Mudd Adventure

A 3D Raycasting Game

CSEE 4840 Embedded Systems
Final Report

5/15/2014

Mingrui Xu(mx2151)
Wei Cao (wc2467)
Bowen Dang (bd2384)

Shijie Hu (sh3251)

Table of Contents
INErOAUCTIONaaeeeeeeeeeeeeeeeeeeeeeeeesecccccsesssennesssessesssssssssssssssssssnsnssnssssssnsssses 3
OVEIVIOW.....ceeeeeeeeeeeeeeeereeeeeeeeeessssenenneseseessssssssssssssssssssssssssnssssssssssssssssssssssssnsnnsnnns 4
SOFIWAIE c...eaeeeeeeeeeeeeeeeeeeeeeeccceccecessneeeeeeesesssssssssssssesssssssssssssssssssnsssssssssssssnnnns 5
L 11 =1 - T o PRSPPI 5
R Vo210 1] T IVAY (o Lo /11 1 T 1 1 TS 7
DAta DEIIVEIYuuueeveeeeviiriveiiciitieisssiteisssitessssssttssssssate s ssssase s s ssses s sssssa s ssssssessssinns 8
(CE T =T o X:To [0201 1 11 4 o] ISP 9
SOftware to HardWare..............eeuecirveveennniiiiinneneenisssnssnns 10
TEXLUIE GENEIALIONceeueeeeeireniiieniiriiiriisissnsissnsisressessesssssssssnsessssssssssssssssssnsossnssssnssnes 10
HOAIrAWArE..........c..eeeeeeeeeeeceeeeeiseeeeineereeisiessenneessnessesseassessnssssssessssssssssssssnssssssnsssnenes 12
HOArdware ArCRItECEUIE.........ceeeuueeeeeeneiieeeeiiireeetiereeniiessenasiesssnsseessenssesssensssssssnsssssssnnnans 12
11V Lo 4 1o T 3 =T o SO PUPPR 15
=11 Lo L RPN 15
L N I 1 0 o =TT L 16
TimiNgG D@SigNveeeeeirieeeniiiiiieiiiiiiiiiiiiesiiiiiesaisreesassssessasssstsssssssesssssssssssssssesssssnnes 16
Y 1 S 16
AUIO.......eeeeeeeeeeeeieeeeeeteeeeetttssesssesessssssssssessessssteesssssssnnsssssssssssssssssssssssssessnsssnnens 20
LesSSON 1earned..............eeeeeeeeeeeececeeeeeeeeeeeeeesssssesssssssssssnnssssssssssssssssssssssnns 21
RESPONSIDIIILIES ...eeeeeeeeeeeeeeeeeeeeeeeeeereiieereeniereeeeeeseanserrnessessesssssssnssssssnssssssnsssnenes 21
REfEIEINCE.......ccceuueeeeeeeeeeeneeereieseeeeneeereeeeeernnseersnesssssenssessnssssssensssssssssssssnssssssnsssnannn 22
Y Y] =1 1 T [O 23
VGO_1EU.SV .oeeeeeeeciiiiiiiiieiiiccciisiiiiinniiiisessssitsssssessessssssssssssssssssssssssssssmssssssssssssssssnnsses 23
VGA_LED _EMUIGEOL.SV..ccueeeeenneciiriiiiivneenseeisssnsennniasssssssssssssssmsssssssssssssssmssssssssssssssssansses 24
Lo Lo] o B2 [=Tote To L=T g TP PPPPPTN 28
AigitQl_d@COAC.SVeeueeeeiiiiiiirvraiiieiiiiiiiiiniisissssisssininsisssssssssssnssssssssssssssssssnsssssssssssssnns 34
AigitQl_diSPIAY.SVeeeeeeeeciiiiiiiiiriieicisiiiiiiiniiisssssisessninsssssssssssssmsmsssssssssssssssnssssssssssssnes 34
JIGAT.SV .ceeiiiiieieeeciiiiiiitiiiiiccississtiriiisseesssessssssassssesssssssssssasssssssssssssssssssssssssssssssnnnnnes 35
QUAIO_TOP.SV c.eueviiiirrrnniiiecisiiiiiinniiisesssissssnsnssssssssssssmssssssssssssssssssnsssssssssssssssnsssssssssssssnns 42
QUAIO_BSfECES.SV ceevevernieceiiiiiiiiiiiiiicissiiiniiinsiisssssssessninsssssssssssssmssssssssssssssssssnsssssssssssssnes 44
INUAA.Ceeeeeeeeeeeeeeeeeeiceeeetieeeeettteessetseesssesssesssesssssssesssssssnssssssnnssssssnsssssssnnssssssnnsasnens 45
VGO_JEU.Cuuaveeneeenciiiiiiiiinniiiecisiiiiinnniiiecssssstessnsssnsssssssssss 56

VGO_JEU. R caaaaeeeeiiiiiiiieeeiiccciiiiiiiinniiiccissisintsnnsssesssnsssssssssss 60

Introduction

In our project, we designed and implemented a virtual 3D
first-perspective shooting adventure game by using Raycasting technique. The
player will be placed into to 3D loop maze and fight with the monsters when
moving forward to the finish line. The player can move back and forth, left or
right in the 3D world. But the only way to win the game is to beat the monsters
and arrive at the finish line alive.

A gamepad will be the game controller as an input. The 3D world will be
displayed on the VGA output. Also some sound effects could be sent out from
the output speaker during the game.

The project is divided into software and hardware components and the
communication between the software side and the hardware side is the key
part to realize the game. In the software, we modified the Raycasting and DDA
algorithm to keep track and update player’s position in the map. The
Raycasting algorithm will calculate the wall heights according to the player’s
position. Software will receive the gamepad inputs from the player and
generate the commands to make the update in the game. We also finished
wall texture modification and resize in the software.

After the software side finishing the algorithm and calculations, it will
pass the data to the hardware. In hardware, we mainly interpret the data to the
VGA display on the screen. A FSM including all the game elements is
implemented as a very important part of the hardware. Also the sound effects
come out from the hardware side.

Even though the game runs good but we think there are still some
improvements can be optimized in the future to make it more interesting.

Enjoy the game.

Overview

Here is the overview structure of our project.

System Overview

Software I Hardware
3D ' Mudd FSM Game
display Adventure System
Game Pad Sound
input Effect

Figure 1. Overview

Software

Game Map

Firstly, we need to define the map of the game at the beginning of the
software code.

WIW[WF
{0.0.0.0.0.0.0.0.0.0.0.0.0.0.l1.1.1.1.1.1.1.1.1.1.1.1 11111449,
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0.1).
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0.1).
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0.1).
{0,0,0,0,0,0,0,0,0000,0,0,1,00011,1,00,0,1,1,0,0,0,1,1,0,0,0.1}.
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0.1).

0,0
0,0
0,0
0,0
0

110 1
{0,0,0,0,0,0.0,0.0,0,0,0,0,0,1,0,001,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,4}.
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,00,1,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,%}.
{0,0,0,0,0,0,0,00,0,0,0,0,0,1,0,001,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,9}.
{0,0,0,0,0,0.0,0,0,0,0,0,0,0,1,0,00,1,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,%}.
{0,0,0,0,0,0.0,0,0,0,0,0,0,0,1,0,00,1,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,4},
A1 111911111100011,10,0,01,1,0,0,0,1,1,0,0,0,9}.
{1,00,0,0000000021000011,1000
{1,0,0,0,0000000021,0000,11,1,00,0, !
{1,0,0,0,0,00,0,000021,00,001,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,%}.
10008490 409111.1.1.1.1.1.1.11.11.1,1,11,1,1,1,1,1,0,0,0.9).
{1,00,01.00.0,0,0,0,0,0,0,0,0,01,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,%}.
{1000444441110,0,0001,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}.
(l.0.0.0.0.0.0.0.0.0.0.‘I.0.0.0.0.0.1.0.0.0.0,2.2. .2.0.0.0.0.0.0.0.0.1}.

{1,0,0,0,0000,00,0.1,0,0,0,0,01,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0}.
{19141111410001,0,000010,001,0,0,0,0,0,0,0,0,0,0,0,0,0}.
{0,0,0,0,0,0.04.00,01,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0}.
{0,0,0,0,0,0.0,4.00,01,0,0,0,0,01,0,0,01,0,0,0,0,0,0,0,0,0,0,0,0,0}.
{0,0,0,0,000400011111110001,11.1111.1.1.1.1.9.4.9).
{0,0,0,0,0,0.04.0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,%}.
{0,0,0,0,0,0,0,4.0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,%}.
{0,0,0,0,0,0.0,4.0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,%},
{0,0,000004411111000111,111111,11,1,1,1,0,0,0.9}.
{0,0,0,0,0,0.0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,4}.
{0,0,0,0,0,0.00,0,0,00,0,1,0,0,01,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,9}.
{0,0,0,0,0,0,0,00,0,00,0,1,0,0,01,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,9}.
{0,0,0,0,0,0.0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,}.
{0,0,0,0,0,0.0,00,0,0,0,0,1,0,0,01,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,9}.
{0,0,0,0,0,0.0,00,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,%}.
{0,0,0,0,0,0.0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0.4}.
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4}.
{0,0,0,0,00.0000,00,01,0,0,01,0,0,0,0,0,1,00,0,1,1,1,1,1,9,5.19}.
{0,0,0,0,0,0,0,00,0,00,0,1,0,0,01,0,0,0,0,01,0,0,0,1,0,0,0,0,0,0,0}.
{0,0,0,0,0,0,0,0,00,00,01,0,0,01,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0}.
{0,0,0,0,0,0.0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,14,0,0,0,0,0,0,0}.
{0,0,0,0,0,0.0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,14,0,0,0,0,0,0,0}.
{0,0,0,0,0,0.0,00,0,00,0,1,0,0,01,11,1,1,1,1,0,0,0,1,0,0,0,0,0,0,0}.
{0,0,0,0,0,0.0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0}.
{0,0,0,0,0,0.0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0}.
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0}.
{0,0,0,0,0.0.0.00,0,00,0,1,1,1,1.1,11,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0}

Figure 2. Map

You can see that this map is a loop and consists of “mudd”, this four
letters. The player will be placed at the right side of the wall with the label "2” at
the beginning. Then the player will follow the route with the clockwise direction
in the 2D map to the finish line with the wall label “2” to finish the adventure
game.

