“Hey guys, we're making a new language!”
llk”

k-AWK: A testing language

Albert Cui, Karen Nan, Michael Raimi, Mei-Vern Then

Introduction
Motivation and Goals
Overview
Language Tutorial
Program Execution
Language Reference Manual
Introduction
Lexical Conventions
Meaning of ldentifiers
Expressions
Declarations and Declarators
Initialization
Statements
Lexical Scope

Project Plan
Process

Timeline

Roles

Task Breakdown

Development tools/environments
Architectural Design
Testing Plan

Testing structure

Automated test scripts

Sample input/outputs
Lessons Learned

Appendix

Introduction

Motivation and Goals

The k-AWK language will facilitate developers in creating automated tests for quality
assurance. Testing code is often a time-consuming process, but at the same time a critical
phase to ensure the proper functionality of an application. The k-AWK language centers
around the best practices of test-driven-development, which encourages developers to design
software in a robust manner and can serve as a teaching tool for programmers new to
software development.

Overview

k-AWK will check for predefined statements within each struct that when called or initialized
all assertions will have to evaluate to true for the program to continue. The AWK-like assertion
pattern enforces incremental testing and code quality in object-like structs.

The power of this language comes in the idea of assertions, which simplifies the process of
validating changes to the state of the program each time a variable or data structure is
initialized or modified. As a struct is updated, the language evaluates predicates attached to
the struct to update the state of the program. If the assertion is false, the attached block
executes, essentially acting as an exception handler. However, if all assertions are true in a
block, the program proceeds normally to the next statement.

Additionally, unit features attached to functions allow the checking of output.

Language Tutorial

Program Execution
A k-AWK program has the extension . k. To compile (but not run) a . k program, no setup is
necessary. Simple use make in the top level source directory to create the code gen file,
then run the code generator file with your . k file as the only argument:

$./code gen foobar.k

The above command can be piped to a . java file, which can then be compiled using javac.

For convenience’s sake, a run script has been provided, which takes one . k file as an

argument. This script calls the compilation script first, so no compilation is required before it.

This runs the program, and outputs any print statements to output java <test.k>.txt:
$./run.sh foobar.k

Asserts
k-AWK comes with special assert statements, which can only be used in structs, denoted
by the @ symbol with an expression and a block of statements. Asserts work very similar to an
if statement. The expression must evaluate to a boolean; if the @ expression evaluates to
true, the program continues. If it evaluates to false, the program executes the statements
within the attached block (which can be empty, if the programmer wishes). Consider the
following example:

@(k < 100) { print(“k is >= 100!7"); 1}
Asserts are evaluated whenever a variable used in the evaluative expression is changed. In
the above example, if k is less than 100, the program continues. If not, the print statement
within the attached block is executed.

Units

k-AWK comes with unit declarations, which can be called on any function except main, from

any function but itself. Consider the following example:
unit:foo (8) :equals (1) :accept;

The unit function calls the function foo and passes in 8 as a parameter. foo will evaluate the

function and return a value, and if that value equals the value in the equals () section of the

declaration, the accept value indicates that the test should pass if a t rue value is returned.

Built-In Functions
k-AWK comes with two built-in functions. Programmers can use the print function to be used
as follows:
print (10) ;
where the function can take a number or string argument and prints to stdout.
Additionally, an exit function is available and can be used as follows:
exit (“foobar”) ;
which takes only a string as a single argument, and prints it before exiting the program.

k-AWK Program Examples

hello_world.k
A basic k-AWK program is hello world.k, as in the following:

void main(){
print("Hello, world! k-awk says hil!");

}

A main function of type void (which takes no arguments) must be in every k-AWK program.
In hello world.k, the main function simply uses k-AWK's built-in print function to print a
string to stdout.

gcd.k
As a second example, consider the following, which uses asserts and and units to find the

greatest common denominator (gcd) of any two numbers:

int run_gcd (int a, int b) {
while (a != b) {

if (a > b) {
a = a-b;
}
else {
b = b-a;
}
}
return a;

void main() {
unit:run_gcd(24, 54):equals(6):accept;

For main to use a function or a struct, it must be defined before main is. In the above gcd. k
example, gcd is a struct with several asserts (characterized by the @ symbol), which work as
if statements. If the @ expression evaluates to true, the program continues. If it evaluates to
false, the program executes the statements within the attached block.

Language Reference Manual

Introduction
This manual describes the k-AWK language and is meant to be used as a reliable guide to the
language.

For the most part, this document follows the outline of the C Language Reference Manual, as
described in Appendix A of The C Programming Language, by Brian W. Kernighan and
Dennis M. Ritchie.

Lexical Conventions

A program consists of one or more translation units stored in files. It is translated in several
phases. The first phases do low-level lexical transformations. When the preprocessing is
complete, the program has been reduced to a sequence of tokens.

Tokens

There are five classes of tokens: identifiers, keywords, string literals, operators and
separators. Blanks, tabs, and newlines will be ignored, except for white space that is required
to separate two consecutive tokens.

Comments
The characters /* and */ introduce a comment and terminates them. Comments do not
nest.

Identifiers

An identifier is a sequence of letters and digits of any length. The sequence must start with a
letter. all following characters can be any combination of letters, numbers, or the underscore _
and hyphen - (which counts as a letter). Upper and lower case letters are different.

Keywords

The following are reserved as keywords and cannot be used otherwise:
if return true equals
else int false accept
while void str reject
for bool struct unit

exit print

Keyword definitions

accept Used in unit, a value that denotes that a unit test has passed.

reject Used in unit, a value that denotes that a unit test has failed.

unit Identifier signifying a unit test statement

exit exit the program at the point of execution

print print the output specified

true A boolean value signifying true

false A boolean value signifying false

equals Used in unit, a keyword that evaluates whether a specified value equals the

return value of a function

Constants
Constants are not supported.

String Literals
A string literal is a sequence of one or more escape characters or a non-double quote
character (as indicated below), surrounded by double quotes, as in “String Literal”. A
string has type str and is initialized with the given characters.

Escape characters include:

vt space

\t tab

\r carriage return
\n newline

Meaning of Identifiers

Identities or names refer to many things: functions, tags of structures, members within the
structures, and variables. Interpretations of variables depend on two main attributes: scope
and type. The scope is the region of the program where it is known and type determines the
meaning of the values in the variable.

Basic Types
There are four fundamental types: strings; integers; booleans; and void.

Types k-AWK Declaration Use

Strings str Large enough to store any sequence of combinations from
the character set.

Integers int Have the natural size suggested by the host machine
architecture. In this case, the int data type has a minimum
of -2%' and a maximum value of 2*'-1, following the 32-bit

signed two’s complement integer.

Booleans | bool Only hold either true or false values.

Void void An empty set of values and is the return type of functions
that generate no value. This type can only be used where
the value is not required

Derived Types
Beside the basic types, there are derived types constructed from the fundamental types in the
following ways:
arrays of objects of a given type
functions returning objects of a given type
structures containing a sequence of objects of various types, with optional asserts of
conditional checks on objects of various types.

Expressions

In kK-AWK, expressions include primary expressions, array references, function calls, unit
calls, structure references, and operators.

Comma Operator
The comma's function is to separate elements of a formal list of arguments (in a function
declaration or call) and in an list of actual arguments:

formal args:
type id(type formal argl, type formal arg2) {return NULL;};

actual args:
id(actual argl, actual arg2);

Commas can also separate elements in an array:
typel[size] id = [elementl, element?2, element3];

Colon Operator
The colon’s function is to separate elements of a unit expression into its subparts. In a unit
expression declared within the function, the colon separates the unit expression into three
parts:

unit (args) :logical operator (args) :result type

In unit outer declarations, the colon also serves as a separator:

unit:function name (args) :logical operator(args) :result type

Mathematical Operators
These include the arithmetic operator, difference operator and multiplicative operators:

Symbol Operator Name Use

+ Arithmetic operator Calculates the sum of operands

- Difference operator Calculates difference of operands

* Multiplicative operator Multiplication, grouped from left to right

/ Divisive operator Division, grouped from left to right

% Modulo operator Finds remainder, grouped from left to right

Relational Operators
Relational operators include the following:

Symbol Use

> greater than

< less than

>= greater than or equals to
<= less than or equals to

The general form of relational operators take the following form:
relational-expression [relational operator] shift-expression

Such statements evaluate to either true or false and are grouped from left to right. The
type of the result is bool.

Equality Operators
Equality operators include the following:

Symbol

Use

equal to

not equal to

The general form of relational operators take the following form:
equality-expression [equality operator] relational-expression

Equality operators have lower precedence than relational operators. For example:

a < b == c < disreturns true

if a < bandc < d return the same truth-value (both true or both false)
The type of the result is bool.
Logical Negation Operator

The logical negation operator includes the following:

! not

The ! operator is a unary operator and must be applied to a boolean expression:
[logical negationJoperand

The result is true if the value of its operand is false, and false if the value of its operand

is true. The type of the result is bool.

Logical AND Operator
There is only one form of the logical AND operator:

& and

The AND operator is applied in the following form:
expression & expression

Logical AND groups left-to-right. It returns true if the left and right boolean expressions both
evaluate to true. Otherwise it returns false. Both left and right expressions are required to
return the boolean type. The type of the result is bool.

Logical OR Operator

There is only one form of the logical OR operator:

or

The AND operator is applied in the following form:

expression | expression

Logical AND groups left-to-right. It returns true if either the left or the right boolean
expressions evaluate to true. If both the left or the right expressions return false, the
statement returns false. Both left and right expressions are required to return the boolean
type. The type of the result is bool.

Assignment Operators
There is only one assignment operator:

= assign

This operator is applied in the following form:
left-value = right-value;

In the assignment operator, the value of the left operand is replaced by the expression to the
right of the assignment operator. Both operands must have the same arithmetic type.

All require a left-value as a left operand, where the left value must be modifiable. The type of

an assignment expression is equal to the type of its left operand, and the value is the value
stored in the left operand after the assignment is executed.

Array References
Indexes are indicated between brackets, with its name before it processed in postfix manner.
Elements of an index can be accessed in the form:

foo[x];

where foo is an array identifier, and x is the index of the element to be accessed. The type
returned is the type of the array.

Structure Member References
Structure references are accessed using dot, in the form

foo.bar;

where foo is an identifier of a struct and bar is a member of foo. The type returned is the
type of the member. For example:

struct test {
int mem;
s
struct test s;
s.mem = 10; /* mem is now 10 */

Function Calls

Function calls are postfix expressions constructed with a designator (the name of function
followed by a pair of parentheses() .Expressions within the parentheses serve as
placeholders for arguments of each function, separated by commas. The following examples
are calls to functions:

function_name();
function_name(argl, arg2);

Unit Calls
Unit calls have four major components, and returns either an accept or reject value.

unit keyword
The unit keyword denotes the start of the unit call.

function call
The function call specifies the function to test for this unit. This is specified after the unit
keyword, separated by a colon:

unit:function_name(argl)

The function name and its corresponding arguments must match in number and type. For
example, given the following function:

int function_name(int argl, int arg2){return 2;};

The unit keyword and the function call of the statement should be as follows:

unit:function_name(actual_1, actual_2):(... rest of unit call ...)

where actual 1 and actual 2 are of type int.Only one function call can be attached per
unit call.

logical expression validation
Logical expressions check whether or not the value returned by the function
specified in the explicit function call or the implicit function call evaluates to a certain value.

The logical expression allowed in k-AWK is equals (value), which returns true if the
return value of the function call is equal to the value specified and returns false if it does

not equal the value specified.

Building on top of the previous example, we now have:

int function_name(int argl, int arg2){
return argl+arg2;
s
unit(5,4):equals(9)(...rest of unit call ...)

In this example, equals (9) would check against the call function name (5,4) for
equality.

test result type

This component of the unit call tells whether or not a test is accepted or rejected. This is
directly related to the validation of the logical expression.

The following chart explains most clearly how the return value behaves:

result type accept result type reject

expression (value)

expression (value)

This implies that if the developer expects a true result and the expression yields a true
result, the developer would want to return an accept value, whereas if an expression is
expected to return false and does return false, then the developer should return an
accept value on the test as well.

Building on top of the previous example, we now have:

int function_name(int argl, int arg2){
return argl+arg?2;

1

unit:function_name(5,4):equals(9):accept

In this example, equals (9) would check against the call function name (5,4) for
equality, returning true. Since the expression returns true and the test result type is accept,
the unit test returns an accept.

Constructing these parts together yields a unit call, as show below:

type functionl(argtype arg2){
return arg2;

}

type function2(argtype argl){
return argl;
unit:functionl(actual_arg2):logical_operator(args):result_type;

exit statements
Exit statements are written with the keyword exit, and a string literal or variable of type str
as an argument. For example:

exit("Exiting");
exit(value);

Where value is of type str.

When this statement is reached, exit prints the strings inside its argument to console and
exits the program at that point in time.

Declarations and Declarators
Declarations specify the interpretation give to each identifier.

Meaning of Declarators

A list of declarators appears after a sequence of type and storage class specifiers. Each
declarator declares a unique main identifier. The storage class applies directly to this
identifier, but its type depends on the form of its declarator. When an identifier appears in an
expression of the same for as the declarator, is will give an object of the specified type.

