
Star Wars

 Fang Fang(ff2317)
Jiaxuan Shang(js4361)

Xiao Xiao(xx2180)
Zhenyu Zhu(zz2281)

CSEE 4840 Embedded Systems Design

Columbia University Spring 2014

Overview of the project
● Inspired by the classic game Geometry Wars

○ Various enemy flying round or chasing after the spaceship.
○ Player’s goal is to survive as long as possible and get a score as

high as possible with 3 lives.
○ Bomb available to destroy all the enemies at once

● Overall 60 entities, first entity saved for spaceship, 2nd to 30th for
bullets, and last 30 for enemies.
○ ID number indicating entity type
○ X, Y coordinates and direction information also contained in each

unit data

Architecture

VGA_BALL
● Module: VGA_BALL
● submodule: VGA_BALL_Emulator

VGA_BALL
● Receives 10-bit writedata in a total of 256 (2-

reg structure)
● Combines every four of them to form the

information for every object (in a total of 64):
 [31:0] logic data_to_emulator: [id, x, y, direction]

● Connects to the submodule
VGA_BALL_Emulator to draw the graph

Flow Chart
(Processing state)

VGA_BALL
● Receives data from the software:
 2-reg structure

One for transmission
One for updating

reg [9:0] data1 [0:255];
reg [9:0] data2 [0:255];

VGA_BALL_Emulator
● Receives 32-bit object information and stores into 2

RAMs: One for updating, one for transmission.

● Stores the RGB value of every object into the line buffer
(3 RAMs: one for updating, one for drawing, one for
cleaning) according to the object information.

● Read the rom and draw the objects according to the
RGB value

VGA_BALL_Emulator
Flow chart of Line Buffers

Audio Implementation
● I2C protocol: data is sent a bit at a time over the SDAT wire, with the separation

between bits determined by clock cycles on the SCLK wire.
● I2C is a master-slave protocol. In our project, the FPGA is the master and the audio

codec is the slave.

● Audio components:
○ I2C controller: control the transmission timing, configuration interface.
○ Configuration controller: determines what data to send--16-bit words. Use 19 9-

bit regs to record configurations, the first 7 bits are the reg address and the last 9
bits are the register contents.

Reference: Exploring the Arrow SoCKit Part - The Audio Codec

Audio Implementation contd.
● Audio components (contd.):

○ Clocks: use Cyclone V’s Phase-Locked Loops to generate master clock
for audio codec. Other bit clock and LRC are generated using frequency
divider.

○ Audio codec driver: the data is pushed out or read in through shift
registers.

● Audio output:
○ Receive flag information from software. Control production of sound.
○ The .wav file is converted into .mif and the data is stored in ROMs.

Reference: Exploring the Arrow SoCKit Part - The Audio Codec

Software and algorithms
● Overall game logic control

○ bomb detection
○ bullet generation
○ enemy generation
○ collision detection
○ units movement control
○ score, life, bomb data collection

● Sending array messages of 256 elements to hardware
containing information of 60 entities and player data
information (scores, lifes, bombs, etc.)

Flow Chart
(Software)

Experiences and Issues
● Game logic moved from hardware to software.
● Improved logic usage (34% to 17%) on the board.
● Better VGA display using sprite scheme.
● Treat the reg/ram as memory and ensure only to

read/write one value from/into the memory at one clock
cycle.

● After writing into the memory, the data could only be
read out two cycles later. Thus the state for stabilize the
data is needed.

Experiences and Issues
● Overlap:

Solution 1: Change the C code to avoid overlap (not
good)

Solution 2: Use the line buffers to store the 32-bit
information about the objects for each pixel (cannot solve
this problem)

Solution 3: Use the line buffers to store the RGB value
(currently use)