Array entries that are 0 represent an empty space where the player can
walk through. Array entries larger than O represent the wall with some specific
texture on it. To make it simple, we just added three textures in the game.

Stone Penguin

Win

Figure 3. Wall Textures

The texture “Stone” is put on the walls with label “1” which face left and
right in the 2D map. The texture “Penguin” is put on the walls with label “1”
which face up and down in the 2D map. The texture “Win” is used on the wall
of the finish line with label “2”. The reason why we used the textures of a wall
stone bricks and a cartoon figure is to test the display performance of our
texture generation algorithm and calculation for different kinds of textures. The
result is that the wall shows perfectly.

Raycasting Algorithm

Our project is basically a simple 3D shooting adventure game and the
Raycasting is the key part of our 3D display rendering technique. This
technique is used to create a 3D perspective on the monitor by utilizing a 2D
map. So for the software aspect, performing the Raycasting calculation
algorithm is the key part. We followed LodeV’s Ray Casting tutorial with C++
code as a good start point to understand the algorithm; then we made the
modifications to make it generate the data we need in the software.

The basic idea of Raycasting technique is as follows: the map is a 2D
square grid, and each square can either be 0 which means the place is vacate
and the player is free to walk through, or a positive value which means the
square is occupied by a wall.

For each x-coordinate value of the monitor screen, a ray will be sent out
starting at the player location and with a direction that depends on both the
player's looking direction, and the x-coordinate of the screen. Then, let this ray
move forward on the 2D map, until it hits a map square that is a wall. When it
hits a wall, the distance between the hit point and the player position will be
calculated, and use this distance value to calculate how high this wall has to be
drawn on the screen to make the 3D vision. The wall is higher when it is closer.
If it is far, it should be relatively small. These are all 2D calculations.

Figure 4. Raycasting laser measure

The image above shows the overview of the process. The green dot is
the location of the player. Two red lines are rays. Here, both rays hit the walls
so their lengths will be saved for the 3D rendering calculation.

In our game, the screen width is 480 which means that for each time,
we need to calculate the wall height 480 times to get data for each column of
the screen. Then we need to pass this data set with 480 binary number to the
hardware part through Avalon bus. Each column data in the data set is

assigned an address from 0 to 479. Then we can retrieve data of each column
by calling its address at the hardware and then make the process for the game
and VGA display.

Taking the player position as the input, the whole Raycasting software
code performs a loop to update the data every time according to the clock rate.
When the Raycasting loop is done each time, the time duration of the current
and previous frame can be calculated as well as the FPS value. The ARM
Cortex A9 processor we use here can deliver devices capable of over 1GHz
clock frequency. So the performance should be great. So actually we can just
set the frame time as a constant value to determine the speed of moving or
rotating and the FPS calculation will be unnecessary.

Data Delivery

After calculations for each column, a 62-bit data number will be
generated. Here is table showing the data types we deliver from the software
to hardware.

Data Name Bit Number Bit Allocation
drawStart 10 bits 9:0
texX 10 bits 19:10
color 2 bits 21:20

scenario 4bits 25:22

control 3bits 28:26

gamereset 3bits 31:29

texY 14bits 45:32

coff 16bits 61:46
Figure 5. Data Delivery Table

Here are the functions of each data:

* drawsStart: This is the data number calculated by the raycasting algorithm
to determine the wall height of each column. Because the wall is symmetrical
subject to the half-height horizontal line of the screen, we just need this to draw
the whole wall rather than using an extra drawEnd signal.

* texX: This is the x index of the texture column on the wall. This data will be
used in hardware as the address of texture ROM to assign texture pixels on
the column.

* texY: This is the y index of the texture column. With texX and texY, we can
determine how every pixel of the column looks like on the screen.

» coff: This is the result from the texture resize calculation. It will be used in
the hardware to make the texture column larger or smaller.

* color: This determines the label or the direction of the wall. In the
hardware, it will be used to determine which texture from the three above will
put on the column.

* scenario: In the software, we generate some random numbers and use
some condition sentences to determine what kind of sprites will show on the
screen. In the hardware, when the scenario meets the requirement of a
specific sprite’s condition, that sprite will show on the screen. There are three
sprites in the game and they will be introduced later.

* control: This signal will control the gun fire effect display and gun fire
sound.

* gamereset: This is used to reset the game.

Gamepad Conftrol

We use a gamepad to control the game. The gamepad protocol is
similar to the keyboard from the lab2. The difference is the value for each key
on the gamepad is different to the original keyboard. The gamepad controller
receives data through PS2 serial interface. It was modified so that while
receiving a data token from the gamepad, it stores data information to a
register. Then the data go to the software code to performance each game
operation.

In the game, the direction keys or direction moving stick are used to
make the motion of moving forward, backward, left, right. When forward and
backward keys are pressed, the player position in the map will be updated by
0.02 length unit each time in the 2D map. When the left and right keys are
pressed, the view plane of the player will be updated. We programmed four
command keys with label “17, “2”, “3”, “4” on the gamepad. When key “1” is
pressed, player can pick up the bullets or health pack if they show up on the
screen. When key "2” is pressed, player can reload the bullets. When key “3” is
pressed, player can heal himself if he has extra health pack. Key “4” is used to

fire the gun.

If the player is dead or wants to play from the beginning at any time, a
reset command can be realized by pressing “mode” then pressing key “1”.

10

When the software gets the motion command from the gamepad, the
new distance calculations will be activated in the code after locating the new
player location on the map. And the new dataset will be send to the
corresponding SRAM part. Then new 3D will be showed out via VGA to the
screen.

Software to Hardware

Texture Generation

We also add textures to the walls of the maze by generating textures as
the same as LodeV’s code. Actually we can not only get just the start and end
coordinates of the vertical line in the algorithm, which is the integer number tab
of the wall, but also more information that is the precisely decimal map position
handling by the increment method of the ray-casting algorithm. That means
we can obtain the exactly x-coordinate of the pixel of the wall between 0 and
127. Meanwhile, we should also keep in mind that whether we hitan xoray
wall. In the ray-casting algorithm this is given by the output of “color” (As is
shown in the appendix of mudd.c). The total textures we use in the map are
three, as are shown above. They are used as X-wall, Y-wall, and final-win logo,
respectively. Our pictures are 128*128 pixels with each pixel of 24 bits for RGB
color display. What we mainly focused on in the texture part is how to lay it out
in the hardware. The x-coordinate that has been discussed before is calculated
by the ray-casting algorithm as a function of current position in the map. The
y-coordinate is represented by two points we call drawstart and drawend.
Roughly speaking, we draw the map line-by-line in the VGA raster. In order to
show the 3D effect, we use interpolation between start and end to scale the
size of the picture. The sky and floor are drawn from the top of the screen to
the drawstart, and from drawend to the bottom of the screen, respectively.

Figure 6 shows how to lay it out in hardware. We use two 32-bit data in
software to transform y-coordinate and x-coordinate with scaled coefficient to
hardware. In hardware, it is receipted by two RAMs and combined to store in
one 64-bit logic variable. Then we use function (1) to calculate the pixel
address in the texture ROM. Notice that in the actual program, the texX*128 is
calculated in the software, as well as the original coefficient, as is shown in
equation (2). Doing these operations in software improve time performance of
the whole system very significantly. We will show it later in the time analysis
section. The coefficient is scaled by multiplying 16384 is to avoid the
appearance of decimal number for the resample algorithm and keep high
resolution of the interpolation process.

11

Hardware VGA Raster

First 32 bits

Wall Y-Height
(Height)

Pixel Address

[
| i
1 1
1 1
1 1
1 1
1 1
1 =z 1
1 c 1
1 5 1
: - Texture ROM :
Second 32 bits : = :
Wall X-location I = I
and scaled coff : :
\ /

\ /
\~_ ________________ _’/
Figure 6
addr_wall = (texX*128+((hcount-drawstart*2)*coefficient)/16384) (1)
coefficient = (128/(drawend-drawstart))*16384 (2)

In sum, the texture generation module maps a 128*128 pixel texture to
a wall from the current location of the player. It receives the index of the x-y
coordinate of the wall as an input from the software to the hardware. Its output
is the address of the color data, and the actual data will be fetched from the
texture ROM. We use three ROMs to pre-load the three textures with 24 bits of
color data for each pixel. Since we use two different RAMs to receive
x-coordinate and y-coordinate respectively, it keeps two combinational logic
running in parallel and we lower the clock frequency by half and combine them
together before calculating address. This is also a way to improve the image
performance by eliminating noise. The interactive RGA_raster and texture part
is shown as follows in Figure 5.