Type Specifiers

The following are type specifiers:
void Void
string String
int Integer
bool Boolean

struct Structure

Each declaration must have one type-specifier.

Declarators
Declarators have the generic form:
type identifier;

The identifier can be seen as the name of the variable.
Array Declarators

Arrays can be declared in two ways:
type [constant/expression] identifier;
or
type[] identifier = {element 1, element 2, element 3};

In the first example, the constant/expression specifies the size of the array. A constant should
be of type int and an expression should return a value with type int.

In the second example, the elements denoted by element 1, element 2, element 3
represent the items inside the array in order of increasing index. The size of the array does
not need to be explicitly specified. Elements declared inside arrays should be the same type
as the type of the array as specified with type.

Function Declarators
Function declarations take the form:

type identifier(argtypel argl, argtype2 arg2){

return_stmt;

1

where argtypel and argtype?2 specify the types of argl and arg2, respectively. When
the function is called, the actual parameters of argl and arg2 have to have the
corresponding types as specified in the declaration.

However, arguments are optional in function declarations, hence:

type identifier(){
return_stmt;

}

is valid.

The value of return stmt much match the type declared by type. Return statements are
not allowed in the event that the function is declared with return type void. In such cases,
no value will be returned from the function.

Function overriding and overloading
Functions cannot be overloaded or overridden once they are declared. Functions of the same
name cannot be declared.

Structure Declarators

A program maintains a list of declared structures. A struct is an object optionally consisting
of a sequence of named members and assertions on the aforementioned members. The
following shows an

Structs can be empty:

struct identifier{}

Or they can include named members:

struct identifier{
type identifier; /*member*/

}

As well as assert statements:

struct identifier{
type identifier; /*member*/
@(boolean_expression);

Assert Declarations

Asserts are denoted by an @ character in the beginning of the line followed by a logical
expression within the parentheses () and a series of statements wrapped in a block {}:
@ (expression) {statements; };

Only one expression is allowed per assert. Variables referenced in the assert expression
should be within the scope of the struct in which the assert is declared. The assert expression
should evaluate to a boolean value, true or false. Statements within assert blocks cannot
return a value.

Every time there is a change in value of a member in an struct, the struct’s properties will be
checked against a series of assertions optionally declared in the struct. If an assertion
statement fails, the attached block of code will be executed.

struct Player {
int hp = 100;
int size = 100;
int weight
/* this will print "Not enough HP" at runtime */
@(hp > 1000) { print("Not enough HP"); }
/* this should pass since size 100 > 10 */
@(size > 10) { print("Not big enough"); }

Initialization

Initialization of Variables
When an variable is declared, one may specify an initial value (in the form of an expression)
for the identifier being declared:

type ID = value;

After an variable is declared, one may initialize to a value of the same type as the declared
variable:

the type ID;

ID = value;

Where value has type the type.

Initialization of Arrays
Arrays can be declared and then initialized in the same line with the following:

type([] identifier = {element 1, element 2, element 3};

The elements denoted by element 1, element 2, element 3 representthe items
inside the array in order of increasing index. The size of the array does not need to be
explicitly specified. Elements declared inside arrays should be the same type as the type of
the array as specified with type.

After declaration, indices of arrays can be initialized to a value, provided that the value
matches the declared type of the array and the index is smaller than the size of the array:

the typel[size] identifier;
identifier[index] = value;

The index must be of type int and less than size. The value must be of the same type as
the type.

Initialization of Structures

structs can only be initialized outside functions before function declarations. During
struct initialization, all member functions inside the block must be initialized as well, in the
same order as the declaration. Member functions will be initialized inside the curly brackets { }
For example:

struct test {
int mem;
int mem2;

}

struct test s = {10, 11}; /* mem is now 10, mem2 is now 11 */

test corresponds to the identifier of the declared struct, while s corresponds to the new
instance of the struct of type test.

Statements

Unless otherwise specified, statement execution is sequential. Statements are executed for
their effect and do not contain values. They fall into several groups: Expression-statements,
compound-statements, selection-statements, and iteration-statements.

Expression Statements
Most expression statements are assignments or function calls. All side effects from the
expression are completed and evaluated before the next statement is executed.

Expression statements appear in the following form:
expression;

Compound Statements

To allow for use of several statements where only one is expected, the compound statement,
or “block,” is provided. The body of a function definition, as is the body of a structure
definition, is a compound statement.

struct i {
type idi1;
type id2; /*variable declarations*/
type 1id3;
statementl; /*statements */
statement2;

type id4;

type id5; /*variable declarations outside block*/
type id6;

statement3;

statement4; /*statements outside block*/
statement5;

If an identifier in the declaration-list was in scope outside the block, the outer declaration is
suspended inside the block. An identifier must be unique and declared once inside the block.

Initialization of objects is performed each time the block is entered at the top, and proceeds in
the order of declarators. If a jump into the block is executed, the initializations are not
performed.

Selection Statements
Selection statements have several flows of control:
if (expression) statement else statement

In the if statements, the expression must be of a boolean type. It is evaluated and includes
all side effects, and if the expression evaluates to true, the first sub-statement is executed.
Since the if statement is followed by an e1se, the second sub-statement is executed if the
expression evaluates to false. To get the similar effect of having an else-less i f statement,
the attached e1se sub-statement may be left empty.

Iteration Statements
Iteration statements specify looping.

iteration-statement:
while (expression) statement;
for (expression; expression; expression) statement;

In the while statement, the substatement is executed repeatedly provided the value of the
expression evaluates to true. The boolean test, including all side effects from the expression,
occurs before each execution statement body. Blocks of code can wrap statements using { } .

In the for statement, the first expression is evaluated once, which specifies initialization for
the loop. The second expression must be either of boolean type or omitted. It is evaluated
before each iteration, and if it evaluates to false, the for is terminated. The third expression is
evaluated after each iteration, and thus specifies a reinitialization for the loop. There is no
restriction on its type. Side-effects from each expression are completed immediately after its
evaluation. A for statement must include all three expressions. Blocks of code can wrap
statements using {}.

Lexical Scope
Identifiers fall into several name spaces that do not interfere with one another based on where
they're declared.

Members of structures are unique given that their structures are named uniquely.
Variables declared at the top level (within no block) are able to be access from anywhere in
the program. If a variable is declared globally (outside of a blocked section) it is not referred to

from within a block of code when there's a local variable with the same name.

Behavior of global variables is undefined when declared after a function declaration.

int a;
int func(){
int a;
a = 10; /* does not refer to global var */

Project Plan

Process

All four team members tried to meet together at least once a week. We tried to do all the work
when all team members are present to make sure that language design decisions were
consistent. We would try to find a room with a TV or monitor, and display the main parts of the
code that we are working on at that time (whether it was the parser, semantic checker, code
generator). Although one person would be in charge of the file and the typing, all team
members would be able to see the code and point out mistakes immediately in this manner.
As a result, all four team members were able to contribute to a majority of the project and at
the very least know what was going on.

The decision to change the language from a game-based RPG language to a language
focused more on testing came after Weiyuan’s review of the proposal and the LRM. We were
interested in exploring the idea of asserts within structs and the various applications of such a
structure in a language. While the RPG aspects of the language were really exciting, we

(along with Weiyuan) found a bunch of inconsistencies, and as a result, we had to modify our
objective to coincide with the changes in our language structure.

Programming style guide and conventions followed

® Space out different functions by adding extra newlines between each feature
e Comment the parser, scanner, and ast (the front end) so that the LRM will be easy to

write

Write test cases for each stage of development and run previous tests as well
The main branch is used for architectural development (mostly backend and testing),
while the features branch is used for feature additions (front-end)

Timeline
Date Log
September 22 | Meet to discuss proposal and language ideas
September 24 | Proposal Due
October 8 Met with Weiyuan to discuss proposal feedback

October 24-25

LRM written, Scanner, Parser, and AST started

October 27 LRM Due

October 29 LRM reviewed and discussed with TA (Weiyuan)

November 5 Short Meeting with Weiyuan to update on progress

November 8 Final bugs and design issues on Scanner, Parser, and AST resolved, “Pretty

Printer” started, LRM revisions

November 12

Short meeting with Weiyuan to discuss testing approaches, check-in

November 14

Pretty printer written and test cases/programs started, LRM revisions

November 22

Automated test script completed, semantic checker started

December 9

Discuss frontend examples, semantic checker

December 10

Semantic checker and testing feature enhancements, create new test suite

December 11

Semantic checker debugging

December 12

Semantic checker debugging, start translation from Sast to Jast (java syntax
tree)

December 14 Sast to Jast debugging, start code generation, LRM and final write up

December 15 Code generation, further testing of parser and semantic checker, LRM and final
write up, end to end test suite started

December 16 Code generation debugging, integration tests, final writeup, presentation prep

December 17 Code generation debugging, integration tests, final writeup, presentation prep

December 17 | Project Due

Roles

Our roles shifted based on our areas of expertise and our schedules at certain times in the
semester. In general, we stuck to these roles in the end:

Student Name Roles

Albert Cui System Architect

Karen Nan Project Manager / Testing and Validation
Mei-Vern Then Language Guru / Testing and Validation
Michael Raimi Language Guru / Testing and Validation

Task Breakdown

Although every team member contributed on every aspect of the project, responsibilities were
assigned in the following manner as listed below. Work done by each team member is listed
in descending order from most to least contributed.

Language proposal: Karen Nan, Michael Raimi, Albert Cui, Mei-Vern Then

Scanner, Parser, and AST: Albert Cui and Mei-Vern Then, Michael Raimi, Karen Nan
LRM write-up: Karen Nan, Michael Raimi, Mei-Vern Then, Albert Cui

Pretty printer. Mei-Vern Then, Albert Cui, Karen Nan, Michael Raimi

Semantic Checker/SAST: Albert Cui, Mei-Vern Then, Michael Raimi, Karen Nan
Java Intermediate Representation: Albert Cui and Mei-Vern Then

Code Generation: Albert Cui, Mei-Vern Then, Karen Nan, Michael Raimi

Test cases: Michael Raimi, Mei-Vern Then, Karen Nan, Albert Cui

Example program: Mei-Vern Then, Michael Raimi, Karen Nan, Albert Cui

Testing automation: Karen Nan, Michael Raimi, Mei-Vern Then, Albert Cui

Final writeup: Karen Nan, Michael Raimi, Mei-Vern Then
Powerpoint slides: Mei-Vern Then, Michael Raimi, Karen Nan
Project Management/Scheduling: Karen Nan

Development tools/environments

The languages used to create and test our language were the following: Ocaml for language
creation/translation, Bash Shell and Python for testing, and Java for validation of our
generated code.

SublimeText was used as a text editor to develop our program. The Mac OSX Terminal was
used to run our programs, including the bash scripts for the automated test scripts. For Ocaml
debugging, Menhir was used. For version control, github was used for our program. Final
writeup and the LRM were generated using Google Docs, and the presentation was
generated over Google Presentations.

Architectural Design

r

)]
™y
- N . i - «Print out program
W -Reads in input | (- - Syntactic tree fodin

+Compares to -Defines basic -Builds basic types «Check if AST is
tokens elements from elements okay

. L . L ; L ETR——
i «Java-AST Traverses SAST u +Semantic tree | I Traverses AST

Creates new *Builds =Checks types, «Checks
conversion Java Java-AST scope etc. semantics
types *Builds SAST
L A 4 L
f————— .
. . -, p
| Traverses JAST ' ~Java code | =Java compiler « DOMNE!
+Final conversion of *(Sorry, "I‘E,k”‘?""
- AWK to Java you don't like it)

The figure above describes the system architecture of our language. After Albert Cui started
the basic framework of the scanner, parser, and AST, Michael Raimi and Karen Nan focused
mostly on adding features to the front-end (scanner, parser, AST, and pretty printer), while
Mei-Vern Then and Albert Cui worked extensively on the backend (Semantic checker, SAST,

SAST to JAST, Code Generation). Testing of the semantic checker and SAST was done by
Mei-Vern Then and Michael Raimi, while Karen Nan did most of the syntax checking and
debugging of the scanner, parser, and AST.

We made the decision to compile down to Java, since Java yielded an easy way for us to test
the output since all of the team members were familiar with the language. The design pattern
of getters and setters in Java also yielded an interesting translation for the asserts, since Java
would be able to detect changes in the member variables of an object through the setter
function. Since you would need to go through the setter, we could write a series of statements
to evaluate every time the value of an member function changes and the setter function is
called.

To compile down to Java, we needed a series of syntax trees. After semantic checking, we
created an intermediate representation in the Java Syntax Tree (JAST) from the Semantic
Abstract Syntax Tree (SAST).

Testing Plan

Testing structure

We conducted a variety of unit and integration tests throughout the development cycle of this
language. After completing the pretty printer, Michael and Karen wrote some sample code,
passed it to the pretty printer, and compared the input program to that of the output string to
ensure the proper parsing of each feature and data structure in our language.

