
output_function_stmts stmts) A "}\n";

87 | Expr(expr) -> output_function_expr expr A ";\n";

88 | Return(expr) -> "return " A output_function_expr expr A ";\n

89 | IfCe, s, Block{([1)) -> "if (" A output_function_expr e A ")\n"
A output_function_stmts s;

90 | If(e, sl1, s2) -> "if (" A output_function_expr e A "D\n"
A

91 output_function_stmts s1 A "else\n" A output_function_stmts
sZ;

92 | For(el, e2, e3, s) -> "for (" A output_function_expr el A
" 3 " A output_function_expr e2 A " ; " A

93 string_of_expr e3 A ") " A String.concat "" (List.map
output_function_stmts s) ;

94 | While(e, s) -> "while (" A string_of_expr e A ")\n{" A
String.concat "" (List.map output_function_stmts s) A"}"

95

96

97 in List.map output_function_stmts (List.rev theBody);;
o8

99 (* prints the type *)

100 let rec output_type key character = function

101 | Port -> "unsigned char " A character A key

102 | Int -> "int " A character A key

103 | Double -> "double " A character A key

104 | String -> "char *" A character A key

105 | NewType(newtype) -> newtype A character A " " A key

106 | Array(basetype, sz) -> (output_type key character basetype) A

|l[|l A 52z A II]lI

Page 3

107

Compiler.ml

108 1let rec output_typefunc key = function

109
110
111
112
113
114
115

Void -> "void " A " " A key

| Port -> "unsigned char " A key
| Int -> "int " A key

| Double -> "double " A key

| String -> "char *" A key

| NewType(newtype) -> newtype A " " A key

116 let output_newtype = function
117 | NewType(newtype) -> newtype A " "

118

119 (* returns the global variable, AST checked post semantically*)
let output_globals global_table env =
let output_each_global key value =

120
8 .
122
123
124
125
126
127
128
129
130

print_endline (output_type key value A ";") in

StringMap.iter output_each_global global_table

let output_params param_table =
let output_each_param key value =

print_string (output_type key "*" value A ", ") in

StringMap.iter output_each_param param_table

131 (* spits out the interrupt handlers in C form, post semantically

checked AST *)

132 let output_interrupts interrupt_table env =

133
134
135
136
137
138
139
140
141
142

143

144

let output_each_interrupt key value =
print_endline ("Interrupt " A key A ";"); 1in
StringMap.iter output_each_interrupt interrupt_table;
let output_each_interruptbody key value =
let interruptbody =
"void " A key A "____Handler (int sig)\n{" in
print_endline (interruptbody);
output_globals value.inlocals env;
(*eventually output the body here as well*)
List.map print_endline (checkFunctionBody value.inbodylist env
Interrupt);
(* List.map print_endline (List.map output_function_stmts

value.inbodylist); the gangsta line¥*)

print_endline ("}\n") in

Page 4

Compiler.ml

145 StringMap.iter output_each_interruptbody interrupt_table;;

146

147

148 1let output_functions function_table typeFunction env =

149 let output_each_function key value =

150 print_string (Coutput_typefunc key value.ftype A "(");

151 output_params value.fparameters;

152 if typeFunction != Ast.Void then print_string ((output_newtype
typeFunction) A" *itself");

153 print_endline (")");

154 print_endline ("{");

155 output_globals value.flocals env;

156 (*eventually output the body here as well*)

157 List.map print_endline (checkFunctionBody value.fbodylist env
Function);

158 (* List.map print_endline (List.map output_function_stmts
value.fbodylist); the gangsta line*)

159 print_endline ("}\n") in

160 StringMap.iter output_each_function function_table;;

16l

162 let output_types types_table env =

163 let output_each_type key value =

164 print_endline ("typedef struct {");

165

166 output_globals value.properties env;

167 print_endline ("} " A key A ";\n");

168 (*eventually output the body here as well*)

169 output_functions value.functions value.thetype env in
170 StringMap.iter output_each_type types_table;;
171

172 (*utility to print out keys of each string Map*)

173 let print_vars key value =

174 print_string(key A " \n");

175 (*array type checking. This is amazing!! *)

176 let thetype = Ast.Array(Int, "function") and thattype = value
in

177 if thetype = thattype then print_endline "Yes™

178 else print_endline "No";;

179

180 let print_funcs key value =

181 print_string("Function "A key A": \n");

Page 5

Compiler.ml

182 print_endline "Parameters:";

183 StringMap.iter print_vars value.fparameters;
184 print_endline "Local variables:";

185 StringMap.iter print_vars value.flocals;;
186

187 let print_interrupts key value =
188 print_string("Interrupt "A key A": \n");

189 print_endline "Local variables:";
190 StringMap.iter print_vars value.inlocals;;
191

192 let print_types key value =
193 print_string("Nifty5@ Type "A key A": \n");

194 print_endline "Properties:";

195 StringMap.iter print_vars value.properties;
196 print_endline "Methods:";

197 StringMap.iter print_funcs value.functions;;
198

199 (*creates symbol tables for variables *)

200 Let createNiftyVarSymbolTable map (var_elem: var_decl list) =
201 List.fold_left

202 (fun map thelist ->

203 if StringMap.mem thelist.vname map

204 then

205 raise(Failure("Compiler error: variable named \"" A
thelist.vname A "\" already exists."))

