Star Wars

CSEE 4840 Embedded Systems Design

Fang Fang(ff2317) Jiaxuan Shang(js4361) Xiao Xiao(xx2180) Zhenyu Zhu(zz2281)

Columbia University Spring 2014

Overview of the project

- Inspired by the classic game *Geometry Wars*
 - Various enemy flying round or chasing after the spaceship.
 - Player's goal is to survive as long as possible and get a score as high as possible with 3 lives.
 - Bomb available to destroy all the enemies at once
- Overall 60 entities, first entity saved for spaceship, 2nd to 30th for bullets, and last 30 for enemies.
 - ID number indicating entity type
 - X, Y coordinates and direction information also contained in each unit data

Architecture

VGA_BALL

- Module: VGA_BALL
- submodule: VGA_BALL_Emulator

VGA_BALL

- Receives 10-bit writedata in a total of 256 (2reg structure)
- Combines every four of them to form the information for every object (in a total of 64):

[31:0] logic data_to_emulator: [id, x, y, direction]

 Connects to the submodule VGA_BALL_Emulator to draw the graph

VGA_BALL

• Receives data from the software:

VGA_BALL_Emulator

• Receives 32-bit object information and stores into 2 RAMs: One for updating, one for transmission.

 Stores the RGB value of every object into the line buffer (3 RAMs: one for updating, one for drawing, one for cleaning) according to the object information.

 Read the rom and draw the objects according to the RGB value

VGA_BALL_Emulator

Flow chart of Line Buffers

Audio Implementation

- I2C protocol: data is sent a bit at a time over the SDAT wire, with the separation between bits determined by clock cycles on the SCLK wire.
- I2C is a master-slave protocol. In our project, the FPGA is the master and the audio codec is the slave.
- Audio components:
 - I2C controller: control the transmission timing, configuration interface.
 - Configuration controller: determines what data to send--16-bit words. Use 19 9bit regs to record configurations, the first 7 bits are the reg address and the last 9 bits are the register contents.

Audio Implementation contd.

- Audio components (contd.):
 - Clocks: use Cyclone V's Phase-Locked Loops to generate master clock for audio codec. Other bit clock and LRC are generated using frequency divider.
 - Audio codec driver: the data is pushed out or read in through shift registers.
- Audio output:
 - Receive flag information from software. Control production of sound.
 - The .wav file is converted into .mif and the data is stored in ROMs.

Software and algorithms

- Overall game logic control
 - bomb detection
 - bullet generation
 - enemy generation
 - collision detection
 - units movement control
 - score, life, bomb data collection
- Sending array messages of 256 elements to hardware containing information of 60 entities and player data information (scores, lifes, bombs, etc.)

Flow Chart (Software)

Experiences and Issues

- Game logic moved from hardware to software.
- Improved logic usage (34% to 17%) on the board.
- Better VGA display using sprite scheme.
- Treat the reg/ram as memory and ensure only to read/write one value from/into the memory at one clock cycle.
- After writing into the memory, the data could only be read out two cycles later. Thus the state for stabilize the data is needed.

Experiences and Issues

• Overlap:

Solution 1: Change the C code to avoid overlap (not good)

Solution 2: Use the line buffers to store the 32-bit information about the objects for each pixel (cannot solve this problem)

Solution 3: Use the line buffers to store the RGB value (currently use)