Unit testing (having a separate test script loop for the pretty printing generated after the AST,
a test loop for the output of the semantic checker, and a test loop for the generated Java
Code and then Java compilation) was essential in our complete script to determine when
things broke, and if adding new features would break earlier parts of the architecture. By
doing this, we were able to expose errors that stemmed from all layers of the program, as well
as finding previously undiscovered errors that were more noticeable in the later stages after
semantic analysis.

As the program and language started coming together, we found that integration testing was
more efficient and helpful to see if the language works and compiles as intended in the LRM.
We tried to cover all cases, using test cases to verify known issues to randomly testing
features as written in the LRM. Mei-Vern mostly tested known issues in the semantic checker,
Michael tested the semantic checker based on rules in the LRM, and Karen tested syntax
errors based on rules in the LRM.

Automation was done by writing a shell script and python script (test Iogic.py and
test suite.sh) that accepted and compared each test program and test case written in
k-AWK. Karen Nan wrote these two scripts.

All test cases were placed in the test folder:
Test files without a “semantic " prefix went through only the pretty printer (AST)
compilation (syntax) tests
Test files with a “semantic_” prefix went through testing through the semantic
checker stage (SAST)

Test files with a “ reject” appended to it were tests that were supposed to fail with a syntax
error (thus, if the AST returns an error, the test is Accepted/Passed)

Test files with a “ rejectsem” appended to it were tests that were supposed to fail with a
semantic error (thus, if the SAST/semantic checker catches a semantic error, the test is

Accepted/Passed)

Messages were output into the console in the following format:
output*.k or output*.txt (java)

This file either returned a working (parsed and printed) program in the .k format, or recorded
errors and exceptions.

The python script does some more complicated logic with whether a test is accepted/rejected,
takes out all whitespace in generated inputs and outputs for string comparison.

For each file, the name of the file and its output file name is printed and whether the test
passes (ACCEPT) or fails (REJECT).

Calling . /test_suite.sh starts the automated scripts

Automated test scripts

Calling . /test_suite. sh starts the automated scripts

test_suite.sh

#/bin/bash
echo "-----cmmmme e - "

make clean
if make pretty

then
cd test/
for filename in *.k; do
.././pretty < "$filename" > "output_$filename" 2>&1
python test_logic.py pretty "$filename" "output_$filename"
done
else
exit
fi
cd ../
if make
then
cd test/
=Y o VoY "
eChO Mo m "
echo "----------- BEGIN SEMANTIC CHK------------ "
ECHO M- m s m e e e oo "
ECHO M- mmm e e e "

rm -f test/output_semantic*.k
for filename in semantic*.k; do
.././code_gen < "$filename" > "output_$filename" 2>&1

python test_logic.py semantic "$filename" "output_$filename”

done

echo "-----cmmmme e -

echo "----mcem e e
echo "------mommmooooo END------cmemmcmcceeame "

echo "-----mmm

echo "----mmmm

echo "-----mmm

echo M---- e

echo "--------- BEGIN Java Compilation----------

echo "----mcem e e

echo M---mmm e
for filename in *.k; do
.././code_gen < "$filename" > "Program.java" 2>&1
javac "Program.java"
java "Program" > "output_java_$filename.txt" 2>&1
done

echo "-----cmmmme e -

echo "----mcem e e
echo "-------ommmooooo END------cmemmcmcceeame "

echo "-----mmm

echo "----mmmm

else

exit
fi

test _logic.py

#A simple test script to test for equality of
#the output after parsed by the trees and printed by the pretty printer
#This will be expanded to accommodate more tests in the future

import sys
mode = sys.argv[1]
inputFileName = sys.argv[2]
outputFileName = sys.argv[3]
semanticReject = False
semantic = False
syntax = True
syntaxReject = False
if (inputFileName[:8] == "semantic"):
semantic = True
syntax = False
if (inputFileName[-11:] == "rejectsem.k"):
semanticReject = True
else:
print inputFileName[-8:] == "reject.k"
if (inputFileName[-8:] == "reject.k"):
syntaxReject = True

shouldReject = False

#tconvert the string by taking out spaces, newlines, and tabs
def convert_str(thestring):

testStr = ''.join(thestring.split())

return testStr

#tread the files

filel = open(inputFileName, 'r'")
inputFileStr = filel.read()

file2 = open(outputFileName, 'r')
outputFileStr = file2.read()

#convert to string

inString = str(inputFileStr)

outString = str(outputFileStr)
inputTestStr = convert_str(inString)
outputTestStr = convert_str(outString)

if (syntax == True and mode == "pretty"):
print inputFileName
print outputFileName
if (outputTestStr == inputTestStr and syntaxReject == False):
print "Syntax test ACCEPTED\n"
elif (outputTestStr != inputTestStr and syntaxReject == True):
print "Syntax test ACCEPTED\n"

else:
print "Syntax test REJECTED"
print "The input file:"
print inputFileStr
print "The output file:"
print outputFileStr
print "\n"
elif (semantic == True and mode == "semantic"):

print inputFileName
print outputFileName

#print outputTestStr

try:
outputTestStr.index("Fatalerror:")
if (semanticReject == True):
print "Semantic test ACCEPTED\n"
elif (semanticReject == False):

print "Semantic Test REJECTED"
print "The input file:"
print inputFileStr
print "The error:"
print outputFileStr
print "\n"
except ValueError:

if (semanticReject == False):
print "Semantic test ACCEPTED\n"
elif (semanticReject == True):

print "Semantic Test REJECTED"
print "The input file:"

print inputFileStr

print "The error:"

print outputFileStr

print "\n"

Sample input/outputs
Pretty Printer example:

call_function.k

int main(){
int a;
a = 3;
return a;
}
int main2(){
main();
}

./pretty < "call function.k" > "output call funtion.k"

output _call_function.k

int main() {
int a;
a=3;
return a ;

¥

int main2() {
main() ;

}

Console output (after going through test suite)
call function.k
output call function.k

ACCEPT

Input for code generation
/code_gen < test/semantic_int_dollarSign_str_rejectsem.k

int main(){
int a = 1;
str b = "1";
if (a $ b)
return 1;
return 0;
}

Output:
Fatal error: exception Failure("illegal character $")

Lessons Learned

Albert Cui

A lot of code that we wrote earlier had to be rewritten because we didn't truly understand the
specs of the assignment, or how the different layers interacted with each other. For the
semantic checker between the AST and the SAST for example, we cut a lot of corners in
terms of redefining types, which came back later to haunt us. | think we ended up rewriting the
semantic checker about 4 times, which could have been avoided had we had a better
understanding of the assignment. We also spend too much time on the pretty printer, which
(though it was helpful for writing code generation) was not actually part of the compiler. We
probably also should've focused on getting something simple like "Hello World" to print and
slowly adding more and more features, but instead we focused on trying to get each layer
working by itself, which (again) was difficult because we didn't know how they worked with
each other, resulting in a lot of redundant code that had to be rewritten or deleted.

Karen Nan

It goes without saying that it never hurts to start early, and even if a team starts early, to not
lose sight of the goal as the semester ends. We met regularly but took a break during
Thanksgiving week and the last week of class, which resulted in us falling behind. A big thing
that | wish we’ve done differently was to get the simplest end-to-end compiler working before
perfecting the more complicated features in each layer. | feel that if we’d done that it would
have been easier to split the work into manageable chunks for members to complete on their
own, as opposed to having to work together to try to iron out all the bugs in a complicated,
not-compiling semantic checker. Another lesson learned is to write good test cases early, so
that major problems in the code will be caught earlier. These test cases should have been
better defined based on our decisions for our language, for example about how structs and
arrays are accessed and modified. If we had been more decisive and definite about our
language from the earlier stages instead of making decisions as we were developing our
program, the testing process would have gone smoother.

Mei-Vern Then

Pair programming is definitely an effective way to learn and it was helpful to have at least two
people writing code at any given moment. We would plug in our computers to a larger monitor
so we could look at each other’s code, and help brainstorm on whiteboards whenever we ran
into any design issues. This made working rather slow, but at least it improved morale
(especially when we worked late into the night). It was also helpful because we were
constantly pushing new code when we fixed bugs (which we found a lot of, many by
accident), so one of us could constantly test the new corrected code and make the necessary
changes. We also probably should've had a better testing system earlier on and clearly
defined rules for initializing and accessing data types in our language, because we ended up
making a lot of design decisions on the fly, which caused confusion when we coded various
stages of the compiler. We also didn't find a lot of bugs until later on (while writing code

generation), so we had to go all the way back to the parser and consequently fix every stage
after that, thus reducing the time we had to work on actual code generation.

Michael Raimi

We should have managed our time better, and had clearly defined goals and tasks we wanted
to accomplish each time we met. We were actually on a pretty good timeline in the earlier
stages, but not meeting one week set us back quite a bit. Not having actual goals (e.g. having
the semantic checker done by the end of one marathon session) caused us to get pretty
sidetracked sometimes. We should also have more clearly defined the rules of our language
and properly designed it out at the beginning, as there was a lot of confusion in terms of
syntax and semantics on how we wanted to define things. This led to a lot of debugging and
forced us to spend more time fixing old things we thought we were done with, rather than
working on the next stages of the compiler. A lot of design decisions could have been made
earlier on with some forethought, but what ended up happening was we would make
decisions while coding, which later made things harder for us in terms of implementation
(because we didn't think far enough ahead).

Appendix

README .md

kAWK "kay-awk" (formerly: GAWK)
The Testing Language

Team members:

* Albert Cui (System Architect)

* Karen Nan (Project Manager/Testing and Validation)

* Michael Raimi (Testing and Validation/Language Guru)
* Mei-Vern Then (System Architect/Language Guru)

To build and clean up:

make

make clean

Test suite (in test program) :

./test_suite.sh

Pretty printer:

./pretty testprogram.k

Code generator:

./code_gen testprogram.k

To see output from any program, include a input redirect:

./code_gen < testprogram.k

Makefile

default: code gener pretty semantic sast jast

code gener: scanner parser semantic sast to jast code gen
ocamlc -o code gen scanner.cmo parser.cmo semantic checker.cmo
sast to jast.cmo code gen.cmo

sast jast: scanner parser semantic sast to jast
ocamlc -o sast to jast scanner.cmo parser.cmo semantic checker.cmo
sast _to jast.cmo

pretty: scanner parser pretty printer
ocamlc -o pretty parser.cmo scanner.cmo pretty printer.cmo

code gen: jast
ocamlc -c code gen.ml

semantic: scanner parser semantic_checker

ocamlc -o semantic parser.cmo scanner.cmo semantic checker.cmo

sast to jast: jast
ocamlc -c sast to jast.ml

semantic checker: sast scanner
ocamlc -c semantic checker.ml

scanner: parser

ocamllex scanner.mll; ocamlc -c scanner.ml

parser: ast
ocamlyacc parser.mly; ocamlc -c parser.mli; ocamlc -c parser.ml

jast: sast ast
ocamlc -c jast.mli

sast: ast
ocamlc -c sast.mli

ast:
ocamlc -c ast.mli

pretty printer:
ocamlc -c pretty printer.ml

.PHONEY: clean

clean:

rm —-f test/output*.k

rm -f code gen semantic pretty sast to jast *.cmo *.cmi *~ parser.mli
parser.ml scanner.ml

ast.mli

type op = Add | Sub | Mult | Div | Mod | Equal | Neqg | Less | Leq | Greater |
Geg | Or | And | Not

type expr = (* Expressions *)
Noexpr (* for (;;) *)
Id of string (* foo ¥*)
Integer literal of int (* 42 *)
String literal of string (* "foo" *)
Boolean literal of bool
Array access of string * expr (* foo[l0] *)
Assign of string * expr (* foo = 42 *)

|

|

|

|

|

|

| Uniop of op * expr
| Binop of expr * op * expr (* a + b *)

| Call of string * expr list (* foo(l, 25) *)

| Access of string * string (* foo.bar *)

| Struct Member Assign of string * string * expr
|

Array Member Assign of string * expr * expr

type stmt = (* Statements *)
Block of stmt list (* { ... } *)
| Expr of expr (* foo = bar + 3; *)
| Return of expr (* return 42; *)
| If of expr * stmt * stmt (* if (foo == 42) {} else {} *)
| For of expr * expr * expr * stmt (* for (i=0;i<10;i=i+1) {
| While of expr * stmt (* while (i<10) { i =i + 1 } *)

type var types =
Void
Int
String

|

|

| Boolean
| Struct of string
|

Array of var types * expr

type fn param decl =
Param of var types * string

type var decl =
Variable of var types * string
| Variable Initialization of var types * string * expr
| Array Initialization of var types * string * expr list
| Struct Initialization of var types * string * expr list

type struct decl = {
sname: string; (* Name of the struct ¥*)
variable decls: var decl list; (* int foo *)
asserts: (expr * stmt list) 1list; (* @ (bar > 1) { ... } *)

type unit decl =

Local udecl of expr list * expr * bool

| Outer udecl of string * expr list * expr * bool

type func decl = {
ftype: var types;

fname : string; (* Name of the function ¥*)
formals : fn param decl list; (* Formal argument names ¥*)
locals : var decl 1list; (* Locally defined variables *)

body : stmt list;
units : unit decl list; (* Series of unit tests *)

type program = struct decl list * var decl list * func decl list * unit decl
list (* global vars, funcs *)
99 bottles.k

int run 99 bott (int a) {
struct bott beer bb;

int 1i;
bb.bottles of beer = a;
for(i =a; 1 > 0; (1 = (1 - 1))) {

bb.bottles of beer i;

