
k-AWK (kay-awk)
Albert Cui, Karen Nan,
Michael Raimi, Mei-Vern Then

The Testing Language

“Hey guys, we’re making a new language!”
“k.”

Overview: Motivation

● Automated testing for quality assurance

● Test-driven development

● Design software in a robust manner

Overview: k-AWK

● Checks for predefined statements within each
struct (asserts)

● When called or initialized, all assertions
evaluated to true allow program to continue

● unit features attached to functions check output
in test mode

Tutorial: Program Execution

● Extension for k-AWK programs: .k

● Run make to create code_gen:
$./code_gen foobar.k

● To compile and run, use the test script.
Outputs to stdout and to a .txt file.

$./run.sh foobar.k

Tutorial: Asserts
● Similar to if statements, can only be used in structs

● Starts with @ symbol, followed by an expression and a block of
statements:
 @(k < 100) { print(“k is >= 100!”); }

● Asserts are evaluated whenever a variable in the expression is
changed

● If k is less than 100, the program continues. If not, the print
statement within the attached block is executed.

Tutorial: Units
unit:foo(hi):equals(1):accept;

● Four parts, separated by single colon:
○ unit: indicates the start of the unit test call
○ foo(hi): indicates the function to call and its arguments
○ equals(1): a logical expression that matches its argument to the

return value of the function
○ accept: indicates whether or not a test should pass if a true

value is returned from the logical expression (above)
■ reject keyword that tells a unit test to fail if the logical

expression returns true

Tutorial: Built-In Functions

● print(10);
○ Takes in one string or integer argument
○ Prints to stdout

● exit(“foobar”);
○ Takes in one string argument
○ Prints string to stdout, then exits program

void main() {
print (“Hello, world! k-Awk says hi);

}

● must have main function of type void, takes no
arguments

● uses built-in print function to print string to stdout

Example Programs: hello_world.k

Example Programs: gcd.k

● One function, called by main with unit test

● Functions must be defined before main to
be used

● Unit tests call other functions
○ Prints whether the test passes or fails,

with calls and values

Example Programs: 99_bottles.k

● Main calls function with int value

○ Function creates instance of struct

■ Runs struct and uses assert to decrement

● Prints out statements specified in asserts,
prints outcome of unit test

Language Implementation

Lessons Learned

● Prioritize:
○ Too much time spent on the pretty printer

● Move decisively but consider future implications

● Better breakdown of project into smaller chunks

● Smaller, more incremental goals

