
Super Serial
Language Reference Manual

Douglas Kaminsky (dk2848)

Fall 2014

1 Introduction
This manual describes the proposed standard for the Super Serial program-
ming language, including all syntax, grammar and meta-level constructs that
define the language.

2 Lexical Conventions
A program consists of one or more files, divided into logical namespaces.
Namespaces begin on the next line after their declaration and continue until
the end of file unless a new namespace is declared first, at which point it
becomes the "active" namespace. A namespace called Main acts as the
entry point into a program.

2.1 Tokens

Tokens can be loosely categorized into: identifiers, keywords, literals (nu-
meric and otherwise), operators and structural elements. Any consecutive
non-newline whitespace, including blank spaces, horizontal and vertical tabs
are collapsed and treated as a token separators. Newlines, either as a single
newline character or a newline with carriage return, are used to separate
statements and type definition elements. Two newlines in a row signify the
end of a definition (i.e. a newline at the end of the definition and a blank
line after it).

1

When scanning an input stream, the next token will be produced using the
token rule matching the greatest possible number of characters from the
stream.

2.2 Comments

There are no comments in this language. This is a deliberate decision based
on the belief of the language author that comments are of little to no value
beyond automated documentation, which is outside the scope of this lan-
guage. Rather, the language syntax and resulting semantics should be self-
descriptive and read fluently, like a natural language.

2.3 Identifiers
identifiercapitalized = [’A’-’Z’] [’a’-’z’ ’A’-’Z’ ’0’-’9’]+
identifieruncapitalized = [’a’-’z’] [’a’-’z’ ’A’-’Z’ ’0’-’9’]+

identifiernamespace = identifiernamespace’.’identifiercapitalized
identifiernamespace = identifiercapitalized
identifiertype = identifiernamespace’.’identifiercapitalized
identifiertype = identifiercapitalized
identifierfunction = [’a’-’z’] [’a’-’z’ ’A’-’Z’ ’0’-’9’ ’_’]+
identifierextension = [’a’-’z’]+
identifierfield = ’"’identifieruncapitalized’"’

There are several types of identifiers in this language, with slightly differ-
ent construction rules:

• Namespace identifiers begin with a capital letter and can contain only
letters and numbers. A namespace identifier can have multiple "seg-
ments" separated by a ’.’ character.

• Type identifiers begin with a capital letter and can contain only let-
ters and numbers. A fully qualified type name can be constructed by
connecting a namespace identifier with a type idenifier using a ’.’ char-
acter.

• Function identifiers begin with a lowercase letter and can contain let-
ters, numbers and underscores.

2

• Extension identifiers consist solely of lowercase letters.

• Field identifiers follow the same rule as function identifiers but are
bounded on both sides by quotation marks.

2.4 Keywords

The following keywords are reseved and may not be used as identifiers:

and can false is option type
any constraint float64 literal or unique
apply each function matches some using
array escape input namespace string void
as exp int32 none to with

boolean expect int64 numeric true where

2.5 Literals
sign = [’-’, ’+’]
digit = [’0’-’9’]
exp = [’e’ ’E’]sign?digit+

literalint = sign?digit+
literalfloat = sign?digit+ exp
literalfloat = sign?digit+ ’.’exp?
literalfloat = sign?digit ∗ ’.’digit+ exp?
literalboolean = "true"
literalboolean = "false"
literalstring = ′′′[ˆ ’]′′′

literaloption = "none"
literaloption = "some"’(’expr’)’
literalvoid = "void"

The language supports several built-in types which can be represented by
literals within code:

• Integer literals are represented by an optional sign and a series of digits
representing the integer value

3

• Float literals allow representation of a subset of floating point values.
Positive or negative numbers with or without a decimal component and
with or without an exponent (scientific notation) are permitted.

• Boolean literals are "true" and "false"

• String literals are a sequence of characters surrounded by single quotes.
Internally, strings are represented as a series of bytes corresponding to
the ASCII encoded values of each character in the string, accompanied
by a length counter that expresses the length of the string.

• Optional literals are either the keyword "none" or "some" accompanied
by some expression describing the actual underlying value.

• Void literal is a single keyword, "void" that is used to represent the
lack of a formal type, e.g. for operations with side effects and no return
value.

3 Syntax Notation
Grammar rules described in this document use a subset of regular expression
syntax, including:

• character classes (denoted by square braces, e.g. [a− z])

• negative character classes (character classes beginning with a caret,
indicating the inverse set of symbols is accepted, e.g. [̂abc])

• literal strings enclosed in single quotes (e.g. ’string’)

• the Kleene closure operator (*)

• the one-or-more operator (+)

• the zero-or-one operator (?)

Alternatives are listed on separate lines. Associativity and precedence of
operations is not expressed in this grammar, and in practice will be managed
by the scanner generator used to create the lexical scanner.

4

4 Basic Language Constructs

4.1 Namespaces

Namespaces are the core unit of separation within a program. Aside from
designating the entry point of the program by specifying the Main names-
pace, namespaces create logical separations between types. In addition, the
type system also allows the specification of a field that can accept "any"
member of a namespace. A namespace consists of declarations and a block
of code that is executed after the remaining content of the namespace is
processed, including references to other namespaces.

