
FRY Language Reference

Tom DeVoe
tcd2123@columbia.edu

December 11, 2014

Contents

0.1 Introduction . 2
0.2 Lexical Conventions . 2

0.2.1 Comments . 2
0.2.2 Identifiers . 2
0.2.3 Keywords . 2
0.2.4 Constants . 3

0.3 Syntax Notation . 3
0.4 Meaning of Identifiers . 3

0.4.1 Types . 3
0.5 Conversions . 4

0.5.1 Integer and Floating . 4
0.5.2 Arithmetic Conversions 4
0.5.3 String Conversions . 5

0.6 Expressions . 5
0.6.1 Primary Expressions . 5
0.6.2 Set Builder Expressions 5
0.6.3 Postfix Expression . 6
0.6.4 Prefix Expressions . 7
0.6.5 Multiplicative Operators 7
0.6.6 Additive Operators . 8
0.6.7 Relational Operators . 8
0.6.8 Equality Operators . 8
0.6.9 Logical AND Operator . 9
0.6.10 Logical OR Operator . 9
0.6.11 Assignment Expressions 9
0.6.12 Function Calls . 9
0.6.13 List Initializers . 10
0.6.14 Layout Initializer . 10
0.6.15 Table Initializer . 10
0.6.16 Expressions . 10

0.7 Declarations . 11

1

0.7.1 Type Specifiers . 11
0.7.2 Variable Declarations . 11
0.7.3 Layout Declarations . 11
0.7.4 Function Declarations . 12

0.8 Statements . 12
0.8.1 Expression Statements . 13
0.8.2 Return Statement . 13
0.8.3 Statement Block . 13
0.8.4 Conditional Statements 14
0.8.5 Iterative Statements . 14
0.8.6 while loop . 14

0.9 Scope . 14

0.1 Introduction

This document serves as a reference manual for the FRY Programming Lan-
guage. FRY is a language designed for processing delimited text files.

0.2 Lexical Conventions

0.2.1 Comments

Single line comments are denoted by the character, #. Multi-line comments are
opened with #/ and closed with /#.

This is a single line comment

#/ This is a

multi-line comment /#

0.2.2 Identifiers

An identifier is a string of letters, digits, and underscores. A valid identifier
begins with an letter or an underscore. Identifiers are case-sensitive and can be
at most 31 characters long.

0.2.3 Keywords

The following identifiers are reserved and cannot be used otherwise:

int str float bool Layout

List Table if else elif

in not and stdout

or Write Read stderr true

false

2

0.2.4 Constants

There is a constant corresponding to each Primitive data type mentioned in
0.4.1.1.

• Integer Constants - Integer constants are whole base-10 numbers repre-
sented by a series of numerical digits (0 - 9) and an optional leading sign
character(+ or −). Absence of a sign character implies a positive number.

• Float Constants - Float constants are similar to Integer constants in
that they are base-10 numbers represented by a series of numerical digits.
However, floats must include a decimal separator and optionally, a frac-
tional part. Can optionally include a sign character (+ or −). Absence of
a sign character implies a positive number.

• String Constants - String constants are represented by a series of ASCII
characters surrounded by quotation-marks (" "). Certain characters can
be escaped inside of Strings with a backslash ’´. These characters are:

Character Meaning
\n Newline
\t Tab
\\ Backslash
\" Double Quotes

• Boolean Constants - Boolean constants can either have the case-sensitive
value true or false.

0.3 Syntax Notation

Borrowing from the The C Programming Language by Kernigan and Ritchie,
syntactic categories are indicated by italic type and literal words and characters
in typewriter style. Optional tokens will be underscored by opt .

0.4 Meaning of Identifiers

0.4.1 Types

0.4.1.1 Basic Types

• int - 64-bit signed integer value

• str - An ASCII text value

• float - A double precision floating-point number

• bool - A boolean value. Can be either true or false

3

0.4.1.2 Compound Types

• List - an ordered collection of elements of the same data type. Every
column in a Table is represented as a List. Lists can be initialized to an
empty list or one full of values like so:

• Layout - a collection of named data types. Layouts behave similar to
structs from C. Once a Layout is constructed, that layout may be used as
a data type. An instance of a Layout is referred to as a Record and every
table is made up of records of the Layout which corresponds to that table.

• Table - a representation of a relational table. Every column in a table
can be treated as a List and every row is a record of a certain Layout.
Tables are the meat and potatoes of FRY and will be the focus of most
programs.

0.5 Conversions

Certain operators can cause different basic data types to be converted between
one another.

