Star Wars

CSEE 4840 Embedded Systems Design

Fang Fang(ff2317)
Jiaxuan Shang(js4361)
Xiao Xiao(xx2180)

Columbia University Spring 2014 Zhenyu Zhu(zz2281)

Overview of the project

e Inspired by the classic game Geometry Wars
o Various enemy flying round or chasing after the spaceship.
o Player’s goal 1s to survive as long as possible and get a score as
high as possible with 3 lives.
o Bomb available to destroy all the enemies at once
e Overall 60 entities, first entity saved for spaceship, 2nd to 30th for
bullets, and last 30 for enemies.
o ID number indicating entity type
o X, Y coordinates and direction information also contained in each
unit data

Architecture

ARM uUsB Game
Cortex-A9 Controller Controller

{

AXI Bus

Avalon Bus
VGA_Ball Audio_top On chip RAM

VGA _
Ball Emulator Audio_effects

VGA BALL

e Module: VGA BALL
e submodule: VGA BALL_ Emulator

reset state
-VGA _audio_ bullet» [J
>

—VGA _audio_collisiony»
—— reset—p
—VGA_BLANK n»
— chip_select-»]
. —VGA_SYNC n—>»
Avalon_bus L vga_ball VGA_R—>» | ‘ |
SSSSSSSSSSS tate

——addrss —» —VGA_ G—>»

——VGA_B—>»
—Ww ritedata—»;

——VGA_HS—>»

VGA BALL

e Receives 10-bit writedata in a total of 256 (2-
reg structure)

e Combines every four of them to form the
information for every object (in a total of 64):

[31:0] logic data_to_emulator: [id, X, y, direction]

e Connects to the submodule
VGA BALL_ Emulator to draw the graph

Flow Chart

update_done<=0

Receive data from
software

enable_ram==1?

data_index !=647

wait_stab

(Use a temp 32-bit
logic to store the

data from the ram)

No

ishi transmitting 4 info of one
obejct?(ID, x, y, direction)

update_done<=0

data_index <=0;
end_data_to_emulator <=1;
enable_ram <=0;

transfer_data
data_to_emulator<=data_to_emulator_tmp;
en_emulator <=1;

(Processing state)

draw_done?

Y
v

update_done <=1;
ram_select <= ~ram_select;
end_data_to_emulator <=0;
end_writedata_to_data <=0;
enable_ram <=1;

end_of writedata_to_data&&end_data_to_emulator?

process_data
en_emulator <=0;

data_index <= data_index +1;

VGA BALL

e Receives data from the software:

2-reg structure

One for transmission
One for updating

reg [9:0] data1 [0:255];
reg [9:0] data2 [0:255];

h 4

datal[addrssle=writedata

data_to emulator tmp[31:24]
<=data2[4*data_index]

L

data_to_emulator_tmp[23:14]
<=dataZ[4*data_index +1]

|

data_to_emulator_tmp[13:4]
<= data2[d*data_index+2]

|

data_to_emulator_tmp[3:0] <=
dataZ2[4*data_index+3]

ram_select==07

dta2[address}e= writedata

A 4

data_to_emulator tmp[31:24]
<=datal[4*data_index]

l

data_to_emulator_tmp[23:14]
<=datal[4*data_index +1]

|

data_to_emulator_trmp[13:4]
<= datal[4*data_index+2]

|

data_to_emulator_tmp[3:0] <=
datai[4*data_index+3]

VGA BALL Emulator

e Receives 32-bit object information and stores into 2
RAMSs: One for updating, one for transmission.

e Stores the RGB value of every object into the line buffer
(3 RAMs: one for updating, one for drawing, one for
cleaning) according to the object information.

e Read the rom and draw the objects according to the
RGB value

VGA BALL Emulator

Flow chart of Line Buffers

Audio Implementation

I2C protocol: data is sent a bit at a time over the SDAT wire, with the separation
between bits determined by clock cycles on the SCLK wire.

I2C 1s a master-slave protocol. In our project, the FPGA is the master and the audio
codec is the slave.

Audio components:
o I2C controller: control the transmission timing, configuration interface.
o Configuration controller: determines what data to send--16-bit words. Use 19 9-
bit regs to record configurations, the first 7 bits are the reg address and the last 9
bits are the register contents.

Reference: Exploring the Arrow SoCKit Part - The Audio Codec

Audio Implementation contd.

e Audio components (contd.):

o Clocks: use Cyclone V’s Phase-Locked Loops to generate master clock
for audio codec. Other bit clock and LRC are generated using frequency
divider.

o Audio codec driver: the data is pushed out or read in through shift
registers.

e Audio output:
o Receive flag information from software. Control production of sound.
o The .wav file is converted into .mif and the data 1s stored in ROMs.

Reference: Exploring the Arrow SoCKit Part - The Audio Codec

Software and algorithms

e Overall game logic control

bomb detection

bullet generation

enemy generation

collision detection

units movement control

score, life, bomb data collection

e Sending array messages of 256 elements to hardware
containing information of 60 entities and player data
information (scores, lifes, bombs, etc.)

O O O O O O

Flow Chart
(Software)

Start A New Game

Initialization all
game status
information

Il enemy ID turns into
NO_ID

Restart
key pressed

Checking for
NO_ID spaces

VGS

Bullet Generation
and Enemy
Generation on
NO_ID

——

Movement control
of all the entities
based on ID name

Collision
between avatar and
enemy

Collision
between bullet and
enenmy

Yis

[score++, enemy and bullet turn into NO_ID

Experiences and Issues

Game logic moved from hardware to software.
Improved logic usage (34% to 17%) on the board.
Better VGA display using sprite scheme.

Treat the reg/ram as memory and ensure only to
read/write one value from/into the memory at one clock
cycle.

After writing into the memory, the data could only be
read out two cycles later. Thus the state for stabilize the
data is needed.

Experiences and Issues

e Overlap:

Solution 1: Change the C code to avoid overlap (not
good)

Solution 2: Use the line buffers to store the 32-bit
information about the objects for each pixel (cannot solve
this problem)

Solution 3: Use the line buffers to store the RGB value
(currently use)