4.2 Types

Types are used to encapsulate data and methods. They are defined by spec-
ifying a number of fields and their corresponding types, along with a set of
methods. Methods can be specified via contract (i.e. what things this type
can do) or via implementation (i.e. how to do something), or both. A sepa-
rate contract can be specified per datatype, or the datatype can be omitted
and the type of the input inferred from the content of the function body.
Types containing a ’can’ declaration without a ’to’ declaration are implicitly
abstract.

Fields on a type instance are instantiated in order by specifying actual pa-
rameters either in a type extension clause (e.g. type B is type A with some
predetermined value for some fields) or object instantiation (e.g. object a is
an instance of type A with some value for some fields).

5 Type System
The type system is static and strongly typed, so there is no implicit con-
version between types. Types can inherit from a single parent type, and
potentially pre-specify individual values within the parent type, creating a
form of closure over the parent type.

5

6 Expressions

6.1 Constant Expressions
expr = ’input’
expr = literalint
expr = literalfloat
expr = literalstring
expr = literalboolean
expr = literaloption
expr = literalvoid

Literals and the input token constitute the constant expressions in this lan-
guage. The input token is used to represent the currently examined datum
when iterating over a data set or reading data of for a stream. It is also the
implicit argument to certain other constructs.

6.2 Arithmetic Expressions
expr = ’-’expr
expr = expr’+’expr
expr = expr’-’expr
expr = expr’/’expr
expr = expr’*’expr
expr = expr’%’expr
expr = expr’exp’expr

Arithmetic can be performed on numeric types using numeric expression
operators. This includes unary negation and binary operations addition,
subtraction, division, multiplication, modulus and exponent application.

6

6.3 Boolean Expressions
expr = ’ !’expr
expr = expr’ !=’expr
expr = expr’=’expr
expr = expr’>’expr
expr = expr’>=’expr
expr = expr’<’expr
expr = expr’<=’expr

Boolean logic is expressed using boolean operators, including logical nega-
tion, equality, inequality, greater than, greater than or equal to, less than
and less than or equal to.

6.4 Binary Arithmetic
expr = expr’&’expr
expr = expr’|’expr
expr = expr’ˆ’expr
expr = expr’»’expr
expr = expr’»>’expr
expr = expr’«’expr

Binary arithmetic operations include binary and, binary or, binary xor, left
shift, right shift and right shift arithmetic. Because this language doesn’t
explicitly differentiate between signed and unsigned data, this language also
uses the Java convention of right shift and right shift arithmetic being sepa-
rate operators.

6.5 Other Expressions
expr = ’(’expr’)’
expr = exprexpr
expr = identifierfunctionexprnamedFuncActuals?
expr = identifierfield
expr = |.+ |
namedFuncActuals = "with"namedFuncActualSeq
namedFuncActualSeq = namedFuncActualSeq’,’identifierextensionexpr
namedFuncActualSeq = identifierextensionexpr

7

Expressions can be manually prioritized by adding parentheses.

Function application occurs by putting an argument next to a function iden-
tifier to specify its input. Additional arguments to a function must be named
and provided using a with clause.

Putting any other two expressions next to each other will attempt to concate-
nate the two as strings. A field identifier on its own is also a valid expression.

File I/O is accomplished by enclosing a file name with ’|’ characters. This im-
plicitly assigns to the "input" value based on the newline-delimited content
of the file.

7 Declarations

7.1 Namespace Declaration
namespaceDecl = namespaceidentifiernamespacenewlinenamespaceDef
namespaceDef = ε
namespaceDef = namespaceRefs ∗ typeDecl ∗ initBlock
namespaceRefs = usingidentifiernamespacenewline
namespaceRefs = namespaceRefs
initBlock = stmt ∗ newline

Namespace declaration begins with the name of the namespace, followed by
declarations of any other namespaces referenced by this namespace. Types
can then be declared, and then finally a block of code can be specified to be
executed when this namespace has been processed.

8

7.2 Type Declaration
newline = n
newline = n r

typeDecl = typeidentifiertypetypeDeclExt?newlinetypeDef?
typeDeclExt = "is"typeDescriptor
typeDescriptor = "literal"” ’identifierextension” ’
typeDescriptor = builtInType"with"typeDescriptorExt
typeDescriptorExt = typeDescriptorExtElement
typeDescriptorExt = typeDescriptorExt’,’typeDescriptorExtElement
typeDescriptorExtElement = uniqueidentifierfield
typeDescriptorExtElement = escapeliteralstring
typeDescriptorExtElement = constraintuserTypeRef
userTypeRef = identifiertypetypeRefActuals?
typeRef = identifiertype
typeRef = builtInType
typeRef = "any"identifiernamespace

typeRefExt = "with"
typeRefActuals = ’(’typeRefActualSeq’)’
typeRefActualSeq = typeRefActualSeq’,’typeRefActual
typeRefActualSeq = typeRefActual
typeRefActual = literal
typeDef = ’{’newlinefieldDecl ∗ funcDecl ∗ ’}’newline
fieldDecl = identifierfield"->"typeRefnewline
funcDecl = "can"identifierfunction"->"typeRefnewline
funcDecl = "to"identifierfunctiontypeRef?"->"newline?stmt+ newline

8 Statements
stmt = identifierfunction"each"exprnamedFuncActuals?newline
stmt = identifierfield"<-"exprnewline
stmt = printexprnewline
stmt = exprnewline

Statements are essentially sequential operations. All statements end with
a newline in this language.