}

return 0;

struct bott beer ({
int bottles of beer;
@ (! (bottles of beer > 0)) {
print (bottles of beer);
print ("bottles of beer on the wall.")
print (bottles of beer);

print (bottles of beer-1);

(
(
print ("bottles of beer. take one down , pass it around");
(
print ("bottles of beer on the wall.");

void main () {

unit:run 99 bott (99) :equals (0) :accept;

demo gcd.k

int run gcd (int a, int b) {
while (a != b) {

return a;

void main () {

unit:run gcd (24, 54):equals(6):accept;

code gen.ml

(* Code gen¥*)

open Ast

open Sast

open Jast

open Sast to jast
open Semantic checker
open Lexing

let jast =
let lexbuf = Lexing.from channel stdin in
let ast = Parser.program Scanner.token lexbuf
let sast = check program ast in

sast to jast sast
let (j struct decl 1list, , ,) = jast

let print op = function
Add -> print string "+ "

Sub -> print string "- "
Mult -> print string "* "
Div -> print string "/ "
Mod -> print string "% "
Equal -> print string "== "
Neq -> print string "!= "

|

|

|

|

|

|

| Less -> print string "< "
| Leq -> print string "<= "

| Greater -> print string "> "
| Geq -> print string ">= "

| Or => print string "|]| "

| And -> print string "&& "

|

Not -> print string "!"

in

let get instance name = function
Variable(, str) -> str

(* 1f not a Variable we drop the unnecessary stuff *)

| Variable Initialization(_ , str,) -> str
| Array Initialization(, str,) -> str
| Struct Initialization(, str,) -> str
let print checked var decl = function
Variable (checked var decl, str) -> Printf.printf "%s[" str

| -> Printf.printf "adsf"

let rec print expr (e : Sast.expression) =
let (e,) = e in match e with
Noexpr -> print string ""
| Id(decl) -> let str = match decl with
Variable(, str) -> str

(* if not a Variable we drop the unnecessary stuff *)

| Variable Initialization(, str,) -> str
| Array Initialization(, str,) -> str
| Struct Initialization(, str,) -> str in

print string str
| IntConst (i) -> Printf.printf "%d " i
| StrConst(str) -> Printf.printf "%$s " str
| BoolConst(b) -> Printf.printf "$B " b
| ArrayAccess (checked var decl, expr) -> print string(get instance name
checked var decl); print string "["; print expr expr; print string "]"
| Assign(decl, expr) -> let str = match decl with
Variable(, str) -> str

(* if not a Variable we drop the unnecessary stuff *)

| Variable Initialization(, str,) -> str
| Array Initialization(, str,) -> str
| Struct Initialization(, str,) -> str in
print string (str”" = "); print expr expr
| Uniop(op, expr) -> print op op; print string " ("; print expr expr;
print string ")"
| Binop (exprl, op, expr2) -> print expr exprl; print op op; print expr
expr?2
| Call(f, expr list) ->
if f.fname = "exit" then (print string "\n\tSystem.out.println(";
List.iter print expr expr list; print string ");\n\tSystem.exit (0)")
else
((if f.fname = "print" then print string

"\n\tSystem.out.println ("
else Printf.printf "$s(" f.fname);
let rec print expr list comma = function

[] -> print string ""

| e::[] -> print _expr e
| e::tl -> print expr e; print string ", ";
print expr list comma tl
in print expr list comma (List.rev expr list);
print string ")")
| Access(struc, instance, decl) ->
let j s decl = List.find (fun j -> j.original struct = struc)
J_struct decl list in
let var = List.find (fun j v -> let (v,) = j v.the variable in v
= decl) j s decl.variable decls in
print string (get instance name instance);
print string("."”"var.name)
| Struct Member Assign(struc, instance, decl, expr) ->
let j s decl = List.find (fun j -> j.original struct = struc)
j struct decl list in
let var = List.find (fun j v -> j v.the variable = decl)
j_s decl.variable decls in
if (List.length var.asserts) <> 0 then (print string
(get _instance name instance); print string (".set " * var.name ~ " (");

print expr expr; print string ")")

else
(print string (get instance name instance); print string ".";
print string (var.name ~ "="); print expr semi expr)
| Array Member Assign (decl, idx, expr) ->

print string (get instance name decl); print string ("[");

print expr expr; print string("] = "); print expr expr
(* | _ -> print string "" ¥)
and print expr semi (e : Sast.expression) =
print expr e; print string ";\n"
let rec print expr list comma (el : Sast.expression list) = match el with

[] -> print string ""
| hd::[] -> print expr hd
| hd::tl -> print expr hd; print string ", "; print expr list comma tl

let rec print stmt = function

Block (stmt list) -> print string "{"; List.iter print stmt (List.rev
stmt_list); print string "}\n"

| Expr(expr) —-> print expr semi expr

| Return (expr) -> print string "return "; print expr semi expr

| If(expr, stmtl, stmt2) -> print string "if ("; print expr expr;
print string ") "; print stmt stmtl; print string "else "; print stmt stmt2

| For(exprl, expr2, expr3, stmt) -> print string "for ("; print expr semi
exprl; print expr semi expr2; print expr expr3; print string ")"; print stmt
stmt;

| While(expr, stmt) -> print string "while ("; print expr expr;

print string ")"; print stmt stmt

let rec print var types = function

Void -> print string "void "

| Int -> print string "int "

| String -> print string "String "

| Boolean -> print string "boolean "

| Struct(s) -> Printf.printf "%s " (String.capitalize s.sname)

| Array(var_ types, expr) ->
print var types var types;
print string "[";
print expr expr;
print string "] "

let print param v =

let (var_types,) = v in match var types with

Variable (var types, str) -> print var types var types; print string str

(* 1f not a Variable we drop the unnecessary stuff *)

| Variable Initialization(var_ types, str,) -> print var types
var types; print string str

| Array Initialization(var types, str,) -> print var types var_ types;
print string str

| Struct Initialization(var types, str,) -> print var types var types;
print string str

let rec print var decl (v : Sast.variable decl) =
let (var_types,) = v in match var types with
Variable (var types, str) -> (match var types with
Struct (decl) ->
let s = List.find (fun j -> j.original struct = decl)
j_struct decl list in
print string (String.capitalize s.sname); Printf.printf
%s = new %s();\n" str (String.capitalize s.sname)
| -> print var types var types; print string (str ~ ";\n"))
| Variable Initialization(var_ types, str, expr) -> print var types
var types; Printf.printf "%s = " str; print expr semi expr
| Array Initialization(var types, str, expr list) -> (match
var types with
Array(var_types,) -> print var types var_ types;
Printf.printf "[] %s = { " str; print expr list comma expr list; print string
"};\n"
| -> raise (Failure "Not an array"))
| Struct Initialization(var_ types, str, expr list) -> match
var types with
Struct (decl) ->
let s = List.find (fun j -> j.original struct = decl)
j_struct decl list in
print string (String.capitalize s.sname); Printf.printf
" %$s = new %s(" str (String.capitalize s.sname); print expr list comma
(List.rev expr list); print string ™y ;\n"

| _ -> raise (Failure "shouldn't happen")

let rec print function params (v : Jast.j var struct decl list)
[l -> print string "";

match v with

| hd::[] -> print param hd.the variable;

| hd::tl -> print param hd.the variable; print string ", ";
print function params tl

let print asserts a list =
List.iter (
fun (expr, stmt list) ->
print string "if (! (";
print expr expr;
print string ")) {\n";
List.iter (fun s ->
print stmt s; print string "\n"

) stmt list;
print string "}\n"

) a list

let print j var decl (dec : j var struct decl) =
print var decl dec.the variable;
if (List.length dec.asserts) <> 0 then
(

print string("\npublic void set " * dec.name "~ "(");
print param dec.the variable;
print string ") {\n";
print string ("this." ”~ dec.name ~ "=" * dec.name "~ ";\n");
print asserts dec.asserts;
print string "}\n"

)

else ()
let print constructors (name : string) (s : Jast.j var struct decl list) =
print string ("public " * (String.capitalize name) ~ " (");

print function params s;

print string ") {\n";

List.iter (

fun dec -> print string ("this." ”* dec.name ~ "=" " dec.name "

";\n")

) s;

print string "\n}\n";

(* Empty constructor*)

print string ("public " * (String.capitalize name) * ") {}\n")

let print struct decl (s : Jast.j struct decl) =
print string "static class ";

print string (String.capitalize s.sname);

print string " {\n\t\t";

List.iter print j var decl s.variable decls;
(* Make the constructors ¥*)

print constructors s.sname s.variable decls;

print string "\n}\n"

let print unit decl (u : Sast.unit decl) = match u with

Outer udecl (str, udecl params, udecl check val, true) -> print string
"if ("; print string (str.fname ~ " ("); print expr list comma udecl params;
print string ")==("; print expr udecl check val; print string "))

{System.out.println (\"The test passes\");} else {System.out.println(\"The test
fails\");} \n"

| Outer udecl(str, udecl params, udecl check val, false) -> print string
"if("; print string (str.fname ~ " ("); print expr list comma udecl params;
print string ")==("; print expr udecl check val; print string "))

{System.out.println(\"The test fails\");} else {System.out.println(\"The test
passes\"); }\n"

| Local udecl (udecl params, udecl check val, false) -> print string
"local inner false:"

| Local udecl (udecl params, udecl check val, true) -> print string
"local inner true:"

let rec print param list (p : Sast.variable decl list) = match p with
[l -> print string "";
| hd::[] -> print param hd;

| hd::tl -> print param hd; print string ", "; print param list tl

let print func decl (f : Sast.function decl) =

if f.fname = "main" then
(print string "public static void main(String[] args) {\n";
List.iter print var decl (List.rev f.checked locals);
List.iter print stmt (List.rev f.checked body);
List.iter print unit decl (List.rev f.checked units);
print string "}")

else

print string " static ";

print var types f.ftype;

print string f.fname;

print string " (";

print param list (List.rev f.checked formals);

print string ") {\n";

List.iter print var decl (List.rev f.checked locals);
List.iter print stmt (List.rev f.checked body);
List.iter print unit decl (List.rev f.checked units);
print string "}\n"

let code gen j =

let = print string "public class Program {\n\n\t" in

let (structs, vars, funcs, unts) = j in
List.iter print struct decl (List.rev structs);
List.iter print var decl (List.rev vars);
List.iter print func decl (List.rev funcs);
List.iter print unit decl (List.rev unts);
print string "\n}\n"

open Sast

type J var struct decl = {
name: string;
the variable: variable decl; (* int a *)

mutable asserts: (expression * stmt list) list; (* @ (bar > 1) { ... }

type j struct decl = {

sname: string; (* Name of the struct *)

variable decls: j var struct decl list; (* list of asserts/shared
variables ¥*)

original struct: Sast.struct decl;

mutable j name: string;

(* type j func decl = {
f decl: Sast.function decl;

mutable j name: string;

type variable decl

type program = j struct decl list * variable decl list * function decl list *
unit decl listpretty printer.ml

open Ast
open Lexing

let print op = function
Add -> print string "+ "
| Sub -> print string "- "
| Mult -> print string "* "

Div -> print string "/ "
Mod -> print string "% "
Equal -> print string "=
Neq -> print string "!=
Less -> print string "< "
"o

Greater -> print string
Geq -> print string ">=

"

Or -> print string "|
And -> print string "& "

|
|
|
|
|
| Leq -> print string "<=
|
|
|
|
|

Not -> print string "!

let rec function

print expr
Noexpr -> print string ""

Id(id) -> Printf.printf "%s " id
-> Printf.printf

"o

Od

Integer_literal(i)

"%s

-> Printf.printf
-> Printf.printf "%$B "

-> Printf.printf

|

|

| String literal (str)
| Boolean literal (b)
|

Array access(str, expr)

print string "]"

| Assign(str, expr) -> Printf.printf "$s

| Uniop (op, expr)

| Binop(exprl, op, expr2)

expr2

no

-> Printf.printf

function

| Call(str, expr list)

print expr list comma
[] => print string ""
| hd::[]

| hd::tl -> print expr hd; print string ",

-> print expr hd

in print expr list comma expr list; print string ")
-> Printf.printf "%s.%s " strl str2

str2)
| Struct Member Assign(strl,

| Access(strl,

str2, expr)

no
5S

print string "."; Printf.printf
| Array Member Assign(strl, exprl, expr2)
print string "[";

function

let rec print expr list comma
[l => print string ""
| hd::[]
| hd::tl -> print expr hd; print string ",

-> print expr hd

(* and print expr comma expr

"

print expr expr; print string ",
*)

let print expr semi e
print expr e; print string ";\n"

let rec print expr list function

"o

OS("

print expr exprl; print string "]

i
str
b

5s[" str; print expr expr;

" str; print expr expr
-> print op op; print expr expr
-> print expr exprl; print op op; print expr

str; let rec

"; print expr list comma tl

-> Printf.printf "%$s" strl;
" str2; print expr expr
-> Printf.printf "$%$s" strl;

