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Abstract 
For my project, I designed and implemented a database processing unit in hardware. This 
project is complementary to a software based compiler and runtime system that I already 
developed for another project. Using the aforementioned compiler we are able to translate SQL 
queries into a sequence of hardware instructions which are then processed by our custom logic 
which I developed for this class. This project can be divided into two major components: a set of 
hardware “tiles” corresponding to most of relational algebra operators, e.g. Aggregation, Join, 
etc and the software (drivers and test programs) that enable execution of queries on the 
hardware. 
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I. Introduction 

Motivation 
We are in the era of big data. User data (social networks, cloud storage etc) is currently 
produced at a rate which makes data mining almost infeasible. Nonetheless this data is 
extremely valuable.  

Furthermore, the end of dennard scaling is stalling the performance of computer chips. A larger 
and larger portion of a chip will have to be powered off in order to be within an acceptable power 
budget. This creates an opportunity for acceleration of interesting workloads. We can trade off 
chip area for specialized hardware that can accelerate specific application of interest. Therefore 
we decided to implement a prototype of an accelerator targeting sql queries. 

Scope of this report 
We limit our report to the parts that are pertinent for the Embedded Systems class. We will focus 
on the hardware and drivers, as the compiler and runtime system are beyond the scope of this 
class. 

II. Hardware Design and Specification 

A case study 
Our hardware is based on a set of heterogenous hardware blocks which we call “tiles”. These 
tiles closely match relational algebra operators, with some extensions to support certain specific 
sql operations. All these operators work on a streaming fashion - receiving some data on a set 
of input streams and producing data on a set of output streams. For the purposes of this project, 
we have implemented the following set of tiles: Boolgen, Filter, Joiner, Aggregator, Sorter, and 
Joiner.  

We are going to introduce their functional 
specifications using a simple SQL query as 
example: 

  select  o.orderkey, sum( (l.extendedprice*(1-     
l.discount) ) as revenue 
  from    lineitem l,order o 
  where l_discount > 0.1 and o.orderkey = 
l.orderkey 
   group by o.orderkey 

This query computes, for every order, the 
revenue coming from items discounted more 
than 10%. 
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FIG1: SCHEMA FOR THE TPC-H BENCHMARK

FIG2: EXAMPLE QUERY
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FIG3: QUERY PLAN RELATIVE TO THE QUERY IN FIG2. 
RECTANGULAR BOXES INDICATE INSTRUCTIONS THAT CAN BE EXECUTED ON 

HARDWARE TILES. TILES LABELS HAVE THE FOLLOWING MEANING: 
<UNIQUE_ID TILE_NAME [CONFIGURABLE ATTRIBUTES]>.

CIRCLE BOXES INDICATE DATA STREAMS FLOWING BETWEEN TILES. V0,V1,V2,V3 ARE 
THE INPUT COLUMNS WHILE V22 AND V26 ARE THE OUTPUT COLUMNS.

VALUE LABELS HAVE THE FOLLOWING MEANING:
<UNIQUE_ID | DATATYPE | VALUE NAME>

v0|float|l_extendedprice

i1 colfilter[]

v1|float|l_discount

i0 boolgen['>']

i2 colfilter[]

v2|int|l_orderkey

i3 colfilter[]

v3|int|o_orderkey

i4 join[CF]

v4|float|.1

v5|bool|l_discount>0.1

v6|float|l_extendedprice

i4 Sort

v7|float|l_discount v8|int|l_orderkey

v10|int|o_orderkey v11|float|l_discountv12|float|l_extendedprice

v13|int|l_orderkey v14|int|o_orderkey

i10 aggr['NO-OP', True]

i13 aggr['sum', True]

v15|float|l_discount

i11 alu['-']v16|float|l_extendedprice

i12 alu['*']

v21|int|o_orderkey

v22|int|o_orderkey

v23|int|1

v24|float|1-l_discount

v25|float|l_extendedprice*1-l_discount

v26|float|revenue



Tiles functional specification 

By processing the query in FIG2 using a custom SQL compiler it is possible to obtain the query 
plan presented in FIG3. We are going to introduce the functional specification of each tile in the 
order in which it appears on the query plan. We can identify three phases that occur in the query 
plan: filter, join, and aggregate phase. 

FILTER PHASE 

In this phase the lineitem table has to be filtered to extract only the records where the condition 
l_discount > 0.1 is satisfied. 

