
Ninja University
IN THE CITY OF NEW YORK

Kshitij Bhardwaj kb2673
Van Bui vb2363

Vinti Vinti vv2236
Kuangya Zhai kz2219

Overview
● Wiimote controlled object slicing game on SoCKit board
● Motivated by Fruit Ninja game
● Storyline: To become a Ninja, you must be very diligent and

fulfill program requirements by slicing your assignments,
exams, write your thesis, etc

● Strategy to become a Ninja
○ Slice objects to increase your score
○ Avoid slicing an F object
○ Slice objects before they disappear from the screen

Image Preprocessing
● Images for stationary and moving objects
● Generate a memory initialization file for each image
● Single-port ROM memory blocks
● 12-bit index color, i.e. 4096 colors

Audio Preprocessing
● Background music and sound effects
● Ogg Vorbis decoding - conversion to MIF format
● Single-port ROM memory blocks
● Sampling rate: 44100 Hz
● Quantization bits: 16 bits
● Edit audio files for length, channels, and sampling rate

Hardware Design

VGA DISPLAY MODULES

RGB Controller
● Sprite selection and movement controlled by software
● Hardware generates images
● Line buffer write operation
● Priority encoder for sprites

Line Buffer Write Operation

● Two line buffers used for reading and writing
● Write at alternate rows

Sprite selection logic
● Sprite selection and position based on control input

(on/off flag and coordinates) from game logic.
● Flag checking, calculation of address, data fetching

done using combinational logic, in parallel for all layers
(to ensure no timing issues).

● Priority encoder used for selecting the pixel to be written
into line buffer.

● Writing into line buffer using sequential logic at 25MHz
clock frequency.

● Used combinational logic to simplify design, other
options could be pipelining/ interleaving.

List of Sprites
Block Number of

Sprites
Size of Images
(pixels)

Total ROM size
(bytes)

Numbers 10 32x32 61440

Lives 1 32x32 1536

Ninja 3 64x64 18432

Weather 3 64x64 18432

Slicing
Objects

6 64x64 36864

Level
Selection

3 64x64 18432

Try Again 1 64x64 6144

Diploma 1 64x64 6144

NYC
Skyline

3 200x160 144000

Pass/Fail 2 64x64 96000

Total 33 401.28 KB

Audio Controller: Major Components

● Audio Data
○ Audio Samples stored in ROM blocks

● Audio Codec Configuration Interface
○ Configure audio codec SSM2603

● Digital Audio Interface
○ Send audio samples from ROM to audio codec at

audio clock rate

Audio ROM blocks

● Two sounds converted from ogg file format
to mifs:
○ city.mif : Background music
○ sword.mif: Ninja striking an object sound

● Both sounds stored in ROM blocks
○ city: 16 bit samples, 16537 words
○ sword: 16 bit samples, 22049 words
○ total size: 77 KB

Audio Codec Configuration Interface

● Uses I2C protocol to configure 16 9-bit
registers in audio codec SSM 2603

● Configured parameters include
○ Volume (0 db)
○ Mode (slave)
○ Sampling rate (44.1 khz)
○ Power on/off

Audio Codec Interface

● Operates at audio clock (11.3 Mhz)
● Implemented as Shift registers that send

audio samples to audio codec
● Two clocks derived from audio clock

○ Channel clock: Time multiplexed, send sample on
one channel (left or right) at a time

○ Bit clock: send a bit of each sample

Audio Codec Interface: Operation

Kernel Device Driver Modules

● VGA device driver
○ Ioctl calls to write positions (x,y) of sprites, scores,

remaining lives, select screens, select levels
○ VGA peripheral memory: 4-bit address, 16-bit words

● Audio device driver
○ Ioctl calls to control (on/off) of sword sound
○ Audio peripheral memory: 1-bit address, 16-bit word
○ Can be easily extended to control other sounds...

Debugging Methods

● System console scripts to test hardware
○ Audio sound
○ Sprites display

● Modelsim
● Modular design coding

Wiimote Controller
● Peripherals

○ wiimote, infrared sensor light, bluetooth USB dongle
● Software

○ Libwiimote (C-library)
○ Linux Device Driver: BlueZ, libwiimote-dev

● Recognize the infrared source on the screen
● Cast the screen size from 1784 x 1272 to 640 x 480
● Vibrate when cutting the bomb

Game Logic
● Implemented in the software world by C
● Interaction between user and hardware

○ User: bluetooth dongle connected to USB
○ Hardware: VGA and audio device driver

● Do the computation and control the game...
○ Input: infrared source position from wiimote
○ Output: current screen, position of sprites, ninja,

enabling the sound and vibration, score, life...

Experiences and Issues
● Wiimote connection takes longer than expected
● Codesign by contract in the favor of the hardware
● Interfacing with audio codec were the most difficult
● Audio buffers and interrupts
● Limited on-chip memory space

Lessons Learned
● Architecture design of SoCKit board
● Software and hardware co-design
● Collaborative coding
● Time management
● SoCKit tutorials by Howard Mao were very helpful
● Simple implementation first, then optimize as needed

Demo