"; print expr expr2

"; print expr list comma tl

[l -> print string ""

| hd::[] -> print expr hd
| hd::tl -> print expr hd; print string "; "; print expr list tl
let rec print stmt = function

Block (stmt list) -> print string "{"; List.iter print stmt stmt list;
print string "}\n"

| Expr(expr) —-> print expr semi expr

| Return(expr) -> print string "return "; print expr semi expr

| If(expr, stmtl, stmt2) -> print string "if ("; print expr semi expr;
print string ")"; print stmt stmtl; print stmt stmt2

| For (exprl, expr2, expr3, stmt) -> print string "for ("; print expr semi
exprl; print string ";"; print expr semi expr2; print string ";"; print expr

expr3; print stmt stmt

| While(expr, stmt) -> print string "while ("; print expr semi expr;
print string ")"; print stmt stmt
let rec print var types = function

Void -> print string "void "

| Int -> print_string "int "

| String -> print string "str "

| Boolean -> print string "bool "

| Struct(str) -> Printf.printf "struct %s " str

| Array(var types, expr) -> print var types var types; print string "[";

print expr expr; print string "] "

let rec print var decl = function
Variable (var types, str) -> print var types var types; print string (str
A n;\nn)

| Variable Initialization(var types, str, expr) -> print var types

var types; Printf.printf "%s = " str; print expr semi expr
| Array Initialization(var types, str, expr list) -> print var types
var_ types; Printf.printf "[]%s = { " str; print expr list comma expr list;

print string "};\n"
| Struct Initialization(var types, str, expr list) -> print var types
var types; Printf.printf "%s = { " str; List.iter print expr expr list;

print string "};\n"

let print asserts a =

let (expr, stmt list) = a in

print string "@("; print expr expr; print string ") "; List.iter
print stmt stmt list

(* FIX THIS *)

let print struct decl s =
print string "struct ";
print string s.sname;

print string " {\n";

List.iter print var decl s.variable decls;
List.iter print asserts s.asserts;
print string "}"

let print unit decl = function

Local udecl (udecl params, udecl check val, true) -> print string "unit(";
print expr list comma udecl params; print string "):equals("; print expr
udecl check val; print string ") :accept;\n"

| Local udecl (udecl params, udecl check val, false) -> print string

"unit ("; print expr list comma udecl params; print string ") :equals(";
print expr udecl check val; print string "):reject;\n"
| Outer udecl(str, udecl params, udecl check val, true) -> print string
"unit:"; print string (str ~ "("); print expr list comma udecl params;
print string "):equals("; print expr udecl check val; print string
") raccept;\n"
| Outer udecl(str, udecl params, udecl check val, false) -> print string
"unit:"; print string (str ~ "("); print expr list comma udecl params;
print string "):equals("; print expr udecl check val; print string

"):reject;\n"

let print param = function
Param(var types, str) -> print var types var types; print string (str)

let rec print param list = function
[l => print string "";
| hd::[] -> print param hd;

| hd::tl -> print param hd; print string ", "; print param list tl

let print func decl f =
print var types f.ftype;
print string f.fname;
print string " (";
print param list f.formals;
print string ") {\n";
List.iter print var decl f.locals;
List.iter print stmt f.body;
List.iter print unit decl f.units;
print string "}\n"

let print program p =
let (structs, vars, funcs, unts) = p in
List.iter print struct decl structs;
List.iter print var decl vars;
List.iter print func decl (List.rev funcs);
List.iter print unit decl unts

let print position outx lexbuf =

let pos = lexbuf.lex curr p in
Printf.fprintf outx "%s:%d:%d" pos.pos fname
pos.pos_lnum (pos.pos_cnum - pos.pos bol + 1)

let =

let lexbuf = Lexing.from channel stdin in

let program = try

Parser.program Scanner.token lexbuf

with -> Printf.fprintf stderr "%a: syntax error\n" print position
lexbuf; exit (-1) in

print program program
parser.mly

%{ open Ast %}

%token SEMI COLON LPAREN RPAREN LBRACE RBRACE LBRACK RBRACK COMMA
%$token MINUS TIMES DIVIDE MOD STRING INT EOF OR AND NOT PLUS
%token ASSIGN EQ NEQ LT LEQ GT GEQ RETURN IF ELSE FOR WHILE BOOL
%token ACCESS STRUCT ASSERT UNIT THIS VOID EQUALS ACCEPT REJECT
%token <string> ID

$token <int> INT LITERAL

$token <string> STRING LITERAL

%token <bool> BOOL LITERAL

snonassoc 1D

$nonassoc NOELSE /* Precedence and associativity of each operator */
%nonassoc ELSE
%nonassoc LBRACK RBRACK
%$left ASSERT

$left ACCESS

%$right ASSIGN

%$left OR AND

%$left EQ NEQ

%left LT GT LEQ GEQ
%left PLUS MINUS

%$left TIMES DIVIDE MOD
$right NOT

%start program /* Start symbol */
$type <Ast.program> program /* Type returned by a program */

o
o

program:
/* nothing */ {1, 1, 1, 111
| program sdecl { let (str, var, func, unt) = $1 in $2::str, var, func,
unt }

| program vdecl { let (str, wvar, func, unt) $1 in str, $2::var, func,

unt } /* int world = 4; */

| program fdecl { let (str, var, func, unt) = $1 in str, var, $2::func,
unt }

| program udecl { let (str, wvar, func, unt) = $1 in str, var, func,
$2::unt }
fdecl:

the type ID LPAREN formals opt RPAREN LBRACE vdecl list stmt list
udecl list RBRACE

{ { ftype = $1;
fname = $2;
formals = $4;
locals = List.rev $7;
body = List.rev $8;
units = List.rev $9; } }

formals opt:
/* nothing */ { [1 1}
| formal list { List.rev $1 }

formal list:
the type ID { [Param(S$1, $2)1 }
| formal list COMMA the type ID { Param($3, $4) :: S$1 }

vdecl list:
/* nothing */ { [1 1}
| vdecl list vdecl { $2 :: S$1 }

vdecl:
the type LBRACK RBRACK ID ASSIGN LBRACE exprilist RBRACE SEMI {
Array Initialization(Array($1, Noexpr), $4, List.rev $7) }
| the type ID SEMI { Variable($1l, $2) }
| the type ID ASSIGN expr SEMI { Variable Initialization($1l, $2, $4) }
| the type ID ASSIGN LBRACE exprilist RBRACE SEMI {
Struct Initialization($1l, $2, List.rev $5) }

[* mmmmmmmmm——— - udecl stuff -------------- */
udecl list:

/* nothing */ { [1 1}

| udecl list udecl { $2 :: $1 }
udecl:

UNIT LPAREN actuals opt RPAREN COLON EQUALS LPAREN expr RPAREN COLON
ACCEPT SEMI { Local udecl($3, $8, true) }

| UNIT LPAREN actuals_opt RPAREN COLON EQUALS LPAREN expr RPAREN COLON
REJECT SEMI { Local udecl($3, $8, false) }

| UNIT COLON ID LPAREN actuals opt RPAREN COLON EQUALS LPAREN expr RPAREN
COLON ACCEPT SEMI { Outer udecl($3, $5, $10, true) }

| UNIT COLON ID LPAREN actuals opt RPAREN COLON EQUALS LPAREN expr RPAREN
COLON REJECT SEMI { Outer udecl($3, $5, $10, false) }

assert list:
/* nothing */ { [] }
| assert list asrt { $2 :: S$1 }

asrt:
ASSERT LPAREN expr RPAREN stmt list { $3, List.rev $5 }

expr list:
expr { [$1] }

| expr list SEMI expr { $3 :: $1 }

| expr list COMMA expr { $3 :: $1 } /*will this work for udecl? */
sdecl:

STRUCT ID LBRACE vdecl list assert list RBRACE

{ { sname = $2;

variable decls = List.rev $4;
asserts = List.rev $5; } }

the type:

INT { Int }

| VOID { Void }

| STRING { String }

| BOOL { Boolean }

| STRUCT ID { Struct($2) }

| the type LBRACK expr RBRACK { Array($1l, $3) }
stmt list:

/* nothing */ { [1 1}

| stmt list stmt { $2 :: $S1 }

/*| stmt list init { $2 :: $1 }
init:

ID LBRACK RBRACK ASSIGN block SEMI { Array Initialization($1l, $5) }*/
stmt:

expr SEMI
{ Expr($1l) }
| RETURN expr SEMI
{ Return($2) }

{ IE£(83,

block:

block
{ s1 1}

/*| IF LPAREN expr RPAREN stmt $prec NOELSE

$5, Block([1)) } */
IF LPAREN expr RPAREN stmt ELSE stmt
I£($3, $5, $7) }
FOR LPAREN expr opt SEMI expr opt SEMI expr opt RPAREN stmt
$5, $7, $9) }
WHILE LPAREN expr RPAREN stmt
While ($3, $5) }

LBRACE stmt list RBRACE { Block(List.rev $2) }

expr opt:

expr:

ID LBRACK expr RBRACK ASSIGN expr { Array Member Assign($1, $3, $6)

LPAREN expr RPAREN { 82}

}

}

}

/* nothing */ { Noexpr }

| expr { s1

ID { Id(s1) }

| INT LITERAL { Integer_literal($l) }
| STRING LITERAL { String literal($1) }

| BOOL LITERAL { Boolean literal(S1l) }
| NOT expr { Uniop(Not, $2) }

| expr PLUS expr { Binop($1l, Add, $3) }

| expr MINUS expr { Binop($1, Sub, $3) }

| expr TIMES expr { Binop($1, Mult, $3) }

| expr DIVIDE expr { Binop($1l, Div, $3) }

| expr MOD expr { Binop($1l, Mod, $3) }

| expr EQ expr { Binop($1, Equal, $3)

| expr NEQ expr { Binop($1, Neqg, $3) }
| expr LT expr { Binop($1l, Less, $3) }
| expr LEQ expr { Binop($1l, Leqg, $3) }
| expr GT expr { Binop($1l, Greater, $3)
| expr GEQ expr { Binop($1, Geqg, $3) }
| expr OR expr { Binop ($1, Or, $3) }
| expr AND expr { Binop ($1, And, $3) }
| ID ACCESS ID { Access ($1, $3) }

| ID ASSIGN expr { Assign ($1, $3) }

| ID LPAREN actuals opt RPAREN { call ($1, $3) }

| ID ACCESS ID ASSIGN expr { Struct Member Assign($1l, $3, $5)

|

|

|

ID LBRACK expr RBRACK { Array access ($1, $3) }

actuals opt:

/* nothing */ { 013
| actuals_list { List.rev $1 }

actuals list:

expr { [S1] }
| actuals list COMMA expr { $3 :: $1 }run.sh
#/bin/bash

./code_gen < "$1" > "Program.java" 2>&l

javac "Program.java"

java "Program" | tee "output java $1l.txt" 2>&l
sast.mli

open Ast

type var types =
Void
Int
String

|
|
| Boolean
| Struct of struct decl
| Array of var types * expression
and checked var decl =
Variable of var types * string
| Variable Initialization of var types * string * expression
| Array Initialization of var types * string * expression list
| Struct Initialization of var types * string * expression list
and variable decl = checked var decl * var types
and function decl = {
ftype: var types;
fname : string; (* Name of the function ¥*)
checked formals : variable decl list; (* Formal argument names ¥*)
checked locals : variable decl 1list; (* Locally defined variables *)
checked body : stmt list;
checked units : unit decl list;
}
and unit decl =
Local udecl of expression list * expression * bool
| Outer udecl of function decl * expression list * expression * bool
and struct decl = {
sname: string; (* Name of the struct *)
variable decls: variable decl list; (* int foo *)
asserts: (expression * stmt list) list; (* @ (bar > 1) { ... } *)
}

and expr detail =

Noexpr
| IntConst of int
| StrConst of string
| BoolConst of bool
| ArrayAccess of checked var decl * expression
| Id of checked var decl
| Call of function decl * expression list
| Access of struct decl * checked var decl * checked var decl
| Uniop of op * expression
| Binop of expression * op * expression
| Assign of checked var decl * expression
| Struct Member Assign of struct decl * checked var decl * variable decl
* expression
| Array Member Assign of checked var decl * expression * expression
and expression = expr detail * var types
and stmt =
Block of stmt list (* { ... } *)
| Expr of expression (* foo = bar + 3; *)
| Return of expression (* return 42; ¥*)
| If of expression * stmt * stmt (* if (foo == 42) {} else {} *)
| For of expression * expression * expression * stmt (* for
(1=0;1i<10;i=1i+1) { ... } *)
| While of expression * stmt

type program = struct decl list * variable decl list * function decl list *
unit decl list
test

open Sast
open Jast
open Semantic checker
open Lexing
(* open Map
*)
let find decl (var_decl : Sast.checked var decl) (var list
Jast.j var struct decl list) =