Boolgen 
The first operation to be performed in the example query is to compute which records in the 
lineitem table has a discount greater than 0.1. This is done using the boolgen tile which will 
produce a bit for every record indicating whether it satisfies this property. 
A boolgen tile has two inputs (in1,in2) and one output (out1). For every input element pair 
(in1[i],in2[i]) it test a programmable condition C(in1[i],in2[i]) and produce a single bit out1[i] 
indicating whether the condition evaluates to true or false . It is possible to configure the 1

boolgen at runtime to ignore the second input and use an internal constant ( also configurable ). 
In the case of the query plan in FIG3 the boolgen tile i0 has been configured to use an internal 
constant set to 0.1. It will output 1 if the discount value received in the first input stream is bigger 
than 0.1. 

Colfilter 
After computing which records in the lineitem table satisfies the l.discount > 0.1 condition the 
records have to be filtered. 
A filter tile has two inputs and one output. The first input stream is boolean while the other can 
be of arbitrary type. For every input element pair (in1[i],in2[i]) the filter produces out1[j] = in2[i] if 
in1[i] = 1. The number of elements produced by the filter element will be less or equal than the 
number of elements received at its inputs. 
In the case of the query plan in FIG3 the values v6,v7,v8 (produced by colfilter tiles i1,i2,i3) 
corresponds to the records (for three different columns) of the line item table where the 
condition l_discount > 0.1 is satisfied. 

JOIN PHASE 

The join has to be performed between the order and the filtered lineitem table. This is a equi-join 
between two tables using the primary key of a candidate table (o_orderkey in the orders table) 
and a foreign key in a foreign table (l_orderkey in lineitem). There is no tile that can perform 
arbitrary joins however there is a joiner tile that can perform such equi-joins assuming all the 
columns from both tables are sorted according to the attribute used in the equality. This is the 
case for the orders table which is sorted on its primary key but it is not the case on the lineitem 
table which has to be sorted on the l_orderkey attribute first. 

 We are referring to the i-th element received/produced on a input/output stream s with s[i]1
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Sorter 
The Sorter tile has a configurable number of inputs and outputs and it also has an internal 
parameter k which corresponds to the block size it can operate on. For this project we 
instantiated a 4 inputs 4 outputs sorter with a block size of 32. 
Each block is sorted on each column where the first input has the highest priority and the last 
input has the smallest priority. As an example consider the following case of a 2x2 sorter 
operating on a block size of 8. Given the following two inputs: 

in1: 6,5,3,1,8,12,1,45, 5,8,7,3,3,2,10,14 … 
in2: 1,1,1,3,2,2  ,2,2  , 1,2,3,9,8,6,7  ,8   … 

it all produce the following two outputs: 

out1: 1,1,3,5,6,8,12,45, 2,3,3,5,7,8,10,14 … 
out2: 2,3,1,1,1,2,2  ,2  , 6,8,9,1,3,2,7  ,8   … 

Notice how the output is sorted on the in1 column first and then according to the in2 column. 

Joiner 
The joiner tile performs equi-joins and has two preconditions: 
• Input data is sorted on the attribute used for the equality testing 
• Input1 attribute is a primary key,i.e. there exists at most a single instance of every possible 

value. 

This tile has a configurable number of inputs and outputs, set for this project to 4. 
The first input corresponds to the column which is primary (candidate) key while the second 
input corresponds to the column which is the foreign key. The other input columns are payload 
columns which can be either belong to the candidate table or the foreign table. As an example 
consider the case where in3 belongs to the candidate table and in4 belongs to the foreign table; 
the joiner will output each tuple ( in1[i] , in2[j] , in3[i], in4[j] ) such that i < len(in1) , j < len(in2) , 
in1[i] = in2[j].  
Payload column configuration can be changed at runtime, e.g. it is possible to execute a join 
operation where all payload columns belong to the candidate table and subsequently 
reconfigure the tile to execute a join where all payload columns are from the foreign table. 

Notice that the sorter tile will not be sufficient to sort tables of length bigger than the sorter block 
size. It is assumed that the software can perform a merge of sorted runs. On the other hand it is 
possible to sort tables which have a number of columns bigger than the number of sorter inputs 
simply by repeating the sorting procedure. 

AGGREGATE PHASE 

After the join phase we have a table composed of all the tables specified in the from clause and 
satisfied all the condition specified in the where clause. We now have to perform all the 
operations specified in the select clause and in the group by clauses. In the case of the query 
plan in FIG3 we have to compute the revenue of every single item from the columns l_discount 
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and l_extendedprice. Afterwards we have to compute the total revenue by summing up the 
revenue of items in the same order. 

ALU 
The ALU is used to compute basic arithmetic operations, it has two inputs and one output. For 
every input par (in1[i],in2[i]) it produces an element out[i] such that out[i] = f(in1[i],in2[i]) where f 
can be chosen at runtime between addition, subtraction, multiplication, and division. There is no 
control for overflow, so the runtime must handle whether output data is valid or not. The ALU is 
configurable so that it ignores the second input and produces out[i] = f(in1[i],constant) where the 
constant is a signed int configurable at runtime. 

