StateMap

LANGUAGE REFERENCE MANUAL

Oren Finard - obf2107
Jackson Foley - jcf2172
Alex Peters - arp2169
Brian Yamamoto - bky2102

Zuokun Yu - zy2170

CONTENTS

Language Reference Manual ... 0
1. INErOAUCTION ceiiiiieiti e 4
1.1 Deterministic Finite Automata...........s 4
1.2] = o<1 F=T o T o Yo [P 4
1.3 SEArt State i 5
1.4 MOAULAIZ LY .ttt 6
2. Lexical CONVENTIONS ..o e e 7
2.1 (0011111 1=T o PSPPSRSO 7
2.2 Tdentifiers (NAMES) ..o s e e 7
2.3 KB Y WO S ettt ettt et ettt e b nrn e e nar e 7
2.4 CONSEANTS ettt r e nr e nn e 7
2.4.1 Integer CoNSTANTS .o 7
2.4.2 FLoat CONSTANTS .ioiiiiiiiiiieiee e 8
2.4.3 Character CoNStantsS ... e 8
2.4.4 DOUDLE CONSTANTS ovviiiiiiiiii ittt 8
2.4.5 B00Llean CONSTANTS ..occiiiiiiieiiieiiieee et 8
2.5] o g 4= USROS 8
2.6 PUNCEUATION. .ot e 9
2.6.1 B ACES 1 ittt 9
2.6.2 PareNtheSis i 9
2.6.2 SEMICOLON .ttt 9
2.6.3 COL0MN ittt 9
2.6.4 COMMA .ttt b bbbt b bbbt e e nn e nn bt en e 9
2.7 (0] T=Y = o] ol TP OUP P OUPPPP 9
2.7.1 ArIthmetic oot 9

2.7.2 ASSTENMENT ..ottt e s e e reeeenae e e 10

file:///C:/Users/Brian/Documents/Classes/StateMap-LRM.docx%23_Toc402203599

2.7.3 (0011 To T T ol =T S S 10

.8 LTI Y] o F=Yod < B SRS 10

SYNTAX NOTATION ettt 10
N Program StrUCTUIE. ... s 10
.2 o o T o] =T USSP 11
3.2.1 Declaration and AsSignment........cccocviiiiiiiiiiiiiee e 11
3.2.2 TranSitioNS. . 11
3.2.3 Return Statements ... 11
3.2.4 MEethod Calls ... 11
.3 SEATEMENTS i e 11
3.3.1 DECLaration ..o 12
3.3.2 ASSIZNMENT ..ottt 12
3.3.3 FUNCEIoN Call it 12
3.3.4 TranSItioN o 12
3.3.5 (00T o To{U T ol Y Vo) USSR 12
3.3.6 RETUIN e 13
4 Koo oL TP PP PPPTPPRROTRP 13

L7 o1 USSP 15
1 TYPE DECLArATION . uiii ittt e e 15
2 Fundamental TYPEeS. ... 15
4.2.1 81 TP RPT O TTUPPUPRR 15
4.2.2 DOOLEAN ...t 15
4.2.3 JOUD L .. 15
4.2.4 FLO@T ettt 15
4.2.4 CRaT e s 15
4.2.5 L] o ol = PO PPRRPTRRN 15

4.2.7 V2o 3 e 16

4.3 NON=-FUuNdamental TyYPES...ccciciiiiieiiiiie i sree e e e s e e e e e e nae e e s nrane e e 16
4.3.1 117 o T PP TP PPV PP PPN 16

5. Standard Library . 17
5.1 DT ol =Y g V= T 1 F=T o SR 17
5.2 Inserting into @ MAP ..o e 17
5.3 Deleting from @ MaAP. ..cccceiiiiee i e e e 17
5.4 FINding @ K@Y coiiiiiiiiiiiiiiiii ettt 17
5.5 Finding the size of the map....c e 17
5.6 Deleting the entire Map....cci e 17