9

Primarily, any expression can be used as a statement. Beyond that, I/O
and assignment are the primary statements available. There is also a "list
map" construct that is this language’s primary mechanic for iteration.

9 More to Come
Due to computer death, this language manual had to be rewritten from
scratch, and some features just didn’t make the cut in the name of submitting
something within a reasonable amount of time.

9.1 First Class Functions

This language will support functions as data, as well as anonymous function
(lambda) syntax.

9.2 Extensions

This language will allow simple "typedef"-like functionality to create custom
language keywords, e.g. ? predicate as a shortcut for function (? -> boolean).

9.3 Regular Expression Literals

This language will allow regular expressions to be specified as literals

10

10 Grammar
This section contains the collected grammar as described in the rest of this

document.

identifiercapitalized = [’A’-’Z’] [’a’-’z’ ’A’-’Z’ ’0’-’9’]+
identifieruncapitalized = [’a’-’z’] [’a’-’z’ ’A’-’Z’ ’0’-’9’]+

identifiernamespace = identifiernamespace’.’identifiercapitalized
identifiernamespace = identifiercapitalized
identifiertype = identifiernamespace’.’identifiercapitalized
identifiertype = identifiercapitalized
identifierfunction = [’a’-’z’] [’a’-’z’ ’A’-’Z’ ’0’-’9’ ’_’]+
identifierextension = [’a’-’z’]+
identifierfield = ’"’identifieruncapitalized"’"

sign = [’-’, ’+’]
digit = [’0’-’9’]
exp = [’e’ ’E’]sign?digit+

literalint = sign?digit+
literalfloat = sign?digit+ exp
literalfloat = sign?digit+ ’.’exp?
literalfloat = sign?digit ∗ ’.’digit+ exp?
literalboolean = "true"
literalboolean = "false"
literalstring = ′′′[ˆ ’]′′′

literaloption = "none"
literaloption = "some"’(’expr’)’
literalvoid = "void"

newline = n
newline = n r

typeDecl = typeidentifiertypetypeDeclExt?newlinetypeDef?
typeDeclExt = "is"typeDescriptor
typeDescriptor = "literal"” ’identifierextension” ’
typeDescriptor = builtInType"with"typeDescriptorExt
typeDescriptorExt = typeDescriptorExtElement
typeDescriptorExt = typeDescriptorExt’,’typeDescriptorExtElement
typeDescriptorExtElement = uniqueidentifierfield
typeDescriptorExtElement = escapeliteralstring
typeDescriptorExtElement = constraintuserTypeRef
userTypeRef = identifiertypetypeRefActuals?
typeRef = identifiertype
typeRef = builtInType
typeRef = "any"identifiernamespace

typeRefExt = "with"
typeRefActuals = ’(’typeRefActualSeq’)’
typeRefActualSeq = typeRefActualSeq’,’typeRefActual
typeRefActualSeq = typeRefActual
typeRefActual = literal
typeDef = ’{’newlinefieldDecl ∗ funcDecl ∗ ’}’newline
fieldDecl = identifierfield"->"typeRefnewline
funcDecl = "can"identifierfunction"->"typeRefnewline
funcDecl = "to"identifierfunctiontypeRef?"->"newline?stmt+ newline

expr = ’input’
expr = literalint
expr = literalfloat
expr = literalstring
expr = literalboolean
expr = literaloption
expr = literalvoid
expr = ’-’expr
expr = expr’+’expr
expr = expr’-’expr
expr = expr’/’expr
expr = expr’*’expr
expr = expire’%’expr
expr = expr’exp’expr
expr = expr’ !=’expr
expr = expr’=’expr
expr = expr’>’expr
expr = expr’>=’expr
expr = expr’<’expr
expr = expr’<=’expr
expr = expr’&’expr
expr = expr’|’expr
expr = expr’ˆ’expr
expr = expr’»’expr
expr = expr’»>’expr
expr = expr’«’expr
expr = |.+ |
expr = ’(’expr’)’
expr = exprexpr
expr = identifierfunctionexprnamedFuncActuals?
expr = identifierfield
namedFuncActuals = "with"namedFuncActualSeq
namedFuncActualSeq = namedFuncActualSeq’,’identifierextensionexpr
namedFuncActualSeq = identifierextensionexpr

stmt = identifierfunction"each"exprnamedFuncActuals?newline
stmt = identifierfield"<-"exprnewline
stmt = printexprnewline
stmt = exprnewline

11

