Half-fast

A Bitcoin Miner for the FPGA

Overview

Objectives and Motivation
Bitcoin

System Overview
Hardware

Software

Challenges and Difficulties
Lessons learned

Objectives and Motivation

e Build a Bitcoin miner on a FPGA board
e Mine block data from Bitcoin