VGA_CLKe / Draw Starte
%

—

VGA_HS+ Texture X-location«
PEE—

VGA_VSe
PEEE—— Texture number«

VGA_BLANK« L VGA Texture

—_—] Display« Generatore |
VGA_SYNC

I VGA Raster.

VGA_R~
<« L|

VGA_G+¢
%
VGA_B~ Current Row«

e - |2 P
CLK(SOMHz)« Row and Column scan« { Current Columne

%QKJ /

Figure 7. VGA Raster

Side(X or Y)«

Resample coefficient:

12

Hardware

Hardware Architecture

Hardware architecture is showed in above figure.

.
USB«
Audio~ HPS«
Flag« Register¢ ———> Flag«
Address Datadecoder« FSM«
Decode«
VGA-LED |
ROM« Display« |

Figure 8. Hardware Structure

Joystick communicate with HPS according to USB protocol, HPS reads
joystick’s key value and encode them into control flag. Together with 3D
display data generate by ray casting algorithm, these flags are written to
avalon bus.

13

For FPGA part, the 32 bits writedata signal reads data in and write them
in a register RAM.

Register read 2 32-bits words in, stored them in 2 RAM and send
64-bits word out. Read address of the RAM is vertical line counter because
every word given by software contains information of a line on the screen.
Then these words are sent to module data_decoder.

Data_decoder read 64-bits words in and decode them into different
flags: shoot, fire, control, inscreen, senario, color, game reset. Shoot flag is
one of joystick’s key value which represent behavior “shoot” in game. Control
and game reset flag represent other keys of the joystick which represent reset,
pick up, refill etc. These control flags are sent to a finite state machine .

Another kind of flag is to represent the position and condition of spirits
on. inScreen is to decide whether the current point is on the wall; color is to tell
which wall the current point hit at. These flags make pasting spirits more easier.

Data decoder also has the function of address decode. Horizontal
counter and vertical counter of VGA changes every clock cycle. When we
need to draw a picture on screen, data decoder visit a ROM which stored the
picture and read the specific value of the address. This address is the function
of clock and other flags such as inScreen and color. The color value stored in
ROM is then send to VGA-LED screen and showed.

Some addresses are easy to calculate such as boss spirit and sky,
while some spirits’ addresses, such as wall texture, are hard to calculate. For
these texture are reshaped so they require sampling. The address generate
method for texture is special discussed in other parts. Following figures are the
spirits we used in our project.

14

Figure 9. Gun, Game Sprites and Sky

Apart from paste pictures on screen, we also need digital displayed on
screen. So we first implement a 7-segment digital display module which
initialize a 7 segment digital of arbitrary size and position. Second we
implement a digital decoder module to transfer numbers into 7 segments code.
Then we write a module to transfer any binaries into decimals. With these
three module, we can show any digital on any part of screen.

15

Figure 10. Game Environment

As showed above, the digitals are displayed at the left corner of the
screen. The digitals show player’s blood volume and bullets’ amount. These
numbers are generated form finite state machine and change accordingly.

Motion Effect

We add some motion effect to our game. When shoot the boss, there
will be fire flashing at muzzle, and riflescope will converge. These effects are
controlled by a flag direct coming from software and update every clock cycle.

Memory

Memory module is used a lot in design. All pictures are transferred to
memory initial file and stored in ROM. ROM module has three ports, clock,
read address and q. Datas are stored in memory in sequential. When given an
address, ROM will send a corresponding data at the postage of clock.

RAM is another important module in memory. Apart from read port
which is the same as ROMs, RAM also have write port. Given an address and
a data, RAM will read the data and stored it to the corresponding space.

In our design, we use two port RAM as register and buffer. These two
port RAM shorten critical length and simplify our synchronous design.

16

VGA_LED screen

VGA_LED screen is the most important peripheral. VGA works under
50MHz clock, and has initial resolution 1280* 480. Every cycle horizontal
counter pluses 1 and at the end of each line and vertical counter plus 1. Every
point assigned a color value and displayed on screen.

Timing Design

The reference clock frequency available for us is 50MHz. VGA-LED
screen is driven by 50MHZ and its initial resolution is 1280*640. However, the
initial design can only run at 7.5MHz and the spirits has many unexpected
noise points even for a static spirits.

First we add a register to store the data. The circuit and restricted clock
became 10MHz. Then we find division in address decoder is time-wasting. So
we move this part to software and clock restriction moves to about 25MHz.
Now the critical path is still the division path. However division is hard to
exclude from design so we lower the resolution of the screen form 1280*480 to
640* 480. Under this resolution, the address changes every 2 clock cycle,
which is enough for division and other calculation. After these change, the
spirits are free from noise.

FSM

After designing the framework of the hardware, we further improve our
game to make it a First-Personal Shooting Game(FPS). To avoiding timing
problem, we use a FSM to build our game system.

Before we building our system, we first come up with an overall design.
Actions of the player are listed in the following, each refer to state in the FSM.

1. Move

17

We can imagine that when the player is moving in the maze(which is
already realized by the game pad), there are chances that he got treasures or
meet with enemies. The chances of different depend on a random value, which
is generated in the software. It then flow through the 10-bus into the hardware
and trigger the event in the FSM.

2. Event

There are two possible events in our game design: encountering
enemies, then fight with it; and finding treasure, pick it up. There are two kinds
of treasure boxes in the game, caisson and first-aid-bag. They are valuable
because the player is really easy to die. When each event is triggered, the
game will soon enter another state to make the game process.

3. Fighting

When we encounter a monster, we have to fight with it or die. Because
of the limit of memory , we just make it in the form of round system, to avoid
any timing problem. The time period of each round is short and it can simulate
a real time system. In the player’'s round we can make three possible actions:
shoot, heal and reload. In our game, player is equipped with up to 3 clips and 3
first-aid-bags. Every time the player is out of bullet, or badly hurt, he could take
a round to use these items. After the player finished his round, the boss hits
the player and does an amount of damage. The player can’t move forward until
the monster’s hp falls to zero and is defeated.

4. Healing & Reloading

The initial hp of the player is 90, which is shown on the left bottom of the
screen. When the hp of the player has fallen below zero, he will definitely fail.
Here we use a single button to control healing action. It is the same as
reloading. The amount of ammunition will decrease very fast in the fight and
time to use the caisson is important.

5. Lose & Win

As long as the player defeated all the bosses and reached the terminal
point, or is killed by a monster, the game is over. This state needs only special
efficacy, no operation of the player.

18

6. Reset
An important part of the game system is restart function. In our game
design, we use a button to reset the game. When reset is triggered, everything

in the game is initialized. The player goes back to the starting point with full hp
and clip.

TREASURE2
N

" ~TRANSITION

1oAp

sols_mu

/HAO

START

HJHI

l \‘ BOSS ROUND —— CURRENT STATE

WIN l

e
Figure 11. Game FSM 1°' Verson

After determining all the basic parts of the game system, we now draw
sketch of our FSM of our game system, as shown below:

In our FSM, we need 6 input signals, including control signals from the
game pad, and the random variable deciding the event from the software. To
further complete our game system, we consider some possible scenarios.

What happens when there is no enemy? In fact the player still should be
able to shoot, or to heal himself. Furthermore, we want our weapon charged
automatically.

After adding all the essential input signals, we finished our FSM design.
As shown in the graph, we add some redundant states to our design. Our aim
is to split one state with many in-state steps and calculations in two to meet the
timing requirement.

19

Reset

Treasure
Idle
GET
Control=3"b001
r
Control=3'b00
iti Treasure
Transition
1,2,3
Boss_select=2'b00

Rickup=3'b00

Control=3’b010 BOSS_INI HEAL
Clip_cur>0

Control=3’b010
]LCHP_CUI’>0 (
Eolal < L START
Boss_select!=2
FIGHT
Boss_select!=2"b00
Boss_Hp==
BOSS CURRENT
ROUND STATE
WIN Hp==
LOSE

)
)

Figure 12. Game FSM 2™ Version

20

There are some problems we met during the design. The greatest
problem we met is the synchronous of software input and state machine. At
first our random variable changes so fast that it can’t be applied to the state
machine. To solve this problem, we use the moving forward keycode as the
trigger event of the random variable, and it is also the input of the FSM. The
two events (pushing button and encountering) are proved to work well with
each other.

Another problem with our design is the synchronous of the state
machine and the display. At first our state changes too fast, which affects its
output which controls the display. Most of the time the control signal changes
before a complete picture is shown on the screen. Our solution is to make the
trigger evet from positive edge of clock to a combination of vcount and hcount.
That ensures that a control signal won’t change or be transmitted to the display
module before the formal circle of scan.

Besides the system design, we made some improvements to make our
whole game look better, like simulating a Muzzle sparks. The detailed
information is referred in the hardware architecture part.

Audio

The protocol the audio codec uses for configuration is the
Inter-Integrated Circuit (I2C) protocol. This is a two-wire protocol originally
designed by Phillips Semiconductor in the 1980s to connect peripherals to the
CPU in TV sets. Nowadays it's used to connect low-speed peripherals in all
sorts of devices. The two wires in the 12C protocol are labeled SDAT and
SCLK for Serial Data and Serial Clock respectively. In 12C, data is sent a bit at
a time over the SDAT wire, with the separation between bits determined by
clock cycles on the SCLK wire. SDAT and SCLK are also sometimes
abbreviated as SDA or SCL.

SSM2603 register is the place where the sound comes out. Also the
sound effects are stored in ROM as .mif files. When the fire button is pressed,
the sound command is triggered and the fire sound will come out.