Aggregator 
The aggregator tile is used to implement the “Group By” clauses in sql. It has two inputs and 
one output and it is configurable at run time to perform either count, sum, min, max, or average 
for a given set of records associated with a given group. 
The first is input is the group input while the second is the payload. For each input pair (g,d) the 
g element indicates the group to which data d belongs. The tile will output a single element o = 
f(d[i], .., d[j]) such that i < j , g[k] = g[i] for i < k <= j where f is chosen among sum,min,max,count 
and average. 
The group datatype can be anything since only equality is tested within the tile to discern group 
boundaries. The data field must have numeric type for the result to be meaningful. 

Tile Design and Implementation 

All the tiles share many similarities, at a minimum they have to handle input and output streams 
which we assume not synchronized, i.e. it is not guaranteed that the tile will receive from all 
input streams the input elements at the same time; only ordering within a stream is guaranteed. 
Similarly it is not expected that all receiving tiles of the output streams will be ready at the same 
clock cycle. Therefore there must be a mechanism to handle back pressure in a structured way 
among all these tiles. Moreover, if back-pressure is not handled correctly, e.g., by having a 
single long combinational path going backwards in the entire design, it could affect performance 
negatively. 

!  
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We have settled for a design which we reused in all tiles. A sequential logic block at the input of 
the tiles handles back pressure and synchronization of the different input streams. When all 
inputs are valid and receiving tiles are all ready, some combinational logic, which is tile specific, 
will produce the next output stream elements. The sequential logic part of a tile (which we called 
a buffer) is similar to a relay station  which we modified for our purposes. By adding such 2

buffers no single combinational path can exists due to back-pressure signals. 

Another important design details is handling the termination of a stream, tiles have no notion of 
the length of a stream and rely instead on a single bit that we called done to signal termination. 
This bit is contained in the error field of avalon ST links; whenever a tile receive a done bit it will 
forward it on every outgoing link in order for downstream tiles to know about termination. 

Tile Implementation Details 

We are going to describe here in more details the implementation of the hardware elements that 
compose our design. We are going to start with the buffer module, which is very important since 
it is present at the input of every tile. 

Buffer 
The buffer has one input which is connected to an input stream of a tile and one output interface 
to the tile combinational logic. For the purposes of this project all link between tiles are Altera 
Avalon ST with ready latency 1. We are going to describe this communication protocol in order 
to understand the behavior of the buffer module. 

!  

!  

 L. Carloni et al., The Role of Back-Pressure in Latency-Insenstive Systems 2

http://www.cs.columbia.edu/~luca/research/rbilsENTCS06.pdf
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FIG5: TIMING DIAGRAM OF AN EXCHANGE OF DATA BETWEEN TWO 
MODULES CONNECTED USING AN AVALON ST LINK.

ON THE TOP FIGURE MODULES COMMUNICATE USING BACK 
PRESSURE WITH READY LATENCY 0 WHILE IN THE BOTTOM FIGURE 

READY LATENCY 1 IS USED.

http://www.cs.columbia.edu/~luca/research/rbilsENTCS06.pdf


Altera Avalon ST is a unidirectional synchronous interface for streaming links . They are 3

composed of a set of signals, in the case of FIG5: 
• Data[DATA_WIDTH]: data flowing from source to sink. 
• Error[ERROR_WIDTH]: possible error messages/ out of band signals. 
• Channel[CHANNEL_WIDTH]: virtual channel on which data is transferred. 
• Valid: single bit indicating whether the data transmitted in this clock cycle is valid. 
• Ready: single bit opposite to the direction of the link, i.e. going from the sink to source. It 

indicates whether the source can accept more messages. It does not distinguish between 
data coming from different channels. The ready latency parameter corresponds to the 
latency (in terms of clock cycles) that the source has available to react to a change in the 
ready bit from the sink. Notice from FIG5 that the implications of using ready latency 0 is 
that there should be a combinational path between source and sink modules - we wanted 
to avoid such condition therefore we used links with ready latency 1. 

DATA_WIDTH, ERROR_WIDTH and CHANNEL_WIDTH are all parameters that can be 
configured when instantiating the link between modules. 

On top of this, Altera Avalon ST has additional signal for the transmission of packets of data 
which are bigger than a single flit. 

Buffer tiles have as input an Avalon ST sink and they store received data in a buffer with two 
slots. Buffered data is made available to the tile with a similar interface: 

In a steady state condition, the source keeps producing a new flit every clock cycle and the tile 
consume it therefore, only a single slot is used. 
The second slot is used in case the source produces a new element that the tile can not 
consume, in this case the new element is stored in the second slot and the buffer dessert the 
outgoing ready bit, ensuring no data will be received from the source in the next clock cycle. 

