
Brian Bourn, Abhinav Mishra
Addisu Petros, Vanshil Shah

COMS 4115 Programming Languages & Translators

Prof. Stephen Edwards
December 17, 2014

DSPJockey

Motivation
•  Digital Signal Processing used in fields of Electrical

Engineering, Audio mixing, and even algorithmic
trading

•  Many useful operations that can be done in signal
processing such as convolution, filtering, time shifting

•  Lack of tools to build and manipulate signals easily
•  Notion of global time for a signal only apparent in

languages that model hardware such as SystemC

Why DSPJockey?

•  Provides a simple framework for creating and
manipulating signals using Signal data type

•  C-like syntax including primitive data types
•  Includes built in functions common in DSP
•  Global time for each signal: easy to access signal

at current time or at a previous time (past)

Language Tutorial

•  DSPJockey uses C/C++ like syntax
•  Includes the primitive data types, int, float,

string, and bool
•  Aggregate data types are Array and Signal
•  Functions must have a return type

Array
Arrays are similar to C as they are lists that are of a fixed size and
contain float values.
To create and initialize the array of a given size, say 10
let arr = Array[10];
To access the third element in this array
float x = arr[2];

Signal
Signals are similar to arrays are implemented as a circular buffer and
its values are accessed by using the time keyword.
To create a signal:
let sig = new Signal[];
To access the value of signal at current time:
 float y = sig[time];
The value at a previous time can be accessed by subtracting the
number of time units from time:
If we want to access the value at 2 time units before current time
float z = sig[time-2];

Signal (cont’d)
When an operation is performed on a signal, it is done over the
whole signal.

Example:
sig[time] = sig[time] +1
will increment all the samples in the signal by one.

Control Flow
•  If/else, while and for loops follow the same exact syntax as C.
•  If/else statements are exactly similar to C and the else statement is not required.

 if (boolean_condition) {
 }
 else {
 }

•  While loop:
 while (boolean_condition) {
 }

•  For loops :
 for(initialization; boolean_condition; iteration_step){
 }

Functions
•  Functions are similar to C/C++ but there are two types of

functions,
•  1. normal functions, return a primitive type
•  int x(args){

 }
•  2. stream functions used for manipulating signals

 stream x(args){
 }

•  Every single .dj file must contain a main function.
•  Calling a function is done in the same way as C/C++

 int result = function(float a);

Built-in Functions
•  The print is just used for printing to standard output

 print “hello world”;
 print 5;

•  The Sum function takes in a id, starting index, ending index
and expression and evaluates the summation

•  sum x = 1 to 2:x+1;//5

Language Implementation

Lessons Learned
•  Start on time!
•  Understand components of compiler before beginning
•  Develop in smaller chunks
•  Learn Ocaml before or right at the beginning of the

course
•  Think about how all the components connect so that you

don’t have to end up going back to previous sections

DEMO!!!

Any Questions???