21

Lesson learned

* Love what you are doing: The embedded system project is really a tough
task. We have to devote lots of time on design, coding, debugging and
improving the structure. The board information is very limited so we have to
study the coding and structure from scratch. Sometimes, we really felt
suffering when some thing goes wrong. Then spending time on debugging is
another task. So, we need take lots of efforts on the project and loving it is the
key motivation to make it better.

* Good structure is necessary: The data and file structure of both
software and hardware is the very important part. A bad structure can lead to
failure and resource waste. So just have a good plan at the beginning so the
structure will be maintained great.

* Debugging technical: Debugging is also important and common during
the design and testing. In order to find the bugs quickly, we have to use some
debugging technical to test the code more efficiently.

* Timing issue: We did not pay great attention to the timing issue or clock.
The result was we got much noise and errors. So if you expect your project
having better performance, please focus more on timing.

 Teamwork: To finish a relatively large project efficiently, a good teamwork
and collaboration is quite necessary. We divided the tasks to each one fairly
and clearly, so overall the progress of our project is smooth.

Responsibilities

Mingrui Xu

Adapting algorithm of software and mapping
Texture Generation and system interconnection between components
Group organization

Wei Cao
Algorithm software design and debug

Audio design and realization
VGA rastering and debugging

Shijie Hu

Hardware design and memory module
Timing optimization

Gamepad realization

Bowen Dang

Gameplay design

FSM design and
Gamepad realization

Reference

1. Lode's Computer Graphics Tutorial, Raycasting
http://lodev.org/cgtutor/raycasting.html|

22

23

Appendix

Vga_led.sv

/*
* Avalon memory-mapped peripheral for the VGA LED Emulator
*

*

*

*/
// now this module is only about sub-module connection and digital tranfer

module VGA_LED(
input logic clk,
input logic reset,
input logic [31:0] writedata,//control: writedata[7:0]
input logic write,
input chipselect,
input logic [9:0] address,
output logic [7:0] VGA_R, VGA_G, VGA_B,
output logic VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK n,
output logic VGA_SYNC_n,
output logic VGA_shoot);

logic [9:0] vcount;
logic [10:0] hcount;
logic [23:0] colorl;
// logic shoot;
logic [1:0] wound;

VGA_LED_Emulator led_emulator(.clk50(clk), .*);
Data_Decoder data_decoder(.shoot(VGA_shoot),.*);

logic [6:0] hp;

logic [5:0] am;

logic [1:0] clip, bag;

logic [7:0] hp_t,hp_n,am_t,am_n,clip_t,clip_n,bag_t,bag_n,hex90_t,hex90_n,hex60_t,hex60_n;

24
digital_display digital_am(.number(am),.tens_code(am_t),.nums_code(am_n),.*);

digital_display digital_hp(.number(hp),.tens_code(hp_t),.nums_code(hp_n),.*);
digital_display digital_clip(.number(clip),.tens_code(clip_t),.nums_code(clip_n),.*);

digital_display digital_bag(.number(bag),.tens_code(bag_t),.nums_code(bag_n),.*);

digital_display digital_90(.number({8'd90}),.tens_code(hex90_t),.nums_code(hex90_n),.*);
digital_display digital_60(.number({8'd60}),.tens_code(hex60_t),.nums_code(hex60_n),.*);

endmodule

VGA_LED_Emulator.sv
/*
* Seven-segment LED emulator
*

* Stephen A. Edwards, Columbia University
*/

module VGA_LED_Emulator(

input logic clk50, reset,

input logic [7:0]
hp_t,hp_n,am_t,am_n,clip_t,clip_n,bag_t,bag_n,hex90_t,hex90_n,hex60_t,hex60_n,

input logic [23:0] colorl,

output logic [9:0] vcount,

output logic [10:0] hcount,

output logic [7:0] VGA_R, VGA_G, VGA_B,

output logic VGA_CLK, VGA_HS, VGA_VS, VGA_BLANK_n, VGA_SYNC_n);

/*
* 640 X 480 VGA timing for a 50 MHz clock: one pixel every other cycle

* HCOUNT 15990 1279 15990

* | Video | | Video

* |SYNC| BP |<-- HACTIVE -->|FP|SYNC| BP |<-- HACTIVE

*

1| VGA_HS |]
*/

// Parameters for hcount

parameter HACTIVE =11'd 1280,

1600

25

HFRONT_PORCH =11'd 32,

HSYNC =11'd 192,
HBACK_PORCH =11'd 96,
HTOTAL = HACTIVE + HFRONT_PORCH + HSYNC + HBACK_PORCH; //

// Parameters for vcount

parameter VACTIVE =10'd 480,
VFRONT_PORCH =10'd 10,
VSYNC =10'd 2,
VBACK_PORCH =10'd 33,
VTOTAL = VACTIVE + VFRONT_PORCH + VSYNC + VBACK_PORCH; // 525
//logic [10:0] hcount; // Horizontal counter
// Hcount[10:1] indicates pixel column
(0-639)
logic endOfLine;
logic endofc;
logic endofv;

always_ff @(posedge clk50 or posedge reset)

if (reset)

begin
hcount <= 0; endofc <= 0;

end

else if (endOfLine) begin

else

hcount <= 0; endofc <= 0;
end
begin
hcount <= hcount + 11'd 1; endofc <= 1;

end

assign endOfLine = hcount == HTOTAL - 1;

// Vertical counter
//logic [9:0] vcount;

logic

endOfField;

always_ff @(posedge clk50 or posedge reset)

if (reset)

begin
vcount <= 0; endofv <= 0;

end

else if (endOfLine)
if (endOfField) begin

vcount <= 0; endofv <= 0;

26

end
else begin
vcount <= vcount + 10'd 1; endofv <= 1;

end
assign endOfField = vcount == VTOTAL - 1;
// Horizontal sync: from 0x520 to Ox5DF (Ox57F)
// 101 0010 0000 to 101 1101 1111
assign VGA_HS = !((hcount[10:8] == 3'b101) & !(hcount[7:5] == 3'b111));

assign VGA_VS = I(vcount[9:1] == (VACTIVE + VFRONT_PORCH) / 2);

assign VGA_SYNC_n = 1; // For adding sync to video signals; not used for VGA

// Horizontal active: 0 to 1279 Vertical active: 0 to 479
// 101 0000 0000 1280 0111100000 480
// 1100011 1111 1599 100000 1100 524

assign VGA_BLANK_n = !(hcount[10] & (hcount[9] | hcount[8])) &
I(vcount[9] | (vcount[8:5] ==4'b1111));

/* VGA_CLK is 25 MHz

*

* clk50 I I T e

*

*

* hcount[0]__|
*/
assign VGA_CLK = hcount[0]; // 25 MHz clock: pixel latched on rising edge

logic inChar; // In any character

assign inChar = (vcount> 431 && vcount < 465 && hcount > 1215)| |(vcount > 470 &&
vcount < 479 && hcount> 1215);

logic [2:0] charx; // Coordinate within the 8x16 char
logic [3:0] chary;

assign charx = vcount[2:0];

assign chary = hcount[4:1];

logic horizBar, leftCol, rightCol, topCol, botCol; // Parts of the disp.

assign horizBar = I(charx[2:1] == 2'b11); // Whensz in any horizontal bar

assign leftCol = (charx ==3'd0); // When in left column
assign rightCol = (charx == 3'd5); // When in right column
assign topCol = Ichary[3] & !(chary[2:0] == 3'd7); // Top columns
assign botCol = (chary >= 4'd6) & (chary <= 4'd12); // Bottom columns

logic [7:0] segment; // True when in each segment

assign segment[0] = horizBar & (chary == 4'd 0);

assign segment|[5] = rightCol & topCol;//mirror

assign segment[4] = rightCol & botCol;//mirror
assign segment[3] = horizBar & (chary == 4'd 12);

assign segment|[2] = leftCol & botCol;//mirror

assign segment[1] = leftCol & topCol;//mirror
assign segment[6] = horizBar & (chary == 4'd 6);
assign segment[7] = (charx == 3'd6) & (chary == 4'd14);

logic [2:0] column; // Being displayed
logic row; //SH
assign column = vcount[5:3];

assign row = hcount[5];

logic [7:0] curSegs;

assign curSegs = (column ==3'd3 && row == 0)? bag_n:

(column ==3'd1 && row == 0)? hp_t:
(column ==3'd0 && row ==0)? hp_n :

(column ==3'd3 && row == 1)? clip_n :

(column ==3'd1 && row == 1)? am_t:

(column ==3'd0 && row == 1)? am_n:

27

28

(column == 3'd7 && row == 0)? hex90_t:
(column == 3'd6 && row ==0)? hex90_n:
(column == 3'd7 && row == 1)? hex60_t :
(column == 3'd6 && row == 1)? hex60_n : hex60_n;

always_comb begin
if (reset)
{VGA_R, VGA_G, VGA_B} ={8'h20, 8'h20, 8'h20}; // grey
else

{VGA_R, VGA_G, VGA_B} ={colorl[23:16],color1[15:8],colorl[7:0]};

if (inChar)
if (| (curSegs & segment))
{VGA_R, VGA_G, VGA_B} = {8'hA5, 8'h2A, 8'h2A};
end
endmodule // VGA_LED_Emulator

data_decoder.sv
//This module decode input data to color data, flag data, also decide the priority of the pictures.

