
TCP Offloading Engine

Clementine Barbet (cb3022)
Christine Chen (cpc2143)

Qi Li (ql2163)

Project Goals

●  Software
○  Understand how the TCP/IP protocol enables reliable communications
○  Implement a TCP stack that bypasses the Linux Kernel
○  Verify implementation through comparison with Golden Model

●  Hardware

○  Implementation of a TOE IP software Core using System Verilog
○  Implementation of a qsys design that allows streaming packets in/out of the TOE
○  Verification using simulation with ModelSim and JTAG.

1

Motivations

Offloading the handling of TCP to an FPGA IP core allows to minimise processing
latency and jitter.

Potential Applications : HFT, data-center servers, …

2

Software Implementation (1) : Bypassing the Linux Kernel using
Raw Sockets

sd = socket (PF_PACKET,
SOCK_RAW, htons(ETH_P_ALL))

Issue encountered with linux kernel

sending spontaneous RST :

sudo iptables -A OUTPUT -o wlan0
-p tcp --dport 52000 --tcp-
flags RST RST -j DROP

NIC

DRIVER

TCP/IP stack

SOCKET RAW SOCKET
USER

KERNEL

3

Software Implementation (2) : TCP stack

Features :
 - Initiate connections by performing 3-handshake (SYN, SYN-ACK, ACK)
 - Can handle several connections at once
 - Performs reliable data transfer with appropriate ACK sending
 - Close connections by performing 3-handshake protocol (FIN, FIN-ACK, ACK)
 - User can switch from hardware implementation to software

implementation while using same function calls.

Not implemented TCP features :

 - Window-size advertising
 - Management of retransmissions

4

Software Implementation (3) : Implementation
- Structure that holds the connection data :

- Function to chose the software API :

- Software API :

struct tcp_ctrl{
 int sd;
 char *interface, *target, *src_ip, *dst_ip;
 uint8_t *src_mac, *dst_mac, *ether_frame;
 int *ip_flags, *tcp_flags;
 struct sockaddr_ll device;
 int seq, rcv_ack;
 uint16_t sport, dport;
 uint8_t *sdbuffer;
 struct tcphdr *tcphdr;
 struct ip *iphdr;
 int mtu;
 state_t state;};

struct tcp_ctrl *(*tcp_new)(void);
int (*tcp_bind)(struct tcp_ctrl*, char*, uint16_t, char*);
int (*tcp_connect)(struct tcp_ctrl *, char *);
struct tcp_ctrl *(*tcp_listen)(struct tcp_ctrl *);
int (*tcp_close)(struct tcp_ctrl *);

struct tcp_ctrl *(*tcp_new)(void);
int (*tcp_bind)(struct tcp_ctrl*, char*, uint16_t, char*);
int (*tcp_connect)(struct tcp_ctrl *, char *);
struct tcp_ctrl *(*tcp_listen)(struct tcp_ctrl *);
int (*tcp_close)(struct tcp_ctrl *);

int tcp_set_rawsck(void);

5

Software Implementation (4) : Golden Model

- Extensively used Wireshark to track packets sent.

- Golden Reference generated by sending an http request to Google using Telnet

- Comparison to Golden reference has been done manually.

6

Qsys
We use Qsys to generate the
interconnect.

-processor: 32-bit master

-slaves: 8-bit

-Have both Avalon MM and
Avalon ST signals

7

Hardware Module Interfaces
●  Maintaining state of connection in TOE
●  RAM_searcher searches/inserts/deletes a connection
●  Packet builder goes through connection_RAM, generating packets when connection is set

TOE Connection
●  Takes value of bits from Avalon MM. It interface with Avalon MM slaves.

●  If a new request comes in, and the current connection is open, it loads the data into
the local register, and compares this connection data with the previous existing ones
stored in RAM. This is handled by RAM_searcher.

●  Internal states maintained:

Load into local
register

Check in RAM_searcher

Returns the status of
the connection

Allows new connection checks

9

TOE Connection

Load into local
register

Check in RAM_searcher
Returns the status of
the connection

Allows new connection checks

intermediate module testing
with Modelsim

10

RAM_searcher Structure
●  RAM_searcher establish/delete a TCP connection

depending on the request
●  RAM maintains a list of existing TCP connection

●  Layout of data stored in the RAM

o  First slot is valid and TCP states
o  seq number (32 bits)

o  ack number (32 bits)

o  ip_src (32 bits)

o  ip_dst (32 bits)

o  mac_src (48 bits)
o  mac_dst (48 bits)

o  src_port (16 bits) + dst_port (16 bits)

RAM_searcher

11

Ram_searcher State Diagram
●  RAM_searcher could establish/delete a TCP

connection depending on the request
●  When establishing a new TCP connection first

try to search the RAM if there is already an
existing connection

o  If found then an error would be
returned

o  if not found then a new connection
is created/inserted

12

Ram_searcher: searching for a connection
●  Checks if there is already a connection

o  RAM addr incremented if going to
next state

o  chk_equal means found existing
connection

o  would return error
o  if not found base_address is set as

the address to write into

13

Ram_searcher: inserting a connection
●  Insert the fields into RAM sequentially

o  RAM address incremented by 1 in
the next state

14

Hardware Module Interfaces: Packet_builder
- Header data is stored

 -3 main Ethernet fields
 -12 main IP fields
 -11 main TCP fields

-Check of valid bit of each address
before proceeding with process

-Syn bit in seq num is set high

15

Hardware Module Interfaces: Packet_builder
-Results in a header for a packet

-Does what the software implementation did for making a packet

-Transmit out through Avalon ST in top-level file

- Packet_decomposer: opposite functionality (test using SignalTap)

Ethernet IP header TCP header

Conclusion

●  We show:
○  Software implementation of successful request for connection, with raw

socket API, and Wireshark verification, for hardware implementation of TCP
processing

○  Hardware implementation of integrated modules for starting a connection to

send a syn packet. Verification using ModelSim.
■  Modules include: TOE_init, RAM_searcher, RAM, packet_builder

17

References
[1] Lockwood, J. W. “A Low Latency Library in FPGA Hardware for High Frequency Trading.” 2012 IEEE Symposium
on High-Performance Interconnects. San Jose. 2012.

18