0.5.1 Integer and Floating

Integer and Floating point numbers can be converted between each other by
simply creating a new identifier of the desired type and assigning the variable
to be converted to that identifier. For example, to convert an integer to a
floating point number:

int i = 5
float f = i
Write(stdout, f)
5.0

When converting a floating point number to an integer, any fractional part will
be truncated:

float f = 5.5
int i = f
Write(stdout, i)
5

0.5.2 Arithmetic Conversions

For any binary operator with a floating point and an integer operator, the integer
will be promoited to a float before the operation is performed.

float f = 5.25
int i = 2

4

Write(stdout, f∗i)
10.50
Write(stdout, f−i)
3.25

0.5.3 String Conversions

String conversions are automatically performed when a non-string variable is
concatenated with a string variable.

0.6 Expressions

An expression in FRY is a combination of variables, operators, constants, and
functions. The list of expressions below are listed in order of precedence. Every
expression in a subsubsection shares the same precedence (ex. Identifiers and
Constants have the same precedence).

0.6.1 Primary Expressions

primary-expression :
identifier
literal
(expression)

Primary Expressions are either identifiers, constants, or parenthesized ex-
pressions.

0.6.1.1 Identifiers

Identifiers types are specified during declaration by preceding that identifier by
its type. Identifiers can be used for any primitive or compound data types and
any functions.

0.6.1.2 Literal

Literals are either integer, string, float, or boolean constants as specified in 0.2.4

0.6.1.3 Parenthesized Expressions

Parenthesized expression is simply an expression surrounded by parentheses.

0.6.2 Set Builder Expressions

set-build-expression:
primary-expression
[return-layout | identifier <- set-build-expression; expression]

5

A set-build-expression consists of a return-layout, which is the format of
the columns which should be returned, an identifier for records in the table
identifier specified by set-build-expression, and an expression which is a boolean
expression.

The Set-builder notation evaluates the boolean expression for every record
in the source table. If the boolean expression is true, then the return-layout
is returned for that record. The Set Builder expression finally returns a table
composed of all of the records which passed the boolean condition, formatted
with the return-layout.

return-layout :
identifier
{ layout specifieropt layout-instance-list }

The return-layout must be a Layout type, and can be either a Layout identifier
or a Layout-instance-list as described in 0.7.3.

0.6.3 Postfix Expression

Operators in a postfix expression are grouped from left to right.

postfix-expression :
set-build-expression
postfix-expression[slice-opt]
postfix-expression.{expressionopt}
expression−−
expression++

slice-opt :
:expr
expr:
expr:expr
expr

0.6.3.1 List Element Reference

A list identifier followed by square brackets with an integer-valued expression
inside denotes referencing the element at that index in the List. For instance
MyLst[5] would reference the 6th element of the List, MyLst. Similarly, MyLst
[n] would reference the n− 1th element of MyLst. The type of this element is
the same as the type of elements the List you are accessing contains.
Sublists can be returned by slicing the list. By specifying the optional colon
(’:’) and indices before and/or after, the list is sliced and a sublist of the original
list is returned. If there is an integer before the semi-colon and none after, then
a sublist is returned spanning from the integer to the end of the list. If there
is an integer after the colon and none before, the a sublist is returned spanning

6

from the beginning of the list to the integer index. If there is an integer before
and after the colon, then a sublist is returned spanning from the first integer
index to the second integer index.

0.6.3.2 Layout Element Reference

A layout identifier followed by a dot and an expression in braces references
an element of a layout. The expression in the braces must either be (i) the
name of one of the member elements in the Layout you are accessing, such as
MyLyt.{elem name} or (ii) a integer reference to the nth element of the Layout,
i.e. MyLyt.{2} would access the 1st member element. The type of the element
returned will be the type that element was defined to be when the Layout was
defined. If the member element you are accessing is itself a Layout, then the
numeric and identifier references will both return a element of that Layout type.

0.6.3.3 expression−−

The double minus sign (’-’) decrements an integer value by 1. The type of this
expression must be integer.

0.6.3.4 expression++

The double plus sign (’+’) increments an integer value by 1. The type of this
expression must be integer.

0.6.4 Prefix Expressions

Unary operators are grouped from right to left and include logical negation,
incrementation, and decrementation operators.

prefix-expression :
postfix-expression
not unary-expression

0.6.4.1 not expression

The not operator represents boolean negation. The type of the expression must
be boolean.