7. Program EXECULION . .iiiii ittt et rre e e et e e e aa e e e s naee s 18

1. INTRODUCTION

It has been proven that a PDA with two (or more) stacks can
accept any language that a Turing Machine can. From this
theorem comes the programming language, StateMap. StateMap
is a programming language that is organized and executed in
a manner analogous to an Automata diagram, like those seen
for DFA’s or PDA’s. It emphasizes modularity and
organization of code into short nodes, which transition to
each other until reaching some end state. It shrinks the
gap between paper diagram and running code to let the
programmer go from algorithmic organization to actual

execution quickly and simply.
1.1 DETERMINISTIC FINITE AUTOMATA

StateMap is a programming language that emulates a DFA
(Deterministic Finite Automata). Inspired by the knowledge
that a DFA with two stacks can perform any computable
operation, the languages purpose is to make the transition
from a paper model of a DFA into a program simple to write,
and concise in length. The language blends functional and
imperative programming styles to allow programmers to

abstract away implementations details.
1.2 STATEMAP NODES

StateMap programs consist of nodes, and within those nodes
there are a constant number of operations, as well as
transition statements, which allow for control to
permanently leave the current node and execute on a new node.
Aside from information stored on globally-scoped stacks, no

information is preserved from node to node.

There are two types of nodes: transition nodes, and end

nodes. Transition nodes can include transition statements,

which evaluate expressions, and execute if the expression is
true. All transition nodes must end with a default, catch-
all transition, to ensure that code execution makes its way
to an end node. A return node cannot have any transition
statements, but it can return data, and control, to the

caller. All return nodes must end with a return statement.

Nodes can call sub-automata, which then execute until they
reach an end state. Nodes can also make decisions based on
the states of sibling automata, which run in parallel to
them.

A node within an automata is defined by a name, followed by
curly brackets, within which consist of a number of
operations (see ‘operations’ section), with either
transition or return statements included. There is no
keyword needed to define a state as of type ‘end’ or
‘transition’: the language will infer based on whether the

last statement in the node is of type transition or return.
1.3 START STATE

A StateMap automata always begins at the ‘start’ state.
This necessitates that every automata include a state
labeled ‘start’. Automata are organized by declaring the
name as “DFA name”, and then within curly brackets defining

the rest of the automata.

An automata definition consists of, first, its global stack
declarations, followed by an (unordered) list of its nodes,
and their definitions. The stacks are typed, and must be

declared as such (see code examples).

1.4 MODULARITY

The key to a good StateMap program is extreme modularity.
Being able to draw the program, on paper, as an automata
means that you are probably on the right track. Nodes are,
idealistically, short and concise, and, while the ability to
create variables does exist, decisions mostly consist of
global information, and local variables exist mostly for

convenience, efficiency, and the shortening of code length.

2. LEXICAL CONVENTIONS

2.1 COMMENTS

Both C and C++ style comments are supported.

Multi-line comments begin with characters /* and end with
characters */. Any characters may appear inside a multi-

line comment except for the string ‘*/’.

Single line comments begin with the characters // and end

with a line terminator.
2.2 IDENTIFIERS (NAMES)

An identifier is a sequence of letters, digits, or
underscores, the first of which must be a letter. There is

no limit to the length of an identifier.
2.3 KEYWORDS

The following identifiers are keywords and may only be used

as such:

return int double float string void DFA main stack char

start boolean
2.4 CONSTANTS

There are several types of constants, as follows:

2.4.1 INTEGER CONSTANTS

An integer constant consists of one optional minus sign
followed by a sequence of one or more digits. The first
digit in an integer constant cannot be a zero, unless it’s

the only digit.
Valid: 42, o, -13

Invalid: 042, +13, 00, .25

2.4.2 FLOAT CONSTANTS

A float constant is a 64-bit signed floating point
represented with an optional negative, then a significand
followed by an e followed by an integer exponent (also

optionally signed).
Valid: 2e-13, 1.4, .3e2, 0.0

Invalid: 42, 0

2.4.3 CHARACTER CONSTANTS

Character constants are represented via enclosure with
single quotes “’”. No more than two characters can be

enclosed.
Valid: ‘a’, ‘\n’, * ¢

Invalid: ‘hello world’, ¢32+1’

2.4.4 DOUBLE CONSTANTS

A double is a float type of 64-bits. It allows for greater
precision, and allows for decimal places. The range of
values is 15 digits, before and after the decimal point.