List.find (fun v -> let (v,) = v.the variable in v = var decl) var list
let rec check j in a (j : Sast.variable decl) (e : Sast.expression) =

let (the variable,) = Jj in

let (expr detail,) = e in match expr detail with

ArrayAccess (var, expr) -> if var = the variable then true else
check j in a j expr

| Id(var) -> if var = the variable then true else false

| Call(, expr list) -> let rec check list = function
| [1 -> false
| hd::tl -> if check j in a j e then true else check list tl

in
check list expr list
| Access(, ,var) -> if var = the variable then true else false
| Uniop (_, expr) -> check j in a j expr
| Binop (exprl, , expr2) -> check j in a j exprl || check j in a J
expr2

| Assign (var, expr) -> if var = the variable then true else
check j in a j expr
| -> false

let rec check assert expr assert list (var_decl : Sast.variable decl) a (e
Sast.expression) =
try
let = List.find(fun other assert -> other assert = a) assert list
in false

with Not found -> if check j in a var decl e then true else false

(* iterate over s.variable decls to make
corresponding j var struct decls intially with empty asserts*)
let process struct decl (s : Sast.struct decl) =
let j var decls = List.fold left (
fun a v ->
let (decl,) = v in
let id = match decl with
Variable(, id) -> id

| Variable Initialization(, id,) -> id
| Array Initialization(, id,) -> id
| Struct Initialization(, id,) -> id in

let asserts = List.fold left (
fun a the assert ->
let (e,) = the assert in
if check assert expr a v the assert e then
the assert :: a
else a
) [] s.asserts in

{the variable = v; asserts = asserts; name = id} :: a
) [] s.variable decls in
{ sname = s.sname; variable decls = j var decls; original struct = s;
j _name = "" }

let sast to jast p =
let (structs, wvars, funcs, units) = p in

let structs = List.fold left (fun a s -> process struct decl s :: a) []
structs in

(structs, wvars, funcs, units)

let lexbuf = Lexing.from channel stdin in
let ast = try
Parser.program Scanner.token lexbuf

with -> Printf.fprintf stderr "%a: syntax error\n" print position
lexbuf; exit (-1) in
let sast = check program ast in

sast to jast sast *)scanner.mll

{ open Parser } (* Get the token types *)

rule token = parse
[" " "\t" "\r'" '"\n'] { token lexbuf } (* Whitespace *)

| "/*" { comment lexbuf } (* Comments *)
| "('" { LPAREN } | ")'" { RPAREN } (* Punctuation ¥*)
["{'" { LBRACE } | '"}'" { RBRACE }
| '['" { LBRACK } | 'l]" { RBRACK }
| ';' { SEMI } ['," { CcOMMA }
| '+' { PLUS } | '-' { MINUS }
['*'" { TIMES } | '/'" { DIVIDE }
| '$'" { MOD } | ':'" { COLON }
| '=' { ASSIGN }
| '<' { LT } | '>' { GT }
| "==" { EQ } ["!=" { NEQ }
| "<=" { LEQ } | ">=" { GEQ }
["' { NOT }
["' { OR } | '&"'" { AND } (* Short circuits ¥*)
| "accept" { ACCEPT } | "reject" { REJECT } (*test functions¥*)
| "@" { ASSERT } | "unit" { UNIT } | '.' { ACCESS }
| "else" { ELSE } | "if" { IF } (* Keywords ¥*)
| "while" { WHILE } | "for" { FOR }
| "return" { RETURN } | "accept" { ACCEPT }
| "struct" { STRUCT } | "reject" { REJECT }
| "void" { VOID }
| "bool"™ { BOOL } | "int"™ { INT } | "str" { STRING }
| "equals" { EQUALS }
[""" ("\\'_ [[~""']) <" as str { STRING LITERAL(str) } (* Strings *)
| ['0'-'9']+ as 1lxm { INT LITERAL(int of string lxm) } (* Integers *)
| "true" | "false" as boolean { BOOL LITERAL (bool of string boolean) }
| eof { EOF } (* End-of-file ¥*)
| ['a'='z'" '"A'-'Z']['a'="z" '"A'-'Z'" '0'-'9"'" ' ']* as lxm { ID(lxm) }
| _as char { raise (Failure("illegal character " *
Char.escaped char)) }
and comment = parse

"x/" { token lexbuf } (* End-of-comment *)

| _ { comment lexbuf
semantic checker.ml

open Ast
open Sast
open Lexing
open Map

} (* Eat everything else *)

(* check return exists *)

(* have to reverse lists lololol *)

type function table = {

funcs : func decl list

type symbol table = {
mutable parent
mutable variables
mutable functions
mutable structs

symbol table option;

(string * checked var decl * var types)

function decl list;
struct decl list;

mutable return found : bool;

type translation environment = {

mutable scope : symbol table;

mutable found main: bool;

let the print function

= {

ftype = Sast.Void;

fname = "print";
checked formals =
checked locals =
checked body = []
checked units = [

let the exit function =

{

ftype = Sast.Void;

fname = "exit";

checked formals =
checked locals =
checked body = []

checked units = [

let find struct (s : struct decl list) stru =

(* symbol table for

list;

List.find(fun ¢ -> c.sname = stru) s

let find func (1 : function decl 1list) f =
List.find(fun ¢ -> c.fname = f) 1

let rec check id (scope : symbol table) id =

try

(* let = print string ("check id called, legnth of
scope.variables is " ” string of int (List.length scope.variables) ~ "\n") in
*)

(* let = List.iter (fun (n, _,) -> print string ("try printing
in check id: ™ * n * "\n")) scope.variables in *)

let (_, decl, t) = List.find(fun (n, ,) -> n = id)
scope.variables in

decl, t

with Not found -> match scope.parent with
Some (parent) -> check id parent id
| _ -> raise Not found

let rec check expr (scope : symbol table) (expr : Ast.expr) = match expr with
(* let _ = print string ("try printing at top of process var decl, length
of scope.variables is " ”~ string of int (List.length scope.variables) ~ "\n")
in match expr with *)
Noexpr -> Sast.Noexpr, Void

| Id(str) ->

(try

let (decl, t) = check id scope str in Sast.Id(decl), t
with Not found -> raise (Failure ("Id named " * str *~ " not
found")))
| Integer literal(i) -> Sast.IntConst(i), Sast.Int
| String literal(str) -> Sast.StrConst(str), Sast.String
| Boolean literal(b) -> Sast.BoolConst(b), Sast.Boolean
| Array access(_ , _) as a -> check array access scope a
| Assign(,) as a -> check assign scope a
| Uniop(op, expr) as u —-> check uni op scope u
| Binop(, ,) as b -> check op scope b
| Call(,) as c -> check call scope c
| Access(,) as a -> check access scope a
| Struct Member Assign(, ,) as a —-> check struct assignment scope a
| Array Member Assign(, ,) as a -> check array assignment scope a
and check array assignment (scope : symbol table) a = match a with

Ast.Array Member Assign(arr, expr, expr2) ->

(

try
let (original decl, var type) = check id scope arr in

match var type with
Sast.Array(decl,) ->

let access_expr = check expr scope
expr in
let (, t) = access _expr in
if t <> Sast.Int then
raise (Failure "Array access
mnust be type int")
else
(let assign_expr = check expr
scope expr2 in
let (, t2) = assign expr in
if decl <> t2 then raise
(Failure "type assignment is wrong")
else
Sast.Array Member Assign(original decl, access_expr, assign expr), t2)
)

| _ -> raise (Failure (arr ©~ " is not an
array."))
with Not found -> raise (Failure ("Variable " ~ arr ~ " not
declared."))
)

| _ -> raise (Failure "Not an array assignment")
and check struct assignment (scope : symbol table) a = match a with

Ast.Struct Member Assign(stru, mem, expr) ->

(
try
let (original decl, var type) = check id scope stru in
match var type with
| Sast.Struct (decl) ->
(
try
let v = List.find(

fun (v,) -> match v with
Variable(, s) -> s = mem

| Variable Initialization(_,

s,) —> s = mem
| Array Initialization(, s,
) —-> s = mem
| Struct Initialization(, s,
) => s = mem

) decl.variable decls in

let expr = check expr scope expr in
let (, t) = v in

let (, t2) = expr in

if t <> t2 then raise (Failure "type

assignment is wrong")

else Sast.Struct Member Assign (decl,
original decl, v, expr), var_ type
with Not found -> raise (Failure (mem ~ "
not found in struct " * stru))
)
| _ -> raise (Failure (stru "~ " is not a struct."))
with Not found -> raise (Failure ("Variable " ~ stru ”~ " not
declared."))
)

| _ -> raise (Failure "Not a struct assignment")

and check op (scope : symbol table) binop = match binop with
Ast.Binop (xpl, op, xp2) ->

let el = check expr scope xpl and e2 = check expr scope xp2 in
let (, tl1) = el and (_, t2) = e2 in
let t = match op with
Add ->
if (tl <> Int || t2 <> Int) then
if (tl <> String || t2 <> String) then raise

(Failure "Incorrect types for +")
else String

else Int

| Sub -> if (tl <> Int || t2 <> Int) then raise (Failure
"Incorrect types for - ") else Sast.Int

| Mult -> 1if (tl <> Int || t2 <> Int) then raise (Failure
"Incorrect types for * ") else Sast.Int

| Div => if (tl <> Int || t2 <> Int) then raise (Failure
"Incorrect types for / ") else Sast.Int

| Mod -> if (tl <> Int || t2 <> Int) then raise (Failure
"Incorrect types for % ") else Sast.Int

| Equal -> if (tl <> t2) then raise (Failure "Incorrect types
for = ") else Sast.Boolean
| Neg -> if (tl <> t2) then raise (Failure "Incorrect types

for != ") else Sast.Boolean

| Less -> 1if (tl <> Int || t2 <> Int) then raise (Failure
"Incorrect types for < ") else Sast.Boolean

| Leg -> 1if (tl <> Int || t2 <> Int) then raise (Failure
"Incorrect types for <= ") else Sast.Boolean

| Greater -> if (tl <> Int || t2 <> Int) then raise (Failure
"Incorrect types for > ") else Sast.Boolean

| Geg -> 1if (tl <> Int || t2 <> Int) then raise (Failure
"Incorrect types for >= ") else Sast.Boolean

| Or => if (tl <> Boolean || t2 <> Boolean) then raise
(Failure "Incorrect types for | ") else Sast.Boolean

| And -> if (tl <> Boolean || t2 <> Boolean) then raise
(Failure "Incorrect types for & ") else Sast.Boolean

| Not -> raise (Failure "! is a unary operator.")

in Sast.Binop(el, op, e2), t

| _ -> raise (Failure "Not an op")

and check array access (scope : symbol table) a = match a with

Ast.Array access(id, expr) ->
let (decl, t) = check id scope id in (match t with
Sast.Array(t,) ->
let el = check expr scope expr in

let (, t2) = el in
if t2 <> Int then raise (Failure "Array access must be
integer.") else
Sast.ArrayAccess(decl, el), t
| -> raise (Failure "this id is not an array"))

| _ -> raise (Failure "Not an array access")

and check assign (scope : symbol table) a = match a with

Ast.Assign(id, expr) ->

(
let (decl, t) = check id scope id in
let e = check expr scope expr in
let (, t2) = e in

if t <> t2 then raise (Failure "Incorrect type assignment.") else
Sast.Assign(decl, e), t

| _ -> raise (Failure "Not an assignment")

and check call (scope : symbol table) c = match c with
Ast.Call (id, el) ->
(
try
let £ = find func scope.functions id in
let exprs = List.fold left2 (
fun a b ¢ ->

let (, t) b in

let expr = check expr scope c in
let (, t2) = expr in

if t <> t2

then raise (Failure "wrong type")
else expr :: a
) [1 f.checked formals el in
Sast.Call(f, exprs), f.ftype
with Not found ->

if id = "print" then match el with
| hd :: []-> let expr = check expr scope hd in
let (, t) = expr in
if (t = Sast.String || t = Sast.Int) then

Sast.Call (the print function, [expr]), Sast.Void else raise (Failure "Print
takes only type string or int")

| _ -> raise (Failure "Print only takes one
argument")

else if id = "exit" then match el with

| hd :: []-> let expr = check expr scope hd in
let (, t) = expr in
if t = String then
Sast.Call (the exit function, [expr]), Sast.Void else raise (Failure "Exit takes
only type string")
| _ -> raise (Failure "Exit only takes one

argument")
else if id = "main" then
raise (Failure "Cannot fall main function")
else raise (Failure ("Function not found with name " %
id))

)

| -> raise (Failure "Not a call")

and check access (scope : symbol table) a = match a with
Ast.Access (id, id2) ->

(let (original decl, t) = check id scope id in match t with
Struct (decl) ->
(try
let var = List.find (
fun (t,) -> match t with
Variable(, n) -> n = id2
| Variable Initialization(, n,) -> n =
id2
| Array Initialization(, n,) -> n = id2
| Struct Initialization(, n,) -> n = id2
) decl.variable decls in
let (var,) = var in
let t = match var with
Variable(t,) -> t
| Variable Initialization(t, ,) -> t
| Array Initialization(t, ,) -> t
| Struct Initialization(t, ,) -> t
in Sast.Access(decl, original decl, var), t
with Not found -> raise (
Failure (id ~ " is type struct " * decl.sname ~ "
which does not have a member named " ~ id2)
))
| -> raise (Failure (id ~ " is not a struct."))