 Avalon ST reference…3
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FIG6: DIAGRAM OF A BUFFER



Unless the buffer holds no valid data it will assert the outgoing valid signal, if the tile assert the 
ready_in bit the buffer will discard the current element since it has already been processed by 
the tile. In any case the presence of the buffer is transparent to the tile. 
The behavior of the buffer is summarized by the state machine in the next figure: 
 

ALU 

We are going to use the ALU tile as an example for the implementation of a generic tile. Both 
inputs of the ALU have buffers and the tile behavior is specified in a single always_comb block 
(as mentioned in FIG4). Notice how the done flag is forwarded to downstream tiles as soon as it 

is received, and the buffering of back 
pressure signal to avoid long wires 
going upstream on the pipeline. The 
presence of the input buffers make 
the tile internals very simple, no logic 
is present to handle back pressure 
signals directly only to selectively ask 
for a new element to the buffers. Tiles 
logic is composed of a single guarded 
action that it is executed when all 
inputs are ready as well as the 
downstream tile. Finally notice that we 
are using inferred multipliers and 
dividers so this design is not bind to a 
specific board or manufacturer. 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FIG7: FINITE STATE MACHINE OF THE BUFFER MODULE

EMPTY
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FIG8: SIMPLIFIED DIAGRAM OF THE ALU 
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always_ff @(posedge clk) begin 
          
      was_rdy <= ready_i; //store the ready bit from the previous tile 
      
end 

always_comb begin 
      if ( op < 3'd4 ) begin      //using both operands 
         input_valid    = buf_valid1 && buf_valid2; 
         done_output    = buf_done1 & buf_done2; 
         second_operand = buf_col_2; 
      end 
      else begin                   //using internal constant 
         input_valid    = buf_valid1; 
         done_output    = buf_done1; 
         second_operand = constant; 
      end 

      if ( was_rdy && input_valid )  begin 
         valid_o = 1;       done_o = done_output;  //send result 
         buf_ready1 = 1; buf_ready2 = 1;             //ask for new elements 

         case(op[1:0])                                       //switch on the operation 
           //add 
           2'b00:col_o = $signed(col_1) + $signed(second_operand); 
           //minus 
           … 
         endcase 
      end 
      else begin 
         done_o  = 0; valid_o = 0; col_o   = 0; //do not output 
         ready1  = 0; ready2  = 0;                    //do not shift inputs 

      end // else: !if(was_rdy && input_valid) 

end 

FIG9: CODE FROM THE ALU TILE. 
NOTICE HOW THE READY INPUT FROM THE DOWNSTREAM TILE 

IS BUFFERED CONTINUOUSLY BREAKING POSSIBLE 
COMBINATORIAL PATHS.

TILE OPERATION IS GUARDED BY THE PRESENCE OF VALID 
INPUTS AND THE “READINESS” OF THE TILE CONNECTED 

DOWNSTREAM OF THE ALU.



Tile reconfiguration 

Some tiles have the ability to reconfigure themselves at runtime, e.g. it is possible to have an 
ALU tile perform addiction between two columns and then reconfigure it do to multiplication 
between a column and a numeric constant. 
For this design we decided to add an avalonMM interface to each tile, this interface is used to 
write from software the opcode of the operation to be performed. 

Again consider the ALU tile as an example. It is possible to write an opcode in the range 
between 0 and 7 with the following meaning: 

Other tiles have similar opcodes which can be summarized in the following way: 

Joiner: opcode will be a single bit for every payload columns; if the bit is 0 the associated 
column belongs to the foreign table otherwise to the candidate table. 
Aggregator: a different opcode for the operations: Min,Max,Count,Sum, and Average. 

0 Addition between two columns

1 Subtraction between two columns

2 Multiplication between two columns

3 Division between two columns

4 Addition between the first column and a constant

5 Subtraction between the first column and a constant

6 Multiplication between the first column and a constant

7 Division between the first column and a constant

!12



Sorter 

The sorter tile is more complicated than the others and we will briefly explain its differences. 
Sorting can not be strictly performed in a streaming fashion, it is necessary to buffer a chunk of 
elements from the stream to be sorted. We take the design of the sorter tile from . 4

The design of the sorter is very simple. Each tile is equal and for each element received it 
checks whether it is bigger than the element it is currently holding. If that’s the case it will store 
the newly received element, otherwise it will let it pass. Let’s assume a pipeline composed of k 
equal tiles, after processing k elements the first tile will hold the biggest element, the second tile 
will hold the second biggest and so on. 
This is sufficient to create sorted runs of a single column however what is necessary for our 
needs is to sort tables composed of many columns, possibly comparing multiple columns at 
once. We have seen in FIG3 a query plan which involved a sort operation on three columns 
using only a single column for the comparisons. Other queries might require comparison 
between multiple columns. Consider an equi-join between two tables which involves two 
columns, we would like to support this operation without having to stream all the columns in the 
table two times. Similarly an order-by or group-by operation can (and frequently does) operate 
on more than one column. 