//input data [21:0] 3D display,[24 :22] : 000:enermy1 001: enermy2 010: box1 011:box2 1XX:
NOTHING

module Data_Decoder (

input logic clk,write,
input logic reset, chipselect,
input logic [31:0] writedata,

input logic [9:0] vcount,

input logic [10:0] hcount,

input logic [9:0] address,
output logic [23:0] colorl,

output logic shoot,

output logic [6:0] hp,

output logic [5:0] am,

output logic [1:0] clip, bag,

output logic [1:0] wound);

logic [15:0] addrl, addr2, addr3, addr4, addr5, addr6, addr7, addr8, addr9, addr10,addr11;
logic [23:0] q1;//boss
logic [23:0] g2;//gun

logic [23:0] g3;//fire

logic [23:0] g4;//Winwin
logic [23:0] g5;// texturel
logic [23:0] g6;//sky

logic [23:0] q7;

logic [23:0] g8;

logic [23:0] q9;

logic [23:0] q10; //texture2
logic [23:0] q11;

logic [2:0] control;
logic [2:0] pickup;
logic [7:0] boss_hp;

logic [1:0] hurt, boss_sec;

logic empty, game_win, game_lose, treasure_clip, treasure_heal;

logic count;
logic [10:0] htemp;
assign htemp = 2*hcount[10:1];

fight fignt_process (.*);

ROM1 BOSS1 (.clock(count), .q(q1),.address(addrl));//boss1
ROM2 GUNROM (.clock(count), .q(g2),.address(addr2));//gun
ROM3 FIREROM (.clock(count), .q(g3),.address(addr3));//fire
ROM4 Winwin (.clock(count), .q(q4),.address(addr4));//Winwin
ROMS5 Texturel(.clock(count), .q(g5),.address(addr5));//texturel//minion
ROMG6 Sky (.clock(count), .q(g6),.address(addr6));//Sky

// ROM7 FINDBOX (.clock(count), .q(q7),.address(addr7));//FIND A BOX
ROMS8 BOX1 (.clock(count), .q(g8),.address(addr8));// AID
ROM9 BOX2 (.clock(count), .q(q9),.address(addr9));// BULLET BOX
ROM10 Texture2 (.clock(count), .q(q10),.address(addr10));// texture2//brick
ROM11 GAMEOVER (.clock(count), .q(q11),.address(addr11));

//ASK A RAM TO STORE DATA

29

logic [63:0] indata;
logic inScreen,color,win;

RAM1 registerl (.clock(clk),
.wraddress(address),.rdaddress((959-2*vcount)),
.data(writedata),.q(indata[63:32]),
.wren(write));
RAM?2 register2 (.clock(clk),
.wraddress(address),.rdaddress((958-2*vcount)),
.data(writedata),.q(indata[31:0]),

.wren(write));

always_ff @(posedge clk)begin
if (reset) begin
inScreen = 0;
color =0;
end
else
begin
//shoot <= indata [30];
inScreen = ((hcount>=(2*(indata[9:0])))&&(hcount<=(2*(640-indata[9:0]))));
color = (indata[21:20]==2'b01);
win = (indata[21:20]==2'b11);
count <= count +1;
end

end
always_ff @(posedge clk) begin

shoot <= indata [30];
control <= indata[28:26];

end

logic fire,gun,boss1,boss2,box1,box2,bhp,mhp,aim;

assign fire = (htemp >1015 && htemp < 1115 && vcount > 100 &&vcount < 150)
&&(lempty)&&(control==4) && count ;

assigngun = htemp > 1043 && htemp < 1279 && vcount > 0 && vcount < 160 ;

assign boss1 = (htemp > 551 && htemp < 851 && vcount> 185 && vcount < 285)
&& (boss_sec==1) ;

30

31

assign boss2 = (htemp > 551 && htemp < 851 && vcount> 185 && vcount < 285)
&& (boss_sec==2) ;

assignboxl= (htemp>609 && htemp <689 && vcount >200 && vcount < 252)
&& (treasure_heal==1);

assignbox2 = (htemp > 609 && htemp <689 && vcount >200 && vcount < 252)
&& (treasure_clip==1);

assign bhp = (htemp > 1 && htemp < 33 && vcount < boss_hp);

assign mhp = (vcount > (423-hp) && vcount < 423 && htemp > 1215 && htemp <

1245);
assign aim= ((htemp > (579 + shoot *10) && vcount > 238 && htemp < (599 +

shoot*10) && vcount <242)| | //left

(htemp > (679- shoot*10) && vcount > 238 && htemp < (699-shoot*10)
&& vcount <242)| | // right

(htemp > 635 && vcount > (210 +shoot *10) && htemp < 643 &&
vcount <(220+ shoot * 10))| | //up

(htemp > 635 && vcount > (260 - shoot *10) && htemp < 643 &&
vcount < (270 -shoot *10))); //down

assign sky= (htemp < 641);
assign ground =(htemp > 639 && htemp < 1279);

logic [31:0] temp,addr_wall;

assign temp={16'h0,indata[61:46]};
//assign addr_wall
=(indata[45:32]+(((2*hcount[10:1]-{indata[9:0],1'b0})*temp)/16384));
assign addr_wall =(indata[45:32]+(((htemp-{indata[9:0],1'b0})*temp)/16384));

always_ff @(posedge count) begin
if (sky) begin //sky
//addr6 <= (((479-vcount)*128)/480+hcount/5);
addr6 <= (vcount *2+ htemp)/ 5;
colorl <= g6;

end

if (ground) begin colorl <= {8'hd2, 8'hb4, 8'h84}; // ground

end

if (inScreen && color) begin //Mikilin
addr10 <= addr_wall;

colorl<=q10;

end

else if (inScreen && win) begin //Mikilin
addr4 <= addr_wall;

colorl<=q4;

end

else if(inScreen)begin //minions
addr5 <= addr_wall;

colorl<=q5;

end

if (boss1) begin

end

if (boss2) begin

end

if (box1) begin

end

if (box2) begin

end

//boss1
addrl <= (vcount-186)*300+(htemp-551);
if (g1 != {8'hff,8'hff,8'hff})

colorl<=ql;

//boss2
addrl <= (vcount-186)*300+(htemp-551);
if (q1 != {8'hff,8'hff,8'hff})

colorl<=ql;

//box1
addr8 <= (vcount-201)*78+(htemp-611);
if (g8 != {8'hff,8'hff,8'hff})

colorl<=q8;

//box2
addr9 <= (vcount-201)*78+(htemp-611);
if (q9 != {8'hff,8'hff,8'hff})

colorl<=q9;

if (fire) begin //fire
addr3 <= (vcount-101)*100+(htemp-1005);
if (g3 != {8'hff, 8'hff, 8'hff})

32

33

colorl <=q3;

end

if (gun) begin //gun
addr2 <= (vcount)*240+htemp-1035;
if (g2 != {8'hff,8'hff,8'hff})

colorl<=q2;
end
if (aim) begin
colorl<={8'h00, 8'hff, 8'h00}; //green
end

if (bhp) begin
colorl <= {8'hb2, 8'h22, 8'h22};//red
end
if (mhp) begin //HP_sh
colorl <= {8'hb2, 8'h22, 8'h22}; // Red

end

if (vcount > (423-60) && vcount <423 && htemp > 1250 && htemp < 1280 &&
(vcount%3!=0)) begin //POWER_sh
colorl<={8'hdc, 8'hdc, 8'hdc}; // grey loss

end

if (vcount > (423-am) && vcount <423 && htemp > 1250 && htemp < 1280 &&
(vcount%3!=0)) begin //POWER_sh
colorl<={8'h00, 8'h80, 8'h00}; // green

end

if ((vcount > 464 && vcount < 466 && htemp > 1216 && htemp < 1247)| |(vcount >
464 && vcount < 466 && htemp > 1248 && htemp < 1277)) begin

colorl <= {8'hAS5, 8'h2A, 8'h2A};

end

if (game_lose) begin

/* colorl <= {8'h00,8'h00,8'h00};

end
else if ((530 < htemp < 726) && (100 < vcount < 266)) begin*/
addrll <= (vcount)/3*65+(htemp/3);
colorl <=q11;

end

end

endmodule

digital_decode.sv
module digital_decode(

input clk,reset,

input logic [4:0] digital,
output logic [7:0] digital_code
);

always_ff @ (posedge clk) begin
if (reset)
digital_code = 8'b00111111;//0
else begin
case (digital)

0:digital_code <= 8'b00111111; //0
1:digital_code <= 8'b00000110; // 1
2:digital_code <= 8'b01011011; // 2
3:digital_code <= 8'b01001111; // 3
4:digital_code <= 8'b01100110; // 4
5:digital_code <= 8'b01101101; // 5
6:digital_code <=8'b01111101;//6
7:digital_code <= 8'b00000111; // 7
8:digital_code <=8'b01111111;//8
9:digital_code <= 8'b01101111;//9

endcase
end
end
endmodule

digital_display.sv
module digital_display(

input logic clk,reset,

input logic [7:0] number,
output logic [7:0] tens_code,
output logic [7:0] nums_code

);