)

| _ -> raise (Failure "Not an access")

and check uni op (scope : symbol table) uniop = match uniop with
Ast.Uniop (op, expr) -> (
match op with
Not ->
let e = check expr scope expr in
let (, t) = e in

if (t <> Boolean) then raise (Failure "Incorrect type
for !' ") else Sast.Uniop(op, e), Boolean
| -> raise (Failure "Not a unary operator")
)

| _ -> raise (Failure "Not a uniop")
(*

let process func formals (env : translation environment) f =
let scope' = { env.scope with parent = Some (env.scope); variables = [] }
in
let scope' = List.iter (fun var -> scope.variables:: head) *)
let rec check stmt (scope : symbol table) (stmt : Ast.stmt) = match stmt with
Block(sl) -> Sast.Block(List.fold left (fun a s -> (check stmt scope s)
a) [1 sl)

| Expr(e) -> Sast.Expr(check expr scope e)
| Return(e) -> Sast.Return(check expr scope e)
| If(expr, stmtl, stmt2) ->
let new expr = check expr scope expr in
let (, t) = new expr in
if t <> Sast.Boolean then
raise (Failure "If statement must have a boolean expression")
else
let new stmtl = check stmt scope stmtl in
let new stmt2 = check stmt scope stmt2 in
Sast.If (new_expr, new stmtl, new_stmt2)
| For (exprl, expr2, expr3, stmt) ->
let expr = check expr scope exprl in
let expr2 = check expr scope exprZ2 in
let (, t) = expr2 in
if t <> Sast.Boolean then
raise (Failure "If statement must have a boolean expression")
else
let expr3 = check expr scope expr3 in
let stmt = check stmt scope stmt in
Sast.For (expr, expr2, expr3, stmt)
| While (expr, stmt) ->
let expr = check expr scope expr in
let (, t) = expr in
if t <> Sast.Boolean then
raise (Failure "If statement must have a boolean expression")

else
let stmt = check stmt scope stmt in
Sast.While (expr, stmt)
let rec check var type (scope : symbol table) (v : Ast.var types) = match v

with
Ast.Void -> Sast.Void
| Ast.Int -> Sast.Int

| Ast.String -> Sast.String
| Ast.Boolean -> Sast.Boolean
| Ast.Struct (id) ->

(try
let s = find struct scope.structs id in
Sast.Struct (s)
with Not found -> raise (Failure ("Struct " * id ~ " not found.")))

| Ast.Array (v, expr) ->
let v = check var type scope v in
let expr = check expr scope expr in
let (, t) = expr in
if t <> Int then raise (Failure "Array size must have integer.")

else Sast.Array(v, expr)

let process var decl (scope : symbol table) (v : Ast.var decl) =

(* let = print string ("try printing at top of process var decl, length
of scope.variables is " ” string of int (List.length scope.variables) *~ "\n")
in *)

let triple = match v with

Variable (t, name) ->
let t = check var type scope t in
(name, Sast.Variable(t, name), t)
| Variable Initialization(t, name, expr) ->
let t = check var type scope t in
let expr = check expr scope expr in
let (, t2) = expr in
if t <> t2 then raise (Failure "wrong type for variable
initialization") else (name, Sast.Variable Initialization(t, name, expr), t)
| Array Initialization(t, name, el) -> (match t with
Ast.Array (v, expr) ->
let t = check var type scope v in
let el = List.fold left (
fun a elem ->
let expr = check expr scope elem in
let (, t2) = expr in
if t <> t2 then raise (Failure "wrong type for
array initilization") else expr :: a

) [] el in (name,
Sast.Array Initialization(Sast.Array(t, (Noexpr, Void)), name, List.rev el),
Sast.Array(t, (Noexpr, Void)))
| _ -> raise (Failure "Not an arrary!"))
| Struct Initialization(t, name, el) ->
let t = check var type scope t in match t with
Struct (decl) ->
(* DO NOT THROW AWAY RESPONSE *)
let el = List.fold left2 (
fun a b ¢ -> let t =
let (b,) = b in match b with

Variable(t,) -> t

| Variable Initialization(t, ,) -> t
| Array Initialization(t, ,) -> t

| Struct Initialization(t, ,) -> t in
let e = check expr scope c¢ in

let (, t2) = e in

if t <> t2 then raise (Failure "types are
not the same in struct initialization") else e :: a
) [1 decl.variable decls el in (name,
Sast.Struct Initialization(t, name, el), t)
| _ -> raise (Failure "Not a struct") in (*test?*)
let (, decl, t) = triple in
if t = Void then
raise (Failure "Variable cannot be type void.")

else
scope.variables <- triple :: scope.variables; (* List.iter (fun (n,
_, _) —> print string ("try printing in process var decl:" ~ n ~ "\n"))
scope.variables; *) (* Update the scope *)
(decl, t)

let rec check func stmt (scope : symbol table) (stml : Sast.stmt list) (ftype
Sast.var_ types) =
List.iter (
fun s -> match s with
Sast.Block (sl) ->
check func stmt scope sl ftype
| Sast.Return(e) ->
let (, t) = e in
if t <> ftype then raise (Failure "func return type is
incorrect") else ()
| Sast.If(, sl, s2) ->

check func stmt scope [sl] ftype; check func stmt scope [s2]

ftype
| Sast.For(., , _, s) —->
check func stmt scope [s] ftype
| Sast.While(, s) —>
check func stmt scope [s] ftype
| => ()

) stml

let process func stmt (scope : symbol table) (stml : Ast.stmt list) (ftype
Sast.var_ types) =
List.fold left (
fun a s -> let stmt = check stmt scope s in
match stmt with
Sast.Block (sl) ->
check func stmt scope sl ftype; stmt :: a
| Sast.Return(e) ->

let (, t) = e in
if t <> ftype then raise (Failure "while processing func
statement, return type incorrect") else
scope.return found <- true; stmt :: a
| Sast.If(, sl1, s2) ->

check func_stmt scope [sl] ftype; check func stmt scope [s2]

ftype; stmt :: a
| Sast.For(, , , s) —>
check func stmt scope [s] ftype; stmt :: a
| Sast.While(, s) ->
check func stmt scope [s] ftype; stmt :: a
[=> stmt :: a
) [] stml
let process func units (scope : symbol table) (u : Ast.unit decl) (formals
Sast.variable decl list) (ftype : Sast.var types) = match u with

Local udecl (el, e, b) —>
let exprs = List.fold left2 (
fun a b ¢ —>

let (, t) = Db in

let expr = check expr scope c in
let (, t2) = expr in

if t <> t2

(*stopped tests here going *)

then raise (Failure "while processing func units,
wrong type")

else expr :: a
) [] formals el in
let expr = check expr scope e in
let (, t) = expr in

if t <> ftype then raise (Failure "while processing func units,
incorrect return type") else

Sast.Local udecl (exprs, expr, b)
| Outer udecl (f, el, e, b) ->
(try

let £ = find func scope.functions f in

let exprs = List.fold left2 (

fun a b ¢ ->
let (, t) = Db in

let expr = check expr scope c in
let (, t2) = expr in
if t <> t2

then raise (Failure "wrong type")
else expr :: a
) [1 f.checked formals el in
let expr = check expr scope e in
let (, t) = expr in

if t <> f.ftype then raise (Failure "Incorrect return type") else

Sast.Outer udecl (f, exprs, expr, b)

with Not found -> raise (Failure ("Function not found with name " * f)))
let check func decl (env : translation environment) (f : Ast.func decl) =
let scope' = { env.scope with parent = Some (env.scope); variables = [];

return found = false } in
let t = check var type env.scope f.ftype in
let formals = List.fold left (
fun a £ -> match £ with
Ast.Param(t, n) ->
let t = check var type scope' t in
scope'.variables <- (n, Sast.Variable(t, n), t)
scope'.variables; (Sast.Variable(t, n), t) :: a
) []1 f.formals in
let locals = List.fold left (fun a 1 -> process var decl scope' 1 :: a)
[] f.locals in
let statements = process func_stmt scope' f.body t in
let units = List.fold left (fun a u -> process_ func units scope' u
formals t :: a) [] f.units in
if scope'.return found then

let £ = { ftype = t; fname = f.fname; checked formals = formals;
checked locals = locals; checked body = statements; checked units = units } in
env.scope.functions <- f :: env.scope.functions; (* throw away

scope of function *) f
else (if f.ftype = Void then
let £ = { ftype = t; fname = f.fname; checked formals = formals;
checked locals = locals; checked body = statements; checked units = units } in
env.scope.functions <- f :: env.scope.functions; (* throw
away scope of function *) f
else
raise (Failure ("No return for function " ~ f.fname ~ " when return

expected.")))

let process_ func decl (env : translation environment) (f : Ast.func decl) =

try
let = find func env.scope.functions f.fname in
raise (Failure ("Function already declared with name " *
f.fname))
with Not found ->
if f.fname = "print" then raise (Failure "A function cannot be

named 'print'")
else
if f.fname = "main" then
(
if f.ftype <> Void || (List.length f.formals) <>
0 then
raise (Failure "main function must be type void

with no parameters")

else
let func = check func decl env f in
env.found main <- true; func

else

check func decl env f

let rec check struct stml (stml : Sast.stmt list) =
List.iter (
fun s -> match s with
Sast.Block (sl) ->

check struct stml sl

| Sast.Return() -> raise (Failure "No returns are allowed in
asserts")
| Sast.If(, sl, s2) —->
check struct stml [sl]; check struct stml [s2]
| Sast.For(., , _, s) —>
check struct stml [s]
| Sast.While(, s) —->
check struct stml [s]
_ >0
) stml

let process assert (scope: symbol table) a =

let (expr, stml) = a in

let expr = check expr scope expr in

let (, t) = expr in

if t <> Sast.Boolean then (raise (Failure "assert expr must be boolean"))
else

let stml = List.fold left (fun a s -> check stmt scope s :: a) [] stml
in

let = check struct stml stml in (expr, stml)

(* let check struct (scope : symbol table) s =
let scope' = { scope with parent = Some (scope); variables = [] } in
let vars = List.fold left (fun a s -> process var decl scope' :: a) []
s.variable decls in
(* should we keep result of process var decl? *)
List.iter process_assert scope' s.asserts *)

let process_struct decl (env : translation environment) (s : Ast.struct decl) =
try
let = find struct env.scope.structs s.sname in
raise (Failure ("struct already declared with name " *
s.sname))
with Not found ->
let scope' = { env.scope with parent = Some (env.scope); variables =

(] } in

let vars = List.fold left

(fun a v -> process_var decl scope' v
a) [] s.variable decls in

let asserts List.fold left

(fun a asrt -> process_assert scope'
asrt :: a) [] s.asserts in

let s = { sname = s.sname; variable decls = vars; asserts =
asserts; } in

env.scope.structs <- s :: env.scope.structs; s

let process global decl (env

try

translation environment) (g : Ast.var decl) =

let name = match g with
Variable(, id) -> id

| Variable Initialization(, id,) -> id

| Array Initialization(, id,) -> id
| Struct Initialization(, id,) -> id in
let = check id env.scope name in
raise (Failure ("Variable already declared with name " ” name))
with Not found ->
(* let = print string ("p global decl called, this id not found,
legnth of env.scope.variables is " ~ string of int (List.length
env.scope.variables) ~ "\n") in *)
process var_decl env.scope g
let process outer unit decl (env translation environment) (u : Ast.unit decl)
= match u with
Local udecl (el, ,) -> raise (Failure "Can not define unit of this

type in global scope ")
| Outer udecl (f, el, e, b) ->
(try

let £ = find func env.scope.functions f in
let exprs = List.fold left2 (
fun a b ¢ —>

let (, t) = Db in

let expr = check expr env.scope c in
let (, t2) expr in
if t <> t2

then raise (Failure "wrong type while processing
outer unit declaration")
else expr :: a
) [1 f.checked formals el in
let expr = check expr env.scope e in
let (, t) = expr in
if t <> f.ftype then raise

(Failure "Incorrect return type in outer
unit test") else

Sast.Outer udecl (f, exprs, expr, b)

with Not found -> raise (Failure ("Function not found with name " * f)))

let check program (p : Ast.program) =

(* let _ = print string ("check program called \n") in *)

let s = { parent = None; variables = []; functions = []; structs = [];
return found = false } in
let env = { scope = s; found main = false } in
let (structs, wvars, funcs, units) = p in
let structs =
List.fold left (
fun a s -> process struct decl env s :: a
) [] structs in
let globals =
List.fold left (
fun a g -> process global decl env g :: a
)y [] (List.rev wvars) in
let funcs =
List.fold left (
fun a £ -> process func decl env f :: a
) [] (List.rev funcs) in
let units =
List.fold left (
fun a u -> process outer unit decl env u :: a
) [] units in
(* try *)
(* let = print string ("length of env.scope.functions is " *
string_of_int (List.length env.scope.functions) ~ "\n") in *)
(* let rec findMain = function
[] -> false
| hd::tl ->
if hd.fname = "main" then
(1f (hd.ftype <> Void || (List.length hd.checked formals) <>

0) then (raise (Failure "main function must be type void with no arguments"))
else true)
else findMain tl
in let foundMain = findMain env.scope.functions in *)
(1f env.found main then structs, globals, funcs, units else (raise (Failure
"No main function defined.")))