0.6.5 Multiplicative Operators

These operators are grouped left to right.

multiplicative-expression :
unary-expression
multiplicative-expression*multiplicative-expression
multiplicative-expression/multiplicative-expression

7

∗ denotes mutltiplication, / denotes division, and % returns the remainder
after division (also known as the modulo). The expressions on either side of
these operators must be integer or floating point expressions. If the operand of
/ or % is 0, the result is undefined.

0.6.6 Additive Operators

These operators are grouped left to right.

additive-expression :
multiplicative-expression
additive-expression+additive-expression
additive-expression-additive-expression

+ and − denote addition and subtraction of the two operands respectively.
Additionally the + also denotes string concatenation. For −, the expressions on
either side of the operators must be either integer or floating point valued. For
+, the expressions can be integer, floating point or strings. Both operands must
be strings or both operands must be float/int. You cannot mix string operands
with numeric operands.

0.6.7 Relational Operators

relational-expression :
additive-expression
relational-expression>relational-expression
relational-expression>=relational-expression
relational-expression<relational-expression
relational-expression<=relational-expression

> represents greater than, >= represents greater than or equal to, < rep-
resents less than, and <= represents less than or equal to. These operators all
return a boolean value corresponding to whether the relation is true or false.
The type of each side of the operator should be either integer or floating point.

0.6.8 Equality Operators

equality-expression :
relational-expression
equality-expression == equality-expression
equality-expression ! = equality-expression

The == operator compares the equivalence of the two operands and returns the
boolean value true if they are equal, false if they are not. ! = does the opposite,
true if they are unequal, false if they are equal. This operator compares the
value of the identifier, not the reference for equivalence. The operands can be
of any type, but operands of two different types will never be equivalent.

8

0.6.9 Logical AND Operator

The logical AND operator is grouped left to right.

logical-AND-expression :
equality-expression
logical-AND-expression and logical-AND-expression

The logical and operator (and) only allows for boolean valued operands. This
operator returns the boolean value true if both operands are true and false
otherwise.

0.6.10 Logical OR Operator

The logical OR operator is grouped left to right.

logical-OR-expression :
logical-AND-expression
logical-OR-expression or logical-OR-expression

The logical or operator (or) only allows for boolean valued operands. This
operator returns the boolean false if both operands are false and true otherwise.

0.6.11 Assignment Expressions

Assignment operators are grouped right to left.

assignment-expression :
logical-OR-expression
identifier=assignment-expression

Assignment operators expect a variable identifier on the left and a constant or
variable of the same type on the right side.

0.6.12 Function Calls

func-call :
assignment-expression
assignment-expression(argument-listopt)

A function call consists of a function identifer, followed by parentheses with a
possibly empty argument list contained. A copy is made of each object passed
to the function, so the value of the original object will remained unchanged.
Function declarations are discussed in 0.7.4.

9

0.6.13 List Initializers

list-initializer :
func-call
[list-intializer-list]
[func-call to func-call]

list -initializer-list :
func-call
list-intializer-list,func-call

A list initializer generates a list containing a range of values. The first form
creates a list containing the values specified in the list-initializer-list. Every
element of the list-initializer-list needs to be of the same type or an exception is
thrown at compile time. The second form takes two integer values and returns
an inclusive list containing the values from the first integer to the second. The
first integer must be smaller than the second integer.

0.6.14 Layout Initializer

layout-initializer :
list-initializer
Layout identifier layout-initializer-list

layout-initializer-list :
list-initializer
list-intializer-list,list-initializer

A layout initializer creates an instance of the layout type specified. The type of
each layout initializer field needs to match those defined in the layout.

0.6.15 Table Initializer

table-initializer :
layout-initializer
Table (full-typeopt)

A Table initializer, initializes a table and optionally associates a layout with
that table. full-type is described in detail in 0.7.1

0.6.16 Expressions

expression :
table-initializer

10

0.7 Declarations

0.7.1 Type Specifiers

The different type specifiers available are:

type-specifiers :
int

str

float

bool

Table

full -type :
type-specifier
type-specifier List

Layout identifier

0.7.2 Variable Declarations

variable-declaration :
full-type declarator

declarator :
identifier
identifier = expr

When assigning a value in a variable declaration, the type of the identifier in
full-type must match that of the expr which it is assigned.

0.7.3 Layout Declarations

A Layout is a collection of optionally named members of various types.

layout-declaration :
Layout identifier = { layout-declaration-list }

A Layout declaration consists of the keyword Layout followed by an identi-
fier and then an assignment from a layout-declaration-list surrounded by curly
braces.

layout-declaration-list :
layout-element
layout-declaration-list, layout-element

layout-element :
full-type:identifieropt

11

The Layout-declaration-list is a comma-separated list of Layout-elements which
defines the members of the Layout being declared. If no identifier is provided
for an element, it can be accessed using the numeric Layout element reference
as described in 0.6.3.2.