34

35

logic [4:0] tens;

logic [4:0] nums;

assign tens=number/10;

assign nums=number%10;

digital_decode decode_tens (.digital(tens),.digital_code(tens_code),.*);

digital_decode decode_nums (.digital(nums),.digital_code(nums_code),.*);

endmodule

fight.sv

modaule fight(
input logic clk,reset,count,
input logic [9:0] vcount,
input logic [10:0] hcount,
input logic [63:0] indata,
output logic [7:0] boss_hp,
output logic [6:0] hp,
output logic [5:0] am,
output logic [1:0] hurt, clip, bag, boss_sec,

output logic empty, game_win, game_lose, treasure_clip, treasure_heal

parameter SIZE = 4;

parameter IDLE = 4'b0000,
MAKETHROUGH = 4'b0001,
FIGHT = 4'b0010,
TREASUREL = 4'b0011,
TREASURE2 = 4'b0100,
START =4'b0101,
WIN =4'0110,
BOSS_ROUND =4'b0111,
LOAD =4'b1000,
HEAL = 4'b1001,
LOSE = 4'p1010,
CURSTAT =4'b1011,
BOSS_INI=4'b1100,
MODE_SELECT =4'b1101,
TREASURE1_GET =4'b1110,
TREASURE2_GET =4'b1111;

reg [SIZE-1:0] state;
reg [8:0] boss_hp_cur;
reg [5:0] am_cur;

reg [6:0] hp_cur;

reg [1:0] clip_cur;

reg [1:0] bag_cur;

logic [1:0] boss_select;
logic [4:0] boss_attack;
logic [2:0] pickup;
logic [2:0] control;

assign pickup = indata [24:22];
assign control = indata [28:26];

always_ff @(posedge count && (vcount == 0) && (hcount == 0)) begin

if (indata[29]) begin

hp =7'd90;

am = 6'd60;

hp_cur = 7'd90;

am_cur = 6'd60;

hurt = 2'b00;

empty = 1'b0;

clip_cur =2'b10;

clip =2'b10;

bag_cur=2'b10;

bag =2'b10;

game_win = 1'b0;

game_lose = 1'b0;

treasure_clip = 1'b0;

treasure_heal = 1'b0;

boss_sec = 2'b00;

boss_select = 2'b00;

state <= IDLE;

end else
case (state)

IDLE: begin
game_win = 1'b0;
game_lose = 1'b0;
treasure_clip = 1'b0;
treasure_heal = 1'b0;
boss_sec = 2'b00;
boss_select = 2'b00;

36

hp =7'd90;

am = 6'd60;

hp_cur =7'd90;

am_cur = 6'd60;

clip_cur =2'b10;
clip=2'b10;
bag_cur=2'b10;

bag =2'b10;

state <= MAKETHROUGH;

end

MAKETHROUGH: begin

if (pickup == 3'b000) begin
there is control signal
if (control == 3'b001) begin
state <= MODE_SELECT;
end else if (control == 3'b010) begin
if (clip_cur > 0) begin
state <= LOAD;
end else begin
state <= MAKETHROUGH;
end
end else if (control == 3'b011) begin
if (bag_cur > 0) begin
state <= HEAL;
end else begin
state <= MAKETHROUGH;
end
end else if (control == 3'b100) begin
if (am_cur > 0) begin
am =am_cur-1;
am_cur <=am_cur-1;
state <= MAKETHROUGH;
end else begin
empty = 1'b1;
state <= MAKETHROUGH;
end
end else begin
state <= MAKETHROUGH;
end
end else if (pickup == 3'b001) begin
boss_select = 2'b01;
boss_sec =2'b01;

// nothing happened, what if

// Loading the clip

// Healing yourself

// Wasting your AM

// boss1 comes!

37

state <= BOSS_INI;

end else if (pickup == 3'b010) begin
boss_select = 2'b10;
boss_sec =2'b10;
state <= BOSS_INI;

end else if (pickup == 3'b011) begin
state <= TREASURE];

end else if (pickup == 3'b100) begin
state <= TREASURE2;

end else begin
state <= MAKETHROUGH;

end

end

TREASUREL: begin
treasure_clip = 1'b1;
if (control == 3'b001) begin
state <= TREASURE1_GET;
end else begin
state <= TREASURE];
end

end

TREASURE1_GET: begin

if (clip_cur < 2'b11) begin
clip =clip_cur +1;
clip_cur <=clip_cur + 1;

end else begin
clip = clip_cur;

end

treasure_clip = 1'b0;

state <= MAKETHROUGH;

end

TREASUREZ2: begin
treasure_heal = 1'b1;
if (control == 3'b001) begin
state <= TREASURE2_GET;
end else begin
state <= TREASURE2;
end

end

TREASURE2_GET: begin

// boss2 comes!

// get a AmBox

// get a FirstAidBag

38

end

if (bag_cur < 2'b11) begin
bag =bag_cur+1;
bag_cur <=bag_cur + 1;

end else begin
bag = bag_cur;

end

treasure_heal = 1'b0;

state <= MAKETHROUGH;

MODE_SELECT: begin

end

state <= START;

BOSS_INI: begin
boss_hp = (boss_select == 2'b10)*50 + (boss_select == 2'b01)*100;
boss_hp_cur = (boss_select == 2'b10)*50 + (boss_select == 2'b01)*100;
boss_attack = (boss_select == 2'b10)*7 + (boss_select == 2'b01)*3;

end

state <= START;

START: begin

end

if (control == 3'b001) begin
state <= MODE_SELECT;
end else if (control == 3'b010) begin
if (clip_cur > 0) begin
state <= LOAD;
end else begin
state <= BOSS_ROUND;
end
end else if (control == 3'b011) begin
if (bag_cur > 0) begin
state <= HEAL;
end else begin
state <= BOSS_ROUND;
end
end else if (control == 3'b100) begin
state <= FIGHT;
end else begin
state <= START;

end

FIGHT: begin

39

// mode change

// loading your clip

// you have no more AMs

// Emergency Heal

40

if (boss_hp_cur < 10) begin
boss_hp_cur=0;
boss_hp =0;
state <= WIN;
end else begin
if (am_cur > 3) begin
am =am_cur -2;
am_cur <= am_cur - 2;
boss_hp_cur <=boss_hp_cur - 3;
boss_hp = boss_hp_cur - 3;
state <= BOSS_ROUND;
end else begin
am_cur =0;
am =0;
empty = 1;
state <= LOAD;
end

end

end

BOSS_ROUND: begin

if (hp_cur < boss_attack) begin
hp_cur =0;
hp =0;
state <= LOSE;

end else begin
hp = hp_cur - boss_attack;
hp_cur <= hp_cur - boss_attack;
state <= CURSTAT;

end

end

CURSTAT: begin
//hurt = (hp_cur < 20)*2'b10 + (20 <= hp_cur < 50)*2'b01 + (50<= hp_cur)*2'b00;
if (am_cur == 0 && clip_cur !=0) begin
state <= LOAD;
end else begin
state <= START;
end

end

LOAD: begin
if (control == 3'b000) begin

if (clip_cur>0) begin
clip = clip_cur - 1;
clip_cur <= clip_cur -1;
if (am_cur < 30) begin
am =am_cur + 30;
am_cur <= am_cur + 30;
end else begin
am = 60;
am_cur <= 60;
end
empty = 1'b0;
end
if (boss_select == 2'b00) begin
state <= MAKETHROUGH;
end else begin
state <= BOSS_ROUND;
end
end else begin
state <= LOAD;
end

end

HEAL: begin
if (control == 3'b000) begin
if (bag_cur>0) begin
bag = bag_cur-1;
bag_cur <=bag_cur -1;
if (hp_cur < 40) begin
hp = hp_cur + 50;
hp_cur <= hp_cur + 50;
end else begin
hp =90;
hp_cur =90;
end
end
if (boss_select == 2'b00) begin
state <= MAKETHROUGH;
end else begin
state <= BOSS_ROUND;
end
end else begin
state <= HEAL;
end

end

WIN: begin
game_win = 1'b1;
boss_sec = 2'b00;
boss_select = 2'b00;
hp_cur = 7'd90;
hp =7'd90;
am_cur = 6'd60;
am = 6'd60;
state <= MAKETHROUGH;

end

LOSE: begin
game_lose = 1'b1;
state <= LOSE;

end
endcase
end
endmodule

audio_top.sv

module audio_top (

input OSC_50_B8A,
input shoot,

inout AUD_ADCLRCK,
input AUD_ADCDAT,
inout AUD_DACLRCK,
output AUD_DACDAT,
output AUD_XCK,
inout AUD_BCLK,
output AUD_I2C_SCLK,
inout AUD_I2C_SDAT,
output AUD_MUTE,

input [3:0] KEY,

input [3:0] SW,
output [3:0] LED

wire reset = IKEY[0];

wire main_clk;

wire audio_clk;

wire [1:0] sample_end;
wire [1:0] sample_req;
wire [15:0] audio_output;
wire [15:0] audio_input;

clock_pll pll (
.refclk (OSC_50_B8A),
.rst (reset),
.outclk_0 (audio_clk),

.outclk_1 (main_clk)

i2c_av_config av_config (
.clk (main_clk),
.reset (reset),
.i2c_sclk (AUD_I2C_SCLK),
.i2c_sdat (AUD_I2C_SDAT),
.status (LED)

assign AUD_XCK = audio_clk;
assign AUD_MUTE = (SW !=4'b0);

audio_codec ac (
.clk (audio_clk),
.reset (reset),
.sample_end (sample_end),
.sample_req (sample_req),
.audio_output (audio_output),
.audio_input (audio_input),
.channel_sel (2'b10),

.AUD_ADCLRCK (AUD_ADCLRCK),
.AUD_ADCDAT (AUD_ADCDAT),
.AUD_DACLRCK (AUD_DACLRCK),
.AUD_DACDAT (AUD_DACDAT),
.AUD_BCLK (AUD_BCLK)

audio_effects ae (
.clk (audio_clk),

43

.sample_end (sample_end[1]),
.sample_req (sample_req[1]),
.audio_output (audio_output),
.audio_input (audio_input),
.control (shoot)