206 else

207 StringMap.add thelist.vname thelist.vtype map)

208 map var_elem

209

210 let createNiftyFuncSymbol (var_elem: func_decl) =

211 {

212 ftype = var_elem.rtype;

213 fparameters = createNiftyVarSymbolTable StringMap.empty
var_elem. formals;

214 flocals = createNiftyVarSymbolTable StringMap.empty
var_elem. locals;

215 fbodylist = var_elem.body;

216 }

217

218

219 (*creates symbol table for functions *)

Page 6

Compiler.ml

220 let createNiftyFuncSymbolTable map (var_elem: func_decl list) =

221 List.fold_left (fun map thelist ->

222 if StringMap.mem thelist.fname map then
raise(Failure("Compiler error: function named \'" A thelist.fname
A "\' already exists.")) else

223 StringMap.add thelist.fname (createNiftyFuncSymbol thelist)
map) map var_elem

224

225 (*creates symbol table for interrupts *)

226 let createNiftyInterruptSymbol (var_elem: interrupt_decl) =

227 {

228 inlocals = createNiftyVarSymbolTable StringMap.empty
var_elem.ilocals;

229 inbodylist = var_elem.ibody;

230 1}

231

232 (*creates symbol table for interrupts *)

233 let createNiftyInterruptSymbolTable map (var_elem: interrupt_decl
list) =

234 List.fold_left (fun map thelist ->

235 if StringMap.mem thelist.iname map then
raise(Failure("Compiler error:Interrupt handler named \'" A
thelist.iname A "\' already exists.")) else

236 StringMap.add thelist.iname (createNiftyInterruptSymbol
thelist) map) map var_elem

257

238 (*creates symbol table for new types *)

239 let createNiftyTypesSymbol (var_elem: type_decl) =

240 {

241 thetype = var_elem.ytype;

242 properties = createNiftyVarSymbolTable StringMap.empty
var_elem.yproperties;

243 functions = createNiftyFuncSymbolTable StringMap.empty
var_elem.yfunctions;

244 }

245

246 (*creates symbol table for new types*)

247 let createNiftyTypesSymbolTable map (var_elem: type_decl list) =

248 List.fold_left (fun map thelist ->

249 if StringMap.mem thelist.yname map then
raise(Failure("Compiler error: Type named \'" A thelist.yname A

Page 7

Compiler.ml

"\'" already exists.")) else

250 StringMap.add thelist.yname (createNiftyTypesSymbol thelist)
map) map var_elem

251

252

253 let header =

254 "#include <stdio.h>

255 #include <string.h>

256 #include <unistd.h>

257 #include <stdlib.h>

258 #include \"Util.h\"

259 #include \"Interrupt.h\"

260 #include \"Array.h\"

261 "

262

263 (* Translates program in AST form into bytecode program.*)

264 (* Includes exception handling. *)

265 let translate (globals, functions, interrupts, types) =

266

267 let var_table = createNiftyVarSymbolTable StringMap.empty
globals 1in

268

269 let fun_table
functions in

270

271 let interrupt_table = createNiftyInterruptSymbolTable
StringMap.empty interrupts in

272

273 let type_table = createNiftyTypesSymbolTable StringMap.empty
types in

274 (* StringMap.iter print_types type_table; *)

275 let env =

createNiftyFuncSymbolTable StringMap.empty

276 {

277 niftyVarSymbolTable = var_table;

278 niftyFuncSymbolTable = fun_table;

279 niftyInterruptSymbolTable = interrupt_table;
280 niftyTypesSymbolTable = type_table;

281

282 } in

283

284 print_endline header;

Page 8

285
286
287
288
289

Compiler.ml

output_globals var_table env;
output_types type_table env;
output_interrupts interrupt_table env;
output_functions fun_table Void env;

290 (*End of File¥*)