An instance of an already created layout is created using similar syntax to
the declaration:

Layout creations have a few special rules:

• Layout delcarations are treated as special statements in that they are eval-
uated out of order versus other statements. For example, you can create
layouts at the end of your program, and reference that layout type as
though it were created in the beginning. However, if that layout declara-
tions have order respective to each other.

• Layouts are only allowed to be declared on the top level of scoping.

0.7.4 Function Declarations

Function declarations are created along with their definition and have the fol-
lowing format:

function-declaration :
full-type identifier(parameter-listopt) { statement-list }

The full-type in the beginning of the function declaration specifies what
type is returned by that function. The identifier that follows is the name of the
function and will be referenced anytime that function should be called.

Then there is a parameter-list, i.e. a list of arguments, inside of parentheses.

parameter-list :
type-specifier identifier
parameter-list, type-specifier identifier

These arguments must be passed with the function whenever it is called.
After the arguments comes the function definition inside of curly braces. The

definition can contain any number statements, expressions, and declarations.
The one caveat is the definition must contain a ret statement for the return type
indicated. If the function does not need to return a value, it is a best practice
to return an int as the error code. You can overload functions, meaning you
can have multiple functions with the same name, so long as they have different
signatures.

0.8 Statements

Unless otherwise described, statements are executed in sequence. Statements
should be ended by a semi-colon(”;”). Statements can be broken up into the
following:

12

statement :
expression-statement
return-statement
statement-block
conditional-statement
iterative-statement
variable-declaration
layout-declaration
function-declaration

Statements are separated by newlines and a series of statements will be called
a statement-list.

statement-list :
statement
statement-list \n statement

0.8.1 Expression Statements

Expressions statements make up the majority or statements:

expression-statements :
expression

An expression statement is made up of one or more expressions as defined in
0.6. After the entire statement is evaluated and all effects are completed, then
the next statement is executed.

0.8.2 Return Statement

return-statements :
ret expr

A return statement is included in a function and indicates the value to be
returned by that function. This expr needs to have the same type as defined in
the function declaration.

0.8.3 Statement Block

statement-block :
{ statement-list }

A statement block groups multiple statements together. Any variable de-
clared in a statement block is only in scope until that statement block is closed.

13

0.8.4 Conditional Statements

Conditional statements control the flow of a program by performing different
sets of statements depending on some boolean value.

conditional-statements :
if (expression) statement elif-list
if (expression) statement elif-list else statement

eli f-list :
elif (expression) statement
elif-list elif (expression) statement

The expression in the parentheses after if, elif, and else must be boolean-
valued. If it is true, execute the corresponding statement and jump out of the
conditional expression. If it is false, do not execute the statement and evaluate
the next expression after an elif or else.

0.8.5 Iterative Statements

iterative-statements:
for identifier <- expression statement
while (expression) statement

0.8.5.1 for loop

The type of the expression following the left arrow (”¡-”) must be a list. A for
loop executes the statement once for each elements in that List.

0.8.6 while loop

The expression inside of the parentheses of a while loop must be boolean-valued.
The while loop repeatedly executes the statement-list as long as the value of the
expression is true.

0.9 Scope

Scope is handled simply in FRY, a variable cannot be referenced outside of the
code block it was declared inside. In most cases, this block is denoted by curly
braces. One exception is the elements-of subsection of a Set-builder statements
0.6.2, the scope for these variables are only inside the Set Builder statement (i.e.
inside the square brackets). Any variable delcared outside of any code block is
considered a global variable and can be referenced anywhere in the program.

14

	Introduction
	Lexical Conventions
	Comments
	Identifiers
	Keywords
	Constants

	Syntax Notation
	Meaning of Identifiers
	Types

	Conversions
	Integer and Floating
	Arithmetic Conversions
	String Conversions

	Expressions
	Primary Expressions
	Set Builder Expressions
	Postfix Expression
	Prefix Expressions
	Multiplicative Operators
	Additive Operators
	Relational Operators
	Equality Operators
	Logical AND Operator
	Logical OR Operator
	Assignment Expressions
	Function Calls
	List Initializers
	Layout Initializer
	Table Initializer
	Expressions

	Declarations
	Type Specifiers
	Variable Declarations
	Layout Declarations
	Function Declarations

	Statements
	Expression Statements
	Return Statement
	Statement Block
	Conditional Statements
	Iterative Statements
	while loop

	Scope