);

Endmodule

audio_effects.sv

module audio_effects (
input clk,
input sample_end,
input sample_req,
output [15:0] audio_output,
input [15:0] audio_input,

input control

reg [15:0] romdatafire,stepdatastep;
reg [12:0] index1 =13'd0;

reg [14:0] index2 =15'd0;

reg [15:0] last_sample;

reg [15:0] dat;

assign audio_output = dat;

//parameter SINE =0;
//parameter FEEDBACK = 1;

ROM12 SHOOT (.address(index1),.q(romdatafire),.clock(clk));
//ROM13 STEP (.address(index2),.q(romdatastep),.clock(clk));

always @(posedge clk) begin

if (control==1)//[SINE])
//dat <= last_sample;
begin
dat <= romdatafire;
if (index1 == 13'd8063)
index1 <= 13'd0;
else
index1 <= index1+1'b1;

44

end

/* begin
dat <= romdatastep;
if (index2 == 15'd28829)
index2 <= 15'd28829;
else
index2 <= index2+1'b1;
end */

/* else if (control[FEEDBACK])
begin
dat <= romdatafire;
if (index1 == 13'd8063)
index1 <= 13'd8063;

else
index1 <= index1+1'b1;
end
*/ else
dat <= 16'd0000;
end
endmodule
mudd.c

/*
* Userspace program that communicates with the led_vga device driver

* primarily through ioctls
*

* Stephen A. Edwards

* Columbia University

*/

#tinclude <time.h>

#include <math.h>

#include <stdlib.h>

#include <stdio.h>

45

#include "vga_led.h"
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>
#include "fbputchar.h"
#include <sys/socket.h>
#include <arpa/inet.h>
#include "usbkeyboard.h"

intvga_led_fd;
struct libusb_device_handle *keyboard;

int endpoint_address;

//place the example code below here:

#define mapWidth 47
#define mapHeight 35
#define texWidth 128
#define texHeight 128
#define w 480
#define h 640

#define random(x) (rand()%x)

int worldMap[mapWidth][mapHeight]=

{
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1},
{1,1,1,11,12,11,1,1,1,1,1,1,0,0,0,1,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1},
{1,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1},

{1,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1},
{1,0,0,0,0,0,0,0,0,0,0,0,2,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,1},
{1,0,00,1,1,1,1,1,11,0,0,0,1},
{1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1},
{1,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1},
{1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1},
{1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1},
{1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},
{1,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1},
{0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1},
{0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1},
{0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1},
{0,0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,1,1},
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0}

void write_screen(unsigned int datal[480],unsigned int data2[480])

{

vga_led_screen screen;
inti;
for(i=0;i<480;i++){

screen.column =i;

47

screen.datal = datal[i];
screen.data2 = data2[i];
if (ioctl(vga_led_fd, VGA_LED_WRITE_SCREEN, &screen)) {
perror("ioctl(VGA_LED_WRITE_SCREEN) failed");

return;

int main()

{
//vga_led_arg_tvla;
//int i;

static const char filename[] = "/dev/vga_led";

//static unsigned char message[8] = { 0x39, 0x6D, 0x79, 0x79,
// 0x66, 0x7F, 0x66, Ox3F };

printf("VGA LED Userspace program started\n");
if ((vga_led_fd = open(filename, O_RDWR)) == -1) {

fprintf(stderr, "could not open %s\n", filename);

return -1;

struct usb_keyboard_packet packet;
int transferred;
char keystate[12];

if ((keyboard = openkeyboard(&endpoint_address)) == NULL) {

fprintf(stderr, "Did not find a keyboard\n");
exit(1);

printf("initial state: ");

double posX = 13.5, posY = 15.5; //x and y start position

48

double dirX = -1.0, dirY = 0.0; //initial direction vector

double planeX = 0.0, planeY = 0.66; //the 2d raycaster version of camera plane

int counttime=6000;

int control =0; // decide whether to shoot
int wound = 0;

int delay = 0; // decide firing time
intranda=>5; //whether meets with a boss
int scenario=0; // putinto the hardware

int gamereset = 0;

while(counttime>0)
{
int x;
unsigned int passdata[480];
unsigned int passdatal[480];

for(x = 0; x < w; x++)

{

//calculate ray position and direction

double cameraX = 2.0 * x/480.0-1.0; //x-coordinate in camera space
double rayPosX = posX;

double rayPosY = posY;

double rayDirX = dirX + planeX * cameraX;

double rayDirY = dirY + planeY * cameraX;

//which box of the map we're in

int mapX = (int)rayPosX;

int mapY = (int)rayPosY;

//length of ray from current position to next x or y-side
double sideDistX;
double sideDistY;

//length of ray from one x or y-side to next x or y-side
double deltaDistX = sqrt(1 + (rayDirY * rayDirY) / (rayDirX * rayDirX));
double deltaDistY = sqrt(1 + (rayDirX * rayDirX) / (rayDirY * rayDirY));

double perpWallDist;
//what direction to step in x or y-direction (either +1 or -1)

int stepX;
int stepy;

int hit = 0; //was there a wall hit?
int side; //was a NS or a EW wall hit?
//calculate step and initial sideDist
if (rayDirX < 0)
{
stepX =-1;
sideDistX = (rayPosX - mapX) * deltaDistX;
}
else
{
stepX =1;
sideDistX = (mapX + 1.0 - rayPosX) * deltaDistX;
}
if (rayDirY < 0)
{
stepY =-1;
sideDistY = (rayPosY - mapY) * deltaDistY;
}
else
{
stepY = 1;
sideDistY = (mapY + 1.0 - rayPosY) * deltaDistY;
}
//perform DDA
// printf("hit\n");

while (hit == 0)
{
//jump to next map square, OR in x-direction, OR in y-direction
if (sideDistX < sideDistY)
{
sideDistX += deltaDistX;
mapX += stepX;
side = 0;
}
else
{
sideDistY += deltaDistY;
mapY += stepY;
side =1;
}
//Check if ray has hit a wall
if (worldMap[mapX][mapY] > 0) hit = 1;

50

effect!)

//Calculate distance projected on camera direction (oblique distance will give fisheye

if (side == 0)
perpWallDist = fabs((mapX - rayPosX + (1 - stepX) / 2) / rayDirX);
else

perpWallDist = fabs((mapY - rayPosY + (1 - stepY) / 2) / rayDirY);

//Calculate height of line to draw on screen

int k=h/perpWallDist;
int lineHeight = abs(k);

//calculate lowest and highest pixel to fill in current stripe
int drawStart = -lineHeight /2 + h / 2;

if(drawStart < 0)drawStart = 0;

int drawkEnd = lineHeight /2 + h / 2;

if(drawEnd >= h)drawEnd = h - 1;

int color = 2;

//give x and y sides different brightness

if (side == 1) {color = color / 2;}

if (worldMap[mapX][mapY]==2) {color = 3;}

//calculate value of wallX

double wallX; //where exactly the wall was hit

if (side == 1) wallX = rayPosX + ((mapY - rayPosY + (1 - stepY) / 2) / rayDirY) * rayDirX;
else wallX = rayPosY + ((mapX - rayPosX + (1 - stepX) / 2) / rayDirX) * rayDirY;
wallX -= floor((wallX));

//x coordinate on the texture

int texX = (int)(wallX * (double)(texWidth));

if(side == 0 && rayDirX > 0) texX = texWidth - texX - 1;
if(side == 1 && rayDirY < 0) texX = texWidth - texX - 1;

int lengthH = drawEnd - drawStart;
int coff=0;
coff=(128*8192)/(lengthH);
int texY =0;

texyY = 128*texX;

51

passdata[x]=(scenario<<22|gamereset<<29|control<<26 | color<<20|texX<<10|drawsStart);/
/change SH

52

passdatal[x]=(coff<<14|texY);

write_screen(passdata,passdatal);
//printf("passdata %320d\n", passdata);
//printf("good\n");

/*
intc;
for (c = 0;c<480;c++)
{
printf("%d;",passdata[c]);
}

*/

control = 0;

libusb_interrupt_transfer(keyboard, endpoint_address, (unsigned char *) &packet,
6,&transferred, 0);

if ((transferred ==8 && (((packet.keycode[0]!= 0x7f | | packet.keycode[1]!= Ox7f) &&
packet.keycode[0]!=0x80) | | packet.keycode[5]!=0x0f)))

//printf("%02x %02x %02x %02x %02x %02x %02x %02x %02x\n ",
packet.keycode[0],packet.keycode[1],packet.keycode[2],packet.keycode[3],packet.keycode[4],p
acket.keycode[5],packet.keycode[6],packet.keycode[7]);

wound = 0;

gamereset = 0;

control = 0;
if((packet.keycode[1] == 0x00))
{ int locationx1=(int)posX + dirX * 0.02;

int locationyl=(int)posY;
int locationx2=(int)posX;
int locationy2=(int)posY + dirY * 0.02;
if(worldMap[locationx1][locationy1] == 0){
//posX=posX+((packet.keycode[1] == 0xff)-(packet.keycode[1] ==
0x00)+(packet.keycode[5] == 0x04)-(packet.keycode[5] == 0x00))*0.01;}

if (randa < 10){
randa = random(100);
if (randa > 80){
scenario = 0x01;}
elseif (randa> 70){
scenario = 0x02;}
else if (randa > 30){
scenario = 0x03;}
else if (randa > 10){
scenario = 0x04;}
else {scenario = 0x00;}
}
else { randa = random(100); scenario = 0x00;}
printf("%02x\n",scenario);
posX = posX + dirX*0.02;}
if(worldMap[locationx2][locationy2] == 0){
posY = posY+ dirY * 0.02;