In order to satisfy this requirement we arranged the sorter tile as a mesh. Each row is in charge 
of sorting a single column however different rows have a different priority. The top row of the 
mesh will be the primary sorting column, in case of equal elements the data will be sorted 
according to the second row and so on.  
In order to achieve this, every sorter tile has an additional input and output for “commands”. 
Every top row tile will send commands to the tile below indicating whether they should swap the 
buffered element with the incoming element. In case of equal elements the top row will 
communicate that it doesn’t know what to do therefore, it will be for the second row to determine 
it by comparing the stored and received element. Similarly all tiles in the second row will 
communicate the action they performed to the third row and so on. 

 Parashar et al., Triggered Instructions: A Control Paradigm for 4

Spatially-Programmed Architectures, ISCA 2013
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FIG8: PIPELINE OF SORT TILES IN ACTION



Other Tiles  

The design of the remaining tiles ( boolgen, colfilter, aggregator and joiner ) is very similar to the 
design of the ALU.  
It is worth noting that the design of the ALU and the aggregator somewhat intersect since they 
both perform arithmetic operations on the incoming stream of data. Similarly the aggregator 
needs to perform comparisons between elements of the data stream, a function which the 
boolgen tile already performs. 
It would be interesting to consider an aggregation of all these functionalities in a single tile that 
can be configured to perform each one of this operations dynamically at runtime. 

III. System Design and Integration 

The tiles described in the previous section can be arbitrarily combined to form complex queries. 
Instead of sticking to a single design we decided to implement a system where a single instance 
of each tile is offered. In order to pass values from software to the hardware we attached an 
Altera FIFO to every input and output interface of the tiles. 

Altera FIFO IP 

The Altera FIFOs can buffer up to 8192 records. It can receive data from an Avalon MM and 
send it to an Avalon ST link (and viceversa). For our base implementation we used 16 elements 
fifos. Altera FIFOs provide two Avalon MM interfaces: a status and a data interface. The status 
interface should be used to first check if the FIFO can accept more data (in case of a write) or 
contains data (in case of a read). This is necessary since writing to a full FIFO or read from an 
empty one would cause an error. 
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FIG8: MESH OF SORT TILES. 
NOTICE HOW TILES IN THE TOP ROW SEND COMMANDS TO THE SECOND ROW.



Another necessary step is sending done bits at the end of the stream. This requires to add 
packet information . The fifo will provide two addresses on the data interface, one for the actual 5

data and one for the channel/error/packet bits. We are going to explain this in more details in 
the next section. 

Design Overview 
Here is a simple design overview using an ALU as an example tile: 

!  

IV. Software Design 

When designing the software for our cpu system we recognized two possible scenarios.  

• Considered every tile as a different device with its own entry in the device tree. Therefore, 
develop a single driver for each tile each with its own specific functions. 

• Consider the dpu, with its set of tiles, as a single device with a single entry in the device tree. 
All the memory mapped interface will take a contiguous space in memory. The device driver 
would be agnostic to which tile it is sending data and it is responsibility of the user to specify a 
valid offset within the memory mapped space of the dpu. 

We concluded that the second approach was more reasonable in the long run for two reasons. 
There is not a single dpu as any mix of different tiles can constitute a valid dpu. Moreover the 
functionalities required for the device driver of a tile are very similar to one another.  The 
cornerstone is the ability to enqueue and dequeue data from the ALTERA FIFOs that feed data 
to the tiles. It will be up to user code to specify to which fifo read or write. 

 www.altera.com/literature/ug/ug_embedded_ip.pdf5
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Driver 

FIFO 
Support for the Altera FIFO is the core of the HW/SW interface for our design. The FIFO driver 
specifies three types of ioctl commands that can be called by user code. 

#define FIFO_WRITE_DATA _IOW(FIFO_MAGIC, 1, opcode *) 
#define FIFO_READ_DATA  _IOR(FIFO_MAGIC, 2, opcode *) 
#define FIFO_READ_STATUS _IOR(FIFO_MAGIC, 3, int*)   

The last is the simplest one as it returns to user code the number of elements currently stored in 
the FIFO. This can be used for debugging purposes in user code. 
FIFO_WRITE_DATA and FIFO_READ_DATA  handles transfers back and forth from the fifos. 
Both commands take a struct opcode as an argument: 

typedef struct { 
    unsigned short length; 
    unsigned char done; 
    unsigned char dest; 
    int* buf; 
} opcode; 

buf points to the user space buffer. 
length specify the length of the transfer in words: 4bytes, corresponding to the data size for the 
Avalon link. 
dest indicates the fifo unique id. 
done specify whether this chunk of data is at the end of the stream. 

