
JO

 Project Proposal

Programming Languages and Translators - Fall 2014

Team
[
 {
 "Name" : "Abhinav Bajaj",
 "UNI" : "ab3900",
 "Role" : "System Architect"
 },
 {
 "Name" : "Arpit Gupta",
 "UNI" : "ag3418",
 "Role" : "Language Guru"
 },
 {
 "Name" : "Chase Larson",
 "UNI" : "col2107",
 "Role" : "Manager"
 },
 {
 "Name" : "Sriharsha Gundapp",
 "UNI" : "sg3163",
 "Role" : "Verification & Validation"
 }
]

1. Introduction

1.1 Motivation

JSON or JavaScript Object Notation, is an open standard format that uses human-readable text to transmit

data objects consisting of attribute–value pairs. It is used as lightweight data interchange format to

transmit data between a server and web application. JSON is also emerging as a preferred format in

“NoSQL” databases. While languages like Python and Java have libraries to handle JSON data, they are not

a native aspect of the language. JSON is presently a data format, rather than something fundamental to

the language, like the object of an object oriented language, or the function of a functional language. With

rise of trends in Big Data, Internet of Things, No-SQL databases, we believe that our language can be
provide a platform for building applications for these technologies with ease.

1.2 Language Description

JO is simple yet powerful language to handle and manipulate JSON data. The language will treat JSON

object as first class citizens and provide built-in functions that operate on these objects. These basic

functions can be used to define complex libraries and applications like merging JSON, finding diff in

JSON, SQL like queries on JSON objects. Our language attempts to facilitate any data operati ons by

handling a lot of the business logic of handling JSON and their manipulations under the hood, and
allowing the programmer to use JSON in a more native and intuitive way.

2. Language Specification

2.1 Primitive Data Types

Number Basic Numeric type (int or float) e.g 23, 34.5

String Sequence of characters
Null empty data type

Bool Boolean Value - true or false

2.2 Complex Data Types

Json Data type to store JSON e.g. {"name":"harris"}

List Ordered data type of primitive/complex data types. e.g ["apple", 45, {"name":"harris"}

2.3 Operators

+ Concatenation, works on any data type arguments, returns list
Example

1. 5 + 2 = [5 , 2]
2. [5, 2] + 3 = [5, 2, 3]
3. JsonA + JsonB = [JsonA, JsonB]

- Usage : A - B, works when A is a Json or List
Removes attributes from A which matches with B
Valid Data types -

 Json - Json

 Json - String
 List - List

 List - String

 List - Json
 List - Number

Example

1. { {“name”: {first:chase, last:larson}}, {subject : “plt”}, marks : [2,3,4] }- { “name”:
{first:chase, last:larson}, marks: [2,3,4]} = { subject : “plt”}

2. { “name”: {first:chase, last:larson}, subject : “plt”} - { “name”: {first:abhinav,

last:larson}} = { “name”: {first:chase, last:larson}, subject : “plt”}

3. { {“name”: {first:chase, last:larson}}, marks: [2,3]} - "name" = {marks: [2,3]}

4. ["able", "barista", "carrie"] - ["barista", "carrie"] = ["able"]

5. ["able", "barista", "carrie"] - "barista" = ["able", "carrie"]
[] 1. [] access values for attributes. only work on JSON objects

 a = json1[‘Name’] , returns the value at the attribute.

 json1[‘Name’] = ‘Arpit’ , stores value ‘Arpit’ for attribute ‘Name’

2. [] - constructs a new list

== Compare two same data types. Returns true if their values match else false

!= Compare two same data types. Returns false if their values match else true
= Assignment Operator

. Calls function on an object
{} Constructs a Json object

2.4 Mathematical Operators
All Mathematical Operators are only valid for Type Number.

Operator Description Example
++ Addition 2 ++ 2 results in 4

-- Subtraction 2 -- 2 results in 0

** Multiplication 2 ** 2 results in 4
// Division 2 // 2 results in 1

> Greater Than 2 > 1 results in true
< Less Than 2 < 1 results in false

2.5 Logical Operators
All Logical Operators only valid for Data type Bool.

Operator Description Example
&& Logical And if A and B are true, (A && B) is true

|| Logical Or if A or B are true, (A || B) is true

! Logical Negation if A is false, !A is true

2.6 Membership Operators

Operator Description Example

in Results in true if variable is in given list A in B: results in true if variable A is found in list
B.