Valid: .245, 244.356, -14

Invalid: 2.4e15

2.4.5 BOOLEAN CONSTANTS

A boolean can either be True or False. Any empty value (such
as an empty sequence or list) or zero will also evaluate as
false. Any other value will be valued as true.

2.5 STRINGS

Strings are represented via enclosure with double quotes ¢”’.
To represent the character ‘”’ without closing the string,

it must be preceded with a ‘\’. The empty string is
represented with ¢””’ with no characters in between the

quotes.

Valid: “hello world”, “ “, “32”, “he told me \”yo\””, «”

Invalid: “Clinton said “I did not have””

2.6 PUNCTUATION

2.6.1 BRACES

Braces are used to denote the body of a DFA, or the body of
a state in the DFA. The body of a DFA may contain variable
declarations and state definitions. The body of a state may

contain any number of statements.

2.6.2 PARENTHESIS

An expression may include expressions inside parenthesis.
Parentheses can also indicate a function call, or a list of

parameters for a state.

2.6.2 SEMICOLON

Used to denote the end of a statement.

2.6.3 COLON

Used to denote a concurrency statement, explained in 3.3.5.

2.6.4 COMMA

Used to separate multiple variable names during type
assignment.

Example: String name, address, profession;

2.7 OPERATORS

2.7.1 ARITHMETIC
Operator Name
+ Addition and String concatenation

- Subtraction and unary negation

* Multiplication

/ Division

% Modulo
2.7.2 ASSIGNMENT
The assignment operator is ‘=’. This assigns the value of

the right side of the operator to the left side variable.

2.7.3 COMPARISON

Operator Name

== Equality

1= Inequality

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

2.8 WHITESPACE

Whitespace is defined as the ASCII space, horizontal tab,
new-line, carriage return, and comments. Whitespace does

not affect the program.

3. SYNTAX NOTATION

3.1 PROGRAM STRUCTURE

Programs are composed of a series of DFAs with a single main
DFA. DFA declaration looks like:
DFA MAIN(/*ARG1*/ /*ARG2/) {}

Additional DFAs without the main identifier follow a similar

structure, with the addition of a return type.

TYPE DFA NAME(/*ARG1x/ /*ARG2x/) {}

3.2 EXPRESSIONS

DFAs are composed of five types of expressions.

3.2.1 DECLARATION AND ASSIGNMENT
{Type}{Id} = {Function} or {Type}{Id} = {Constant}

Note that functions include sub-DFAs. Thus, DFA output may

be assigned to variables.

3.2.2 TRANSITIONS

{State}<-* or {State}<-{Literal}{Operator}{Literal} or
{State}<-{Method call}

Transition to a state after performing the action on the
right hand side of the arrow. The star operator indicates
unconditional transition to the state. Since the transitions
are evaluated in order, the {State}<-* must be the last

transition.

3.2.3 RETURN STATEMENTS

Return {Id} or return {Constant}

3.2.4 METHOD CALLS
{Id}.{Method}({Arguments})

Assume a map called foo was declared. A valid method call
is: foo.find(bar)

3.3 STATEMENTS

The types of statements in StateMap are declaration,
assignment, function call, transition, concurrency and
return. Declaration and assignment are the only two types
that can be called outside of a node, i.e. globally in a DFA.

Every type of statement must be terminated by a semicolon.