In the driver code a list of locations is stored as an array. This is used to translate the dest field 
specified in the opcode to an actual location in memory. These offsets are obtained from Qsys. 
Here is the table we used for this project: 

Therefore, if the user supplied an opcode op = {100,0,2,&buf} to a FIFO_WRITE_DATA _IOW it 
would correspond to a write of 100 elements from buffer buf to the location 0x128 which 
corresponds to the third input column of the sorter. 
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unsigned int fifo_offset[FIFOS]        = { 
  0x138, 0x130, 0x128,  0x120,  0x110,  0x118,  0x108,  0x100, /*sort*/ 
                         0x3c0, 0x3d0, 0x3c8, /*boolgen*/ 
                         0x3e8, 0x3e0, 0x3d8,  /*colfilter*/ 
                         0x428, 0x420, 0x418, 0x410,  0x408,   0x400,  0x3f8,0x3f0, /*join*/ 
                         0x3b8 , 0x3b0, 0x3a8, /*alu */ 
                         0x18 , 0x10, 0x8  /*aggr */ 
};



Next we are going to look at the ioctl command to write data to a fifo: 
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    case FIFO_WRITE_DATA: 
        // first check that the fifo is not full                                                                                                                                      
        fill = ioread32(stat_addr); 

        to_write = MIN(FIFO_SIZE - fill , op->length); 

        if ( to_write > 1 ){ 
            printk("Writer Driver 0 - writing specs %d\n",START_PACKET_CHANNEL0); 
            iowrite32( START_PACKET_CHANNEL0, spec_addr ); 
            /* trusting the user buffer to avoid coping that */ 
            for ( i = 0 ; i < to_write ; i++ ){ 
                if ( i == (to_write - 1) ){ /* write the end packet flag before wrting the last int*/ 

                    if (op->done && to_write == op->length){        /* that was ALSO the last transfer for 
this stream ad I wrote it all down*/ 
                        printk("Writer Driver 0 - writing specs %d\n",DONE_END_PACKET_CHANNEL0); 
                        iowrite32(DONE_END_PACKET_CHANNEL0, spec_addr); 
                    }else{ 
                        printk("Writer Driver 0 - writing specs %d\n",END_PACKET_CHANNEL0); 
                        iowrite32(END_PACKET_CHANNEL0, spec_addr); 
                    } 
                } 
                printk("Writer Driver 0 - writing %d\n",op->buf[i]); 
                iowrite32( op->buf[i], data_addr); 
            } 
        }else{ 
            //SINGLE FLIT CASE OMITTED 
        } 

        /* write back in the op struct how many int were actually sent */ 
        op->length = to_write; 

        break;

FIG9: SIMPLIFIED CODE OF THE IOWRITE OPERATION



Notice that no copy is performed of user supplied data structure for performance’s sake. To 
communicate the outcome of the write he driver overwrites the user supplied opcode struct. 
Consider as an example a write request from the user of 100 elements which also happens to 
be the last one of a stream (user sets the done bit). The driver will check the status interface 
first and if it can only write 50 it will overwrite the op->length field with 50 and set op->done to 0. 

Test Program 

We also included a test program that shows how our system can be used to execute a sample 
query. For the purposes of this project we added it to show the correct behavior of the whole 
system. The execution of this program corresponds to the execution of this query: 
 

All the functionalities in the filter, join and aggregate phase are tested. 

V. Validation and Testing 

Validation and testing was done via a set of scripts. 
Unit tests were developed for each tile. For these tests we used both modelsim and Altera 
system console. 
The test program introduced in the previous section was instead used as regression testing of 
the whole system.  

During development Verilator was used as a firs tool to check that the verilog was well formed.  
subsequently signal timing and the correct functioning of backpressure was tested using 
Modelsim, and comparing the waveforms with an expected output. 
During system integration in qsys we used both the system console and SignalTap as a tool to 
check correctness. 
Finally drivers were developed and the whole hw/sw system has been tested end to end. 