Page 9

Array.c

#include "Array.h"
#include <math.h>

#include <stdlib.h>

#include <stdio.h>

#include <pthread.h>

#define map(type) for (i=0;i<length;i++){function(type array + i);}

#define C_PORT
#define C_SHORT
#define C_USHORT
#define C_INT
#define C_UINT
#define C_LONG
#define C_ULONG
#define C_FLOAT
#define C_DOUBLE

(unsigned char
(short
(unsigned short
(int

(unsigned int
(long

(unsigned long
(float

(double

*)
%)
%)
*)
*)
*)
%)
*)
*)

12/17/14, 10:37 PM

void Array_Map(void =%array, void (xfunction)(void * arg), int length, TYPE type)

{
int i = 0;
switch (type)
{

case PORT:
map (C_PORT)
break;

case SHORT:
map (C_SHORT)
break;

case USHORT:

map (C_USHORT)

break;

case INT:
map (C_INT)
break;

case UINT:
map (C_UINT)
break;

case LONG:
map (C_LONG)
break;

case ULONG:
map (C_ULONG)
break;

case FLOAT:
map (C_FLOAT)
break;

case DOUBLE:
map (C_DOUBLE
break;

default:
map ()
break;

)

Page 1 of 2

Interrupt.c

#include "Interrupt.h"
#include <signal.h>
#include <stdio.h>
#include <unistd.h>

void Interrupt_SetSignal(int sig, Interrupt *interrupt)

{

}

interrupt->Source = sig;
switch (interrupt->Source)

{
case -1:
//ignore all
signal(AINT, SIG_IGN);
break;
case 0:
//restore default to all
signal(AINT, SIG_DFL);
break;
case AINT:
signal(AINT, interrupt->func);
break;
}

void Interrupt_SetISR(void (xisr)(int), Interrupt xinterrupt)

{
}

interrupt->func = isr;

12/17/14, 10:38 PM

Page 1 of 1

Util.c

#include "Util.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define Util_Length(x) sizeof(x)

void * Util_Swap(void *object, int length)

{
int i;
char temp;
char xarray = (char x)object;
int arraymax = length - 1;
for (i = 0; i < (length / 2); i++)
{
temp = arrayl[il;
array[i] = arraylarraymax - i];
array[arraymax - i] = temp;
}
return object;
}

void * Util_Move(void * object, void xlocation, int length)

{
}

return memmove(location, object, (size_t)length);

12/17/14, 10:40 PM

Page 1 of 1

Nifty50.ml

1(* Nifty50.ml by Aamir Sarwar Jahan, COMS W4115%*)

2

3 (* use the Ast.ml and Compile.ml file *)
4 type action = Ast | Compiler

5

6let _ =

7 let action = if Array.length Sys.argv > 1 then

8 List.assoc Sys.argv.(1) [("-a", Ast);

9 ("-c", Compiler)]

10 else Compiler in

11 let lexbuf = Lexing.from_channel stdin in

12 let program = Parser.program Scanner.token lexbuf in
13 match action with

14 Ast -> let 1listing = Ast.string_of_program program
15 in print_string listing

16 | Compiler -> Execute.execute_prog (Compiler.translate program)
17

I8¢¥ End of Fila *)

Page 1

Makefile

10BJS = ast.cmo parser.cmo scanner.cmo compile.cmo seal.cmo
2

3 TARFILES = Makefile testall.sh scanner.mll parser.mly \

4 ast.ml compile.ml seal.ml \

5

6nifty50 : $C0BJIS)

7 ocamlc -o nifty50 $(OBJS)

8

9 scanner.ml : scanner.mll
10 ocamllex scanner.mll
11

12 parser.ml parser.mli : parser.mly
13 ocamlyacc parser.mly
14

15%.cmo : %.ml

16 ocamlc -c $<

17

18%.cmi : %.mli

19 ocamlc -c $<

20

21 nifty50.tar.gz : $(TARFILES)

22 cd .. && tar czf nifty50/nifty50.tar.gz $(TARFILES:%=nifty50/%)
23

24 .PHONY : clean

25 clean :

26 rm -f nifty50 parser.ml parser.mli scanner.ml testall.log \
27 *.cmo *.cmi *.o *.out *.s *.diff
28

29 # Generated by ocamldep *.ml *.mli
30 ast.cmo:

31 ast.cmx:

32 bytecode.cmo: ast.cmo

33 bytecode.cmx: ast.cmx

34 compiler.cmo: bytecode.cmo ast.cmo
35 compiler.cmx: bytecode.cmx ast.cmx
36 execute.cmo: bytecode.cmo ast.cmo

37 execute.cmx: bytecode.cmx ast.cmx

38 parser.cmo: ast.cmo parser.cmi

39 parser.cmx: ast.cmx parser.cmi

4Q parser.cmi: ast.cmo

41

Page 1

42
43

Makefile

Page 2

