The Graph Programming Language (GPL)

System Architect: Ephraim Donghyun Park (edp2114)
Verification & Validation: Peigian Li (pl2521)
Manager & Language Guru: Qingxiang Jia (qj2125)

Motivation

Graph is a very powerful data structure that can be used to model a variety of systems in many
fields. Graph is such a fundamental model that people have developed libraries dedicated to
graphs in almost all general-purpose high-level programming languages. However,
implementing graph-related algorithms in languages like Java or C++, even with the benefit of
using third-party graph libraries, entails manual manipulation of nodes and edges. This could
prove to be error-prone (with pointer manipulations in C++), tedious (verbose especially in Java),
and daunting (to people new to the programming world).

Here we propose a domain-specific language that attempts to remedy these problems. The
Graph Programming Language (GPL) handles most logic behind implementing graphs under the
hood, so that programmers are able to focus more on using graphs, instead of implementing
them.

Proposed Uses

The primary goal of GPL is to allow programmers to create, use, and manipulate graphs in a
natural, flexible and intuitive way. All graph-based algorithms should be easier to implement in
GPL, e.g. shortest path, spanning tree, strong connectivity. Because all trees are graphs, GPL is
automatically suitable for applications involving tree structures, such as priority queues (min/max
heaps), binary search trees, or any kind of hierarchical data representation.

All variables are type-bound at run time (similar to Python), so there is no need to declare the

type of a variable when coding in GPL. A graph can be defined by a list of its edges or a list of
neighbours of every node; the syntax for defining graph is designed to be as intuitive as possible.

A graph initialized with nodes and edges can be later altered dynamically (e.g. adding an edge,
removing an edge and/or nodes, etc). Nodes are not only bound to variables at the time of

definition, but also internally indexed in the order they appear in the graph definition. The built-in
library supplies common graph algorithms, so developers can take advantage of these instead of

having to implement them on their own.

Syntax
1. Data types

1.1 Basic data types
- integer (int)
- floating-point number (float)
- character (char)

1.2 Graph-related types
- node : all node has numerical id, which is unique only within the graph
- edge : all edges are directed edges, bidirectional edge is just a combination of two
directed edges. Defined by the two nodes and value.
- graph: all graph

1.3 Other types
- string (str): internally represented by an array of characters
- array: internally represented by a graph, specifically a line graph where each node
stores the value of one element in the array

2. Arithmetic, Relational, and Logical Operators

> <, <=, >= == 1= Basic data type to basic data type -> done by value
Node to node -> done by the value of the node
Edge to edge -> done by the value of the edge

&&, || Logical AND and OR

===, |=== Compares if the two variables refer to the same one.

Represent the value of the node when placed in front
of node variable.

A Basic data type to basic data type -> done by value
Node to node -> done by the value of the nodes
Edge to edge -> done by the value of the edge

3. Control Flow
3.1 Statements and Blocks

; End a statement.

I

/*
/*

The comment blocks can also be nested.

3.2 If-Else and Loops

if (expression) {

}

if (expression) {
} else
}

for (loop invariants) {

}

while (loop invariants) {

}

Start of a one-line comment

Start of a comment block

End of a comment block

if statement. If the expression is simply
(i.e. consists only one phrase), the
parenthesis and be omitted. If there is
only one line, the { } can omitted.

if statement can also have an optional
else statement. One can also nest the
if-else statement.

for loop. Omitting rules are the same.

while loop. Omitting rules are the same.

4. Miscellaneous Standard Library Functions

in_degree(node x);

out_degree(node x);

min_edge(node x);

max_edge(node Xx);

Returns the number of incoming edges
to the node.

Returns the number of outgoing edges
from the node.

Returns the outgoing edge with the
minimum value from the node

Returns the outgoing edge with the
maximum value from the node

is_strongly connected(graph Returns if the graph is strongly
X); connected or not

Program Structure
1. Function Structure

func in_degree(x) {
// returns the number of incoming edges to the node

2. Graph Definition Structure
Graphs are defined by either listing all edges or adjacency lists of all nodes.
Directed edges are indicated by the “->” symbol, whereas undirected edges by “--"
(internally stored as two separate edges in opposite directions).

gl = {
a--b--c--d--a;
b o d; o
c -- f;
}; //list of edges o
OR
gt - | O
a--:-bd
b --: acd
O D
f --: ¢

}; //adjacency list

a--b--c--d;

}s

Q:QQ O-0-0-0-0

Example Code

Here is an example program that finds the minimum spanning tree of an undirected

graph.

func min_spanning_tree(g) {
buf = [] //empty array
for (e in g.edges()) {

buf.append((e.value, e)); //append the tuple (e.value, e) to buf

}

sort(buf); //built-in library function

total_weight = 0;

mst = {}; //initialize minimum spanning tree as an empty graph
for (t in buf) {

e = t[1];, //the second element of the tuple is the edge

if (e.first in mst.nodes() && e.second in mst.nodes()) {
//adding this edge would result in a cycle in mst, so we skip
continue;

}

//otherwise, we add this edge to mst

mst.add(e);

total_weight += t[0]; //accumulate weight

ieturn total_weight;
¥
func main() {
g = {
a -2-b -3- c -4-d -2- a;
b -5- d;
c -1- f;

}; //initialize graph; the number between -- is the weight of that
particular edge
print(min_spanning_tree(g)); //print the total weight of the MST

}