Verilator 
The verilator testing was mainly to ensure our modules would compile. This allowed us to 
quickly find and sort out syntax errors, and make sure that small changes did not result in 
broken code. Unfortunately Verilator does not fully support some of the system verilog features, 
most notably it has no support for interfaces which we used extensively in the design of the 
sorter. 
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    select t1.id, min(t2.id*t2.y) 
    from   t1, t2 
    where  t1.id == t2.x and 
           t1.id == t2.id



Modelsim 
We use Modelsim to debug our signal spec and test back pressure. This was essential to check 
that our tiles adhere to the Avalon ST ready latency 1 protocol. With modelsim, we were able to 
quickly iterate through code revisions until we achieved the correct behavior.  

After the no errors were evident we produced more strict unit test scripts, this phase was time 
consuming but fundamental as it made possible to discover unexpected corner cases early on. 
For each tile we produced a test bench which would drive the tile with constrained random 
stimuli. The test bench will have to adhere to the ready latency protocol. We also used python 
scripts to the instantiate and run modelsim simulations: 

The results produced during these test runs were then analyzed in the same python script to 
check for functional correctness. 

System Console 
With system console, we were able to see test whether our tiles matched correctly with the rest 
of the system. System Console was our first test that involved the Altera IP, including FIFOs and 
generated modules. We found that integration of different IPs in Qsys is very error prone. 
Therefore we produced for each tile a script to test whether data is correctly sent and received. 
These tcl scripts do not use random stimuli to check functional correctness as this is assumed 
from the previous phase of testing in modelsim. 

Signal Tap 
We used Signal Tap to make sure the simulated behavior matched the expected behavior. It 
allowed us to look into the registers on the FPGA and ensure that all of our tiles were 
functioning properly.  
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    seed                   = random.randint(0,1000000) 
    send_threshold  = random.randint(0,9) 
    ready_threshold = random.randint(0,9) 
    op                       = random.randint(0,7) 
    constant             = random.randint(0,1000) 

    #call modelsim                                                                                                                                                                    
    cmd  = "vsim -c alu_tb -gSEED={0:<8d}       \ 
 -gSEND_THRESHOLD={1}       \ 
 -gREADY_THRESHOLD={2}     \ 
 -gALU_OP={3}                           \ 
 -gALU_CONSTANT={4:<4}       \ 
-do \"run -all\"".format(seed,send_threshold,ready_threshold,op,constant)

SCRIPT TO INITIATE A RANDOM SIMULATION OF 
THE ALU TILE USING MODELSIM.



Software Testing 
This was the final step in validating our code. After thawing a functional driver for the system we 
started devising a test program that would correspond to a SQL query. Therefore validating that 
every tile was working correctly and more importantly that they were able collectively to perform 
a meaningful computation. 

VI. Results 

Performance Evaluation of the FIFO driver 

Performance of streaming data in and out of the Altera FIFOs is crucial for our project. We 
therefore implemented a fifo testbench by connecting two fifos together and having the CPU 
continuously write in one fifo and read from the other. 

An initial implementation of the driver would transfer only a word (32 bits) at a time and had a 
transfer rate of 2MB/s (2MB/s in and 2MB/s out). The implementation presented beforehand can 
transfer data 4 times that fast. We also tested the impact of the length of the fifo and these are 
the results: 

Increasing the FIFO size helps amortizing some fixed cost of the transfers (e.g. traps to perform 
the ioctl) however the bandwidth remains very limited. 

Resource Utilization 

This is the fitter summary 

; Logic utilization (in ALMs)     ; 29,194 / 41,910 ( 70 % )                   ; 
; Total registers                 ; 33799                                      ; 
; Total pins                      ; 289 / 499 ( 58 % )                         ; 
; Total virtual pins              ; 0                                          ; 
; Total block memory bits         ; 15,184 / 5,662,720 ( < 1 % )               ; 
; Total DSP Blocks                ; 2 / 112 ( 2 % )                            ; 
; Total HSSI RX PCSs              ; 0 / 9 ( 0 % )                              ; 
; Total HSSI PMA RX Deserializers ; 0 / 9 ( 0 % )                              ; 
; Total HSSI TX PCSs              ; 0 / 9 ( 0 % )                              ; 
; Total HSSI TX Channels          ; 0 / 9 ( 0 % )                              ; 
; Total PLLs                      ; 0 / 15 ( 0 % )                             ; 
; Total DLLs                      ; 1 / 4 ( 25 % )                             ; 
+————————————————+--------------------------------------------+ 

FIFO Length Bandwidth (MB/s)

16 6.981309638

64 8.108659278

256 8.381337444
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We can see how the design uses mostly LUTs and has very little use for BRAM. Only two DSPs 
are used to perform multiplication and division. 
This is consistent with the fact that memory is only used in the Altera FIFO which are present in 
very small number: there are 28 fifos instantiated, each with 16 entries of 32 bits which 
corresponds to 14,000 bits. 
Buffers contained in the tiles uses LUTs instead and can not utilize BRAM. 