not in Results in true if variable is not in
given list

A not in B: results in true if variable A is not
found in list B

2.7 Built-In Functions

Function Description Example

type(<arg>) returns a String of the data type
of a variable

type(5) returns "Number", type({}) returns
Json

JSON.typeStruct() returns a JSON showing the type
structure of json.

If JSON myJSON = { "name": { "first": "chase",
"last": "larson" }, "age" : 23 }
myJSON.typeStruct() results in { String : {
String: String, String: String}, String: Number }

JSON.join(<args>) if 2 JSONs have the same type
structure, they are joined with
the values of the key being
concatenated into a list

JSON A = { "name" : { "first" : "chase" } }
JSON B = { "name" : { "first" : "arpit" } }
JSON.join(A, B) results in:
{ "name" : {"first": ["chase", "arpit"] }}

2.8 Control Flow

Statement Description Usage
if...else Executes the if statement if the given condition is true.

Otherwise executes the else statement.
The condition to the if statement must be on the same line
as the keyword "if".
The code to be executed must be on a new line.
Else statement is optional.
The If...Else must end with the word "end"

if <condition>
 <statement>
else
 <statement>
end

for Iterative Expression must be of the form: <dataType> in
<List>
Iterates over the list and executes the block of code

for <iterative expression>
 <statement>
end

2.9 Other Syntax

Statement Description Usage

func Function Declaration. Functions require a return
statement. End signifies the end of the function.

func <FUNC_NAME> (<args>)
 <statement>
 return <arg>
end

/* ... */ Comments. Requires " /* " at the beginning and " */ "
at the end of the commented section.

/* This is a comment */

EOL
character

End of line character (\n or \r\n) is used to signify the
end of the code block to be executed.

Code Example

This example demonstrates merging two JSON objects.

Whenever there are same attributes (field) , with value not of Json type , then combine them to

form a List, otherwise Merge the Json objects recursively. This should be considered as the
merge equivalent of deep-copy.

JSON A =

{
 "Name": {

"First":"Arpit",
"Last":"Gupta"

},
"School": "Columbia",
"Age": 22,
"Courses": [

"PLT",
"ML"
]

}

JSON B =

{
"Name": {

"First":"Abhinav",
"Last":"Bajaj"

},
"School": "Columbia",
"Age": 18,
"Courses": [

"CV",
{

 "Audit": "Algorithms"
}

]
}

func Merge(A,B)
if A.typeStruct() != B.typeStruct()

C = {}
for attr in A.attrList()

if attr in B.attrList()
if type(A[attr])=="JSON" && type(B[attr]) == "JSON"

C[attr] = Merge(A[attr] , B[attr])
else

C[attr] = A[attr] + B[attr]
end

else
C[attr] = A[attr]

end
end
for attr in B.attrList()

if (attr not in A.attrList())
C[attr] = B[attr]

end
end
return C

else
return JSON.join(A,B) /* In-built function */

end
end

Output :

{
"Name":{

"First":[
"Arpit",
"Abhinav"

],
"Last":[

"Gupta",
"Bajaj"

] },
"School":"Columbia",
"Age":[

18,
22

],
"Courses":[

"PLT",
"ML",
"CV",
{

"Audit":"Algorithms"
}]

}

	JO
	Project Proposal
	Programming Languages and Translators - Fall 2014
	Team
	1. Introduction
	1.1 Motivation
	1.2 Language Description

	2. Language Specification
	2.1 Primitive Data Types
	2.2 Complex Data Types
	2.3 Operators
	2.4 Mathematical Operators
	2.5 Logical Operators
	2.6 Membership Operators
	2.7 Built-In Functions
	2.8 Control Flow
	2.9 Other Syntax

	Code Example