}
}
if((packet.keycode[1] == 0xff))
{

scenario = 0x00;
int locationx1=(int)posX - dirX * 0.02;
int locationyl=(int)posY;
int locationx2=(int)posX;
int locationy2=(int)posY - dirY * 0.02;
if(worldMap[locationx1][locationy1] == 0){
//posX=posX+((packet.keycode[1] == 0xff)-(packet.keycode[1] ==
0x00)+(packet.keycode[5] == 0x04)-(packet.keycode[5] == 0x00))*0.01;}
posX = posX - dirX*0.02;}
if(worldMap[locationx2][locationy2] == 0){
posY = posY - dirY * 0.02;
}
}
if((packet.keycode[0] == 0x00))
{
scenario = 0x00;
//posX=posX+((packet.keycode[0] == Oxff)-(packet.keycode[0] ==
0x00)+(packet.keycode[0] == 0x04)-(packet.keycode[0] == 0x00))*0.01;
//posX=posX-0.01;

double oldDirX = dirX;

dirX =dirX -dirY * 0.01;

dirY = oldDirX * 0.01 + dirY;

double oldPlaneX = planeX;

planeX = planeX - planeY * 0.01;
planeY = oldPlaneX * 0.01 + planeY;

if ((packet.keycode[0] == 0xff))

{
scenario = 0x00;
double oldDirX = dirX;
dirX = dirX * cos(-0.01) - dirY * sin(-0.01);
dirY = oldDirX * sin(-0.01) + dirY * cos(-0.01);
double oldPlaneX = planeX;
planeX = planeX * cos(-0.01) - planeY * sin(-0.01);
planeY = oldPlaneX * sin(-0.01) + planeY * cos(-0.01);
//posX=posX+0.01;
}

if ((packet.keycode[5] == 0x8f))

{

scenario = 0x00;

control=4;

wound =1;

printf ("would %10d\n",wound);
}

if ((packet.keycode[5] == 0x1f)&&packet.keycode[4]==0x7f)
{

scenario = 0x00;
control=1;

printf ("would %10d\n",wound);

usleep(100000);

if ((packet.keycode[5] == Ox1f)&&packet.keycode[4]==0x80)
{
posX = 13.5, posY = 15.5;
dirX =-1.0, dirY = 0.0;
planeX = 0.0, planeY = 0.66;

gamereset = 1;

if ((packet.keycode[5] == 0x2f))

{
scenario = 0x00;
control=2;
wound = wound + 1;
printf ("would %10d\n",wound);
usleep(100000);
}

if ((packet.keycode[5] == 0x4f))

{
scenario = 0x00;
control=3;
wound = wound + 1;
printf ("would %10d\n",wound);
usleep(100000);
}

//else {printf("nothing happened\n");}
//usleep(100000);

55

56

//posy=posy+((packet.keycode[0] == Oxff)-(packet.keycode[0] == 0x00)+(packet.keycode[5]

== 0x02)-(packet.keycode[5] == 0x06))*0.0025;

//posX=posX+((packet.keycode[1] == 0xff)-(packet.keycode[1] == 0x00)+(packet.keycode[5]

== 0x04)-(packet.keycode[5] == 0x00))*0.01;

}
printf("VGA LED Userspace program terminating\n");

return O;

vga_led.c

#include <linux/module.h>
#tinclude <linux/init.h>
#tinclude <linux/errno.h>
#include <linux/version.h>
#tinclude <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/miscdevice.h>
#include <linux/slab.h>
#tinclude <linux/io.h>
#tinclude <linux/of.h>
#include <linux/of_address.h>
#include <linux/fs.h>
#tinclude <linux/uaccess.h>

#include "vga_led.h"

#define DRIVER_NAME "vga_led"

/*
* Information about our device
*/

struct vga_led_dev {

struct resource res; /* Resource: our registers */

void __iomem *virtbase; /* Where registers can be accessed in memory */

//u8 segments[VGA_LED_DIGITS];
u32 datal[480];
u32 data2[480];
} dev;

/*

* Write segments of a single digit
* Assumes digit is in range and the device information has been set up

*/

static void write_screen(int x, u32 datal, u32 data2)

{
jowrite32(datal,dev.virtbase+8*x);
iowrite32(data2,dev.virtbase+8*x+4);
dev.datal[x] = datal;
dev.data2[x] = data2;
}
/*

* Handle ioctl() calls from userspace:
* Read or write the segments on single digits.
* Note extensive error checking of arguments
*/
static long vga_led_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
{
vga_led_arg_t vla;
vga_led_ball ball;

vga_led_screen screen;

switch (cmd) {

case VGA_LED_WRITE_SCREEN:
if (copy_from_user(&screen, (vga_led_screen *) arg,
sizeof(vga_led_screen)))
return -EACCES;
if (screen.column > 480)
return -EINVAL;
write_screen(screen.column,screen.datal,screen.data2);

break;

default:
return -EINVAL;

return 0;

58

/* The operations our device knows how to do */
static const struct file_operations vga_led_fops = {
.owner =THIS_MODULE,

.unlocked_ioctl = vga_led_ioctl,

/* Information about our device for the "misc" framework -- like a char dev */

static struct miscdevice vga_led_misc_device = {

.minor = MISC_DYNAMIC_MINOR,
.name = DRIVER_NAME,
fops = &vga_led_fops,

|3

/*

* Initialization code: get resources (registers) and display
* a welcome message
*/
staticint __init vga_led_probe(struct platform_device *pdev)
{
int playgo = 2751488;
static unsigned char welcome_message[VGA_LED_DIGITS] = {
0x3E, 0x7D, 0x77, 0x08, 0x38, 0x79, Ox5E, 0x00};

inti, ret;

/* Register ourselves as a misc device: creates /dev/vga_led */

ret = misc_register(&vga_led_misc_device);

/* Get the address of our registers from the device tree */
ret = of_address_to_resource(pdev->dev.of _node, 0, &dev.res);
if (ret) {

ret = -ENOENT,;

goto out_deregister;

/* Make sure we can use these registers */
if (request_mem_region(dev.res.start, resource_size(&dev.res),
DRIVER_NAME) == NULL) {
ret = -EBUSY;

goto out_deregister;

/* Arrange access to our registers */

dev.virtbase = of_iomap(pdev->dev.of_node, 0);
if (dev.virtbase == NULL) {
ret =-ENOMEM;

goto out_release_mem_region;

//write_ball(100,100);

for (i=0; i< 480; i++)

write_screen(i, playgo,playgo);

return 0;

out_release_mem_region:

release_mem_region(dev.res.start, resource_size(&dev.res));
out_deregister:

misc_deregister(&vga_led_misc_device);

return ret;

/* Clean-up code: release resources */

static int vga_led_remove(struct platform_device *pdev)

{
iounmap(dev.virtbase);
release_mem_region(dev.res.start, resource_size(&dev.res));
misc_deregister(&vga_led_misc_device);

return 0;

/* Which "compatible" string(s) to search for in the Device Tree */
#ifdef CONFIG_OF
static const struct of_device_id vga_led_of_match[] = {
{ .compatible = "altr,vga_led" },
{1,
L
MODULE_DEVICE_TABLE(of, vga_led_of_match);
#endif

/* Information for registering ourselves as a "platform" driver */

static struct platform_driver vga_led_driver = {

59

60

driver ={
.name = DRIVER_NAME,
.owner =THIS_MODULE,
.of_match_table = of_match_ptr(vga_led_of_match),

b

.remove = __exit_p(vga_led_remove),

/* Called when the module is loaded: set things up */
static int __init vga_led_init(void)
{

pr_info(DRIVER_NAME ": init\n");

return platform_driver_probe(&vga_led_driver, vga_led_probe);

/* Called when the module is unloaded: release resources */
static void __exit vga_led_exit(void)
{
platform_driver_unregister(&vga_led_driver);
pr_info(DRIVER_NAME ": exit\n");

module_init(vga_led_init);
module_exit(vga_led_exit);
MODULE_LICENSE("GPL");

MODULE_AUTHOR("Stephen A. Edwards, Columbia University");
MODULE_DESCRIPTION("VGA 7-segment LED Emulator");

vga_led.h

#ifndef _VGA_LED_H
#define _VGA_LED_H

#tinclude <linux/ioctl.h>
#define VGA_LED_DIGITS 8
typedef struct {

unsigned int column;

unsigned int datal;

unsigned int data2;

}vga_led_screen;

typedef struct {
unsigned int cox;
unsigned int coy;

}vga_led_ball;

typedef struct {
unsigned char digit; /*0,1,..,VGA_LED_DIGITS-1*/
unsigned char segments; /* LSB is segment a, MSB is decimal point */

}vga_led_arg_t;

#define VGA_LED_MAGIC'q'

/* ioctls and their arguments */

#define VGA_LED_WRITE_DIGIT _IOW(VGA_LED_MAGIC, 1, vga_led_arg_t *)
#define VGA_LED_READ_DIGIT _IOWR(VGA_LED_MAGIC, 2, vga_led_arg_t *)
#define VGA_LED_WRITE_BALL _IOW(VGA_LED_MAGIC, 3, vga_led_arg_t *)
#define VGA_LED_WRITE_SCREEN _IOW(VGA_LED_MAGIC, 4, vga_led_arg_t *)

#tendif

61