3.3.1 DECLARATION

A declaration statement consists of a variable type followed
by an id. Multiple declarations can be made in a single line

separated by commas.

int 1i;

Stack<double> s, char c, string s;
3.3.2 ASSIGNMENT

An assignment statement is used to set the value of a
variable, which can be done during the declaration of a
variable, or later using the variable's id. Multiple

assignment can be made in a single line separated by commas.
int i = 4;
double d = 3.9, char ¢ = 'a’', string s = "hello";
3.3.3 FUNCTION CALL

A function call statement is a function call expression, but
also can be used in an assignment statement taking advantage
of the fact that a function call statement has type of the

return type of the function.
DFA1(argl);
string s = DFA2(arg2, arg3);
3.3.4 TRANSITION

A transition statement consists of a node id, the transition
operator and a boolean expression and is used to denote a
transition from one node to another. The transition occurs

immediately if the boolean condition evaluates to true.
statel <- Mapl.isEmpty();
3.3.5 CONCURRENCY

A concurrency statement consists of a map id or declaration,
a colon, followed by a list of function call statements

separated by commas. This type of statement is used to call
several sub-DFAs at once, each of which will step
concurrently as they run, i.e. one transition at a time.
This guarantees that a DFA called within this list will not
follow a transition to a new node until every other DFA in

this list has followed as many transitions as it has.

The map given at the beginning of this statement must be of
type <String,String> and, at all points in the running of
the DFAs, will contain a mapping of "DFAname -> current node
of DFA". This map is then sent as an implicit argument to
all DFAs in the list so that it may be polled but not edited.
The statement below, for example, would ensure that DFAT,
DFA2 and DFA3 would all step concurrently, and they would

all have access to the entries in m.
Map <String, String> m : DFA1(), DFA2(argl), String s
= DFA3(arg2, arg3);

3.3.6 RETURN

A return statement consists of the return keyword followed

by an expression.

return i < 4;

3.4 SCOPE

Scope in StateMap is divided into local and global types.
Local scope is particular to a node where global scope is

particular to a DFA.

A variable declared within the curly braces of a DFA is
accessible anywhere within that DFA, but not in functions
(sub-DFAs called by that DFA. Arguments must be used to pass
variables between DFAs.

A variable declared within the curly braces of a node is

only accessible within that node.

4. TYPE

4.1 TYPE DECLARATION

In StateMap, it is required to explicitly declare type when
declaring a variable or DFA (except main). The type of a
variable will not change during the lifetime of that
variable, i.e. StateMap is statically typed. The type of a
DFA denotes the type that is returned when that DFA is
called.

4.2 FUNDAMENTAL TYPES

4.2.1 INT
A 32-bit integer.
4.2.2 BOOLEAN

A boolean type that is either true or false.

4.2.3 DOUBLE

A 64-bit floating point number.

4.2.4 FLOAT

A 64-bit signed floating point number including an exponent
portion.

4.2.4 CHAR

An 8-bit character.

4.2.5 STRING

A sequence of characters.

4.2.6 STACK

Normally considered a "non-fundamental” data type, but they
are fundamental in StateMap because of their connection to
DFAs. Must be declared with a type as follows:

stack<int> s;

Stacks, on the fundamental level, support the following

operations:
peek - return the item on the top of the stack
pop - remove and return the item on the top of the stack

push - push a given item in the top of the stack

4.2.7 VOID

While not a type used in variable declaration, DFAs can have

return type void if they do not return anything.

4.3 NON-FUNDAMENTAL TYPES

4.3.1 MAP

StateMap's version of a dictionary. Must be declared with

two types as follows:
map<string, int> m;

The map functions are included in the standard library and
allow users to add entries, delete entries, return values

for given key, return keysets, etc.

5. STANDARD LIBRARY

The standard library provides an unordered map

implementation.

5.1 DECLARING A MAP
Map<key, value> foo

5.2 INSERTING INTO A MAP
insert(key, value)

This function returns true if successful. Otherwise, it

returns false.

5.3 DELETING FROM A MAP.
erase(key)

This function returns true if successful. Otherwise, it
returns false.

5.4 FINDING A KEY
find(key)

This function returns the key’s value if the key is valid.

Otherwise, it returns void.

5.5 FINDING THE SIZE OF THE MAP
size()

5.6 DELETING THE ENTIRE MAP
clear()

This function returns true if successful. Otherwise, it

returns false.

7. PROGRAM EXECUTION

Programs are run via command line, in the format:
./{PATH TO DIRECTORY}/{NAME OF EXECUTABLE} {ARGUMENTS}
For example:

./sorts/quicksort @ 9 2 3