If we analyze more in details the Logic utilization we have: 

; Logic utilization (ALMs needed / total ALMs on device)     ; 29,194 / 41,910     ; 70 %  ; 
; ALMs needed [=A-B+C]                                                      ; 29,194                   ;       ; 
;     [A] ALMs used in final placement [=a+b+c+d]                ; 29,883 / 41,910     ; 71 %  ; 
;         [a] ALMs used for LUT logic and registers                 ; 13,269                   ;       ; 
;         [b] ALMs used for LUT logic                                       ; 14,336                   ;       ; 
;         [c] ALMs used for registers                                         ; 2,278                     ;       ; 
;         [d] ALMs used for memory (up to half of total ALMs)  ; 0                   ;       ; 
;     [B] Estimate of ALMs recoverable by dense packing     ; 1,506 / 41,910      ; 4 %   ; 
;     [C] Estimate of ALMs unavailable [=a+b+c+d]               ; 817 / 41,910        ; 2 %   ; 

We can see how a considerable portion of ALMs are used as registers, which is expected. 
Notice also that by synthesizing the sorter tile with a block size of 32 entries and four columns 
input/output the logic utilization is already 50%. 
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VII. Conclusions and Future Work 

We are quite satisfied with our current design as it proves that execution of sql queries in 
hardware is feasible and a limited set of hardware modules is sufficient to do so. However we 
recognize that there are ample possibilities to extend our work to make it better in terms of 
performance and programmability. 

Future HW Design 
From the analysis of the area utilization it seems clear that all the tiles (except for the sorter) 
occupy a small area, it would be interesting to try to merge all this into a single reconfigurable 
entity. We could pay a small penalty in terms of area overhead but we could gain in terms of 
programmability by having a simpler design and adapt much better to different query workloads. 
Since every tile will be reconfigurable to emulate the others we will not incur in cases where 
there are too many or too few tiles of a specific type for the workload at hand. 

We were not able to use DMA. Having to transfer data from the processor is clearly inefficient. 
Here is the future design ideal, which uses a DMA to reduce this overhead: 

!  

Moreover, we did not explore the implications of arranging the processing tiles in different 
topologies where they communicate directly between themselves. This should produce some 
interesting tradeoffs, most notably it is not clear if this interconnection network should be all to 
all and how much FPGA resources it will need.  
Since we are using a standardized interface to communicate between tiles, we think the 
CONNECT: Configurable Network Creation Tool  could be used without having to write an ad-6

hoc network. 

 http://users.ece.cmu.edu/~mpapamic/connect/6
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Full Abstract System Overview 

We should not expect that programmers will write programs like our test program. A full system 
should behave exactly like a DBMS henceforth sql queries should be translated into executable 
query plans. 
The full system architecture with software control should rely on a JIT software that can execute 
these query plans . 

!  

Performance Analysis 
We think it would be interesting to compare the performance of our system with a standard 
DBMS. For the purpose of this analysis it would also be interesting to understand where the 
gains are instead of solely comparing the performance numbers. We could be better (or worse) 
than a standard system in many aspects, e.g., producing query plan, reducing power by 
eliminating the need for caches, increasing performance by computing some of the tile 
operations faster, etc. 
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VIII. Miscellaneous 

Advice for future groups 

Hardware 
Testing suits proved invaluable for catching bugs. Don’t waste time synthesizing and then trying 
to debug, use unit and regression tests for verilator, modelsim, whatever you need to catch bugs 
early and often. Altera’s IP documentation can be spotty, so look for examples wherever 
possible. Timing is critical, and is a common problem in digital hardware design, so utilize the 
resources available to you and your experience with drawing out and implementing (potentially) 
complex state machines. Code modularity is also critical. Implement common code as a 
submodule, so it can be fixed in one place, as opposed to having to modify every bit of code to 
debug.  

Qsys and Quartus 
Qsys offers very limited support for SystemVerilog, to a smaller extent this is true for Quartus. 
On the other hand, simulation tools like modelsim support pretty much everything; if you don’t 
test your design in qwys early on you might discover at a later time that the features you are 
used are not sysnthesizable. Most notably qsys does not support interfaces while quartus does. 
We found interfaces to be invaluable since they simplify the design of modules and reduce the 
possibility of errors. We ended writing code to auto generate wrappers for our modules and 
wished to know this in advance. Moreover, if not strictly necessary for your design, we suggest 
that you use qsys as little as possible, it makes the whole flow extremely cumbersome and error 
prone. 

Software 
Writing drivers for embedded devices is tough. Start by a simple, inefficient version and make 
you way up to more complicated stuff. The very few examples you’ll find online can be very 
valuable.
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