(* let = List.iter(fun f -> if f.fname = "main" then
print string "Found main" else(* print string ("did not find main, found " *
f.fname ~ "\n")) env.scope.functions in *)

let = List.find(fun f -> f.fname = "main") env.scope.functions

in
structs, globals, funcs, units
with Not found -> raise (Failure "No main function defined.") *)

let print position outx lexbuf =
let pos = lexbuf.lex curr p in
Printf.fprintf outx "%s:%d:%d" pos.pos fname
pos.pos_lnum (pos.pos_cnum - pos.pos bol + 1)

(* let =
let lexbuf = Lexing.from channel stdin in
let program =
try Parser.program Scanner.token lexbuf
with -> Printf.fprintf stderr "%a: syntax error\n" print position
lexbuf; exit (-1) in
check program program *)

TESTS

arr_access.k

int main () {
int[1l] a;
al0] = 1;
return 0;

array decl.k

void main () {

int[1l] arr;

array expr decl.k

void main () {
int x = 1;
int[x+1] arr;

array init.k

int main () {
int[] a = {1, 2, 3};

void main () {
int[] array= {1,2,3,4,5,6};

array size not int.k

void main () {
int["1"] a;

assert.k

struct potato {
int size;

int potat;
Q(size > 1) {}
}

bad params to fn.k

int foo(int x, int y){

return x;

int main () {
int a;
int b;

a = 5;
b = foo(a);

return O;

call function w args.k

int foo (int a, int b) {
return 0;

}

int main () {
foo(2,3);

call 2 int.k

int foo(int x, int vy) {
return x+y;

vold main () {
foo(3,5);

call function.k

int foo() {
return 0;

}

void main () {
int a;
a = 3;
foo ()

codegen arr access.k

volid main () {
int[1] a:;
al0] = 2;

decl unit outsideOfMethod.k

int foo(int i) {
int a;
a = 1i;
return a;

void main () {
foo();
return 0;

unit:foo () :equals (0) :accept;

fn reclare and use.k

int foo() {
return O0;

int foo() {
return 1;

int main () {
int a = foo();
return a;

comment reject.k

void main () {
int a;
/* comment, lol */
int b;

function w_args reject.k

void main () {
int foo (int a, int b) {
return O;

exit test.k

void main () {
int a;
exit ("exited.");

function w arg reject.k

void main () {
int foo(int a) {
return O0;

garbage reject.k

sdlkflkajsdflkjasdlfkjasd

int minus str rejectsem.k

int main () {

int a = 1;
str b = "1";
int ¢ = a - b;

return O;

inline assign.k

void main () {

int a = 1;

int mod str reject sem rejectsem.k

int main () {

int a = 1;
str b = "1";
int ¢ = a % b;

return O;

int divided str rejectsem.k

int main () {
int a = 1;
str b = "1";
int ¢ = a / b;
return 0;

multiple funcs.k

int foo () {return 0;}
void main () {}

printing test.k

int main () {
print ("hello, world!");

semantic accessing non array w brack rejectsem.k

int main () {
int a = 1;
all.2] = 2;
return 0;

semantic bad fn in top outer unit rejectsem.k

void main () {

unit:foo(0,0) :equals(0) :accept;

semantic arr wrong type rejectsem.k

void main () {
int[] a = {"1"};

semantic arr access non_int rejectsem.k

int main () {
int [1] a:
all.2] = 2;
return 0;

semantic array size not int rejectsem.k

void main () {
int["1"] a;

semantic bad func return type rejectsem.k

int foo() {
return "1";

int main () {
foo ()

semantic bad func ret type inner rejectsem.k

int foo() {
1if (1) {return "1";}

int main () {
foo ()

semantic bad params to fn reject rejectsem.k

int foo(int x, int vy) {
return x;

void main () {
int a;
int b;

a = 5;
b = foo(a);

semantic call id not found rejectsem.k

void main () {
int a;
b = 10;

semantic call mismatch argnum rejectsem.k

int foo(int x, int vy) {
return x+y;

void main () {
foo (3);

semantic call mismatch type rejectsem.k

int foo(int x, int y) {
return x+y;

void main () {
foo(Hello, World):;

semantic decl mismatchtype rejectsem.k

void main () {
int hi;
hi = "Hello";

semantic fill one of two members struct rejectsem.k

struct foo {
int x;

int vy;

void main () {
struct foo £ = {10};

semantic func declared after main rejectsem.k

void main () {

foo();

int foo() {
return 4;

semantic inner unit decl top rejectsem.k

int foo (int a, int b) {
return O;

void main () {

unit (5, 6) :equals (0) :accept;

semantic fn named print rejectsem.k

void print () {

void main () {

semantic int and str rejectsem.k

int main () {
int a = 1;
str b = "1";
if (a & b)

return 1;
return 0;

semantic int geq str rejectsem.k

int main () {
int a = 1;
str b = "1";
if (a >= b)
return 1;
return 0;

semantic int gt str rejectsem.k

int main () {
int a = 1;
str b = "1";
if (a > b)
return 1;

return O;

semantic int equals str rejectsem.k

int main () {

int a = 1;
str b = "1";
if(a = b)

return 1;
return 0;

}

semantic int dollarSign str rejectsem.

int main () {

int a = 1;
str b = "1";
if (a $ Db)

return 1;
return 0;

semantic int leq str rejectsem.k

int main () {
int a = 1;
str b = "1";
if (a <= b)
return 1;
return 0;

semantic int neq str rejectsem.k

int main () {
int a = 1;
str b = "1";
if (a !'= b)
return 1;
return 0;

semantic int 1t str rejectsem.k

int main () {

int a = 1;
str b = "1";
if (a < Db)

return 1;
return 0;

semantic int not str rejectsem.k

int main () {
int a = 1;
str b = "1";
if (a ! b)
return 1;
return 0;

semantic int or str rejectsem.k

int main () {
int a = 1;
str b = "1";
if (a | b)
return 1;

return O;

semantic_mem_name_two_structs.k

struct a {
int mem;

struct b {
int mem;

vold main () {
struct a x;
struct b y;

semantic main with param rejectsem.k

vold main (int a) {

semantic main with return rejectsem.k

void main () {

return 1;

semantic mism unit ret type rejectsem.k

int foo(int a) {
return O0;

void main () {

unit:foo (0) :equals ("1") :accept;

semantic mism unit ret type2 rejectsem.k

int foo(int a) {
return 0;

void main () {

unit:foo("1") :equals(0) :accept;

semantic mismatch stringint rejectsem.k

str foo() {
return 1;

}

void main () {
foo();

semantic no main rejectsem.k

semantic no ret when expected rejectsem.k

void main () {

semantic nonunique global var rejectsem.k

int a;
int b;
int a;

void main () {

semantic non bool in assert rejectsem.k

struct foo {
int a;
@("l"){}

void main () {

semantic nonunique struct name rejectsem.k

struct foof
int a;

struct foof{
int b;

void main () {

semantic nonvoid main decl rejectsem.k

int main () {

semantic reject undeclared fn use rejectsem.k

void main () {
int a;
a = fool();

semantic return in assert rejectsem.k

struct foo {
int a;
Q(true) {return 1;}

void main () {

semantic single unittest rejectsem.k

void main () {
unit (0) :equals (15) :accept;

semantic same varname dif scope.k

void foo () {
int a;
a = 10;

void main () {
int a;
a = 6;
foo ()

semantic return in block rejectsem.k

int foo() {
if (true) {return 1;}

void main () {
foo();

semantic return string rejectsem.k

str foo () {
return "Hello World!";

}
str main () {

return fool();

semantic str plus int rejectsem.k

void main () {
int a = 1;
str b ",
int ¢ = a + b;

semantic test if stmt bool type rejectsem.k

void main () {
if ("true") {
exit ("bad.");

semantic undeclared fn use rejectsem.k

void main () {
int a;
a = fool();

semantic struct id not found rejectsem.k

struct s {
int a;

}

void main () {
struct z 3J;

semantic type mm struct init rejectsem.k

struct foo {
int a;
}
void main () {
struct foo £ = {"1"};

semantic unit outer.k

int foo(int a) {
return a;

void main () {
int hi = 1;
unit:foo (hi) :equals(1l) :accept;
unit:foo(hi) :equals(0) :reject;

semantic using global in fn.k

int a;

void foo () {
a = 10;

void main () {
foo();

semantic undeclared var rejectsem.k

int main () {
a=a+ 1;
return O0;

semantic void var rejectsem.k

void main () {
void a;

struct member access.k

struct test{
int testInt;
}

void main () {

struct test t;
t.testInt = 20;

struct init.k

int main() {
struct potato potate = { size };

}

semantic wrong type init rejectsem.k

volid main () {
int 1 = "1";

str initialization.k

void main () {
str x = "Hello World";

unit multiple args.k

int hello (int a, int b) {
return a+tb;
unit (20,5) :equals (25) :accept;

void main () {
hello(1,2);

test suite.sh

echo "--——----—1-"1-1-1-=-+-=-=-»-»-------""---——-"—-———-

echo "-————————-— BEGIN PRETTY PRINT--—-—————————-— "
echo "---——-----"-----""-"-"-"-"-"-"""""" = "
echo "---- - - "
cd ../
make clean
if make pretty
then
cd test/
for filename in *.k; do
.././pretty < "$filename" > "output $filename" 2>s&l
python test logic.py pretty "$filename"
"output S$filename"
done
else
exit
fi
cd ../
if make
then
cd test/
echo "-- - "
echo "----— = - "
echo "-----—-—-—- BEGIN SEMANTIC CHK---—-——————— "
echo "----— = - "
echo "-- - "
rm -f test/output semantic*.k
for filename in semantic*.k; do
.././code gen < "$filename" > "output Sfilename" 2>&l1
python test logic.py semantic "$filename"
"output S$filename"
done
echo "-- - "
echo "----— = - "
echo "-—- - —————————————— END---——-----——————————— "
echo "---=-— - - "
echo "-- - "
echo "-- - "
echo "---=-— - - "
echo "----—--—--—- BEGIN Java Compilation---------- "

echo v._ _ - - - - ____ "

echo "----— = - "
for filename in *.k; do
.././code gen < "$filename" > "Program.java" 2>&l
javac "Program.java"
java "Program" > "output java $filename.txt" 2>&l
done
echo "----— = - "
echo "-- - "
echo "-———————————————— END-—-————-————————————— "
echo "-- - "
echo "----— = - "

else
exit
fi

var decl after assert reject.k

struct potato {
int size;

int potat;
@Q(size > 1) {}
int 3j;

}

vold main () {

}

test logic.py

#A simple test script to test for equality of

#the output after parsed by the trees and printed by the pretty
printer

#This will be expanded to accomodate more tests in the future

import sys

mode = sys.argvl[l]
inputFileName = sys.argv/[2]
outputFileName = sys.argv[3]
semanticReject = False

semantic = False

syntax = True

syntaxReject = False
if (inputFileName[:8] == "semantic"):
semantic = True

syntax = False

if (inputFileName[-11:] == "rejectsem.k"):
semanticReject = True
else:
print inputFileName[-8:] == "reject.k"

if (inputFileName[-8:] == "reject.k"):
syntaxReject = True

shouldReject = False

#convert the string by taking out spaces, newlines, and tabs
def convert str(thestring):

testStr = ''.join(thestring.split())

return testStr

#read the files

filel = open(inputFileName, 'r')
inputFileStr = filel.read()

file2 = open(outputFileName, 'r')
outputFileStr = file2.read()

#convert to string
inString = str (inputFileStr)
outString = str (outputFileStr)

inputTestStr = convert str(inString)
outputTestStr = convert str (outString)

if (syntax == True and mode == "pretty"):
print inputFileName
print outputFileName

if (outputTestStr == inputTestStr and syntaxReject == False):
print "Syntax test ACCEPTED\n"
elif (outputTestStr != inputTestStr and syntaxReject == True) :

print "Syntax test ACCEPTED\n"
else:

print "Syntax test REJECTED"

print "The input file:"

print inputFileStr

print "The output file:"

print outputFileStr

print "\n"

elif (semantic == True and mode == "semantic"):

print inputFileName

print outputFileName

#print outputTestStr

try:

outputTestStr.index ("Fatalerror:")
if (semanticReject == True):

print

"Semantic test ACCEPTED\n"

elif (semanticReject == False):

print
print
print
print
print
print

"Semantic Test REJECTED"
"The input file:"
inputFileStr

"The error:"
outputFileStr

ll\nu

except ValueError:

if (semanticReject == False):

print

"Semantic test ACCEPTED\n"

elif (semanticReject == True):

print
print
print
print
print
print

"Semantic Test REJECTED"
"The input file:"
inputFileStr

"The error:"
outputFileStr

ll\nu

int times str rejectsem.k

int main () {
int a = 1;
str b = "1";
int ¢ = a * b;
return 0;

var_eq var.k

void main () {
int a;
int b;
a=1;
b=a;

var reassign.k

void main () {
int a;
a=1;
a=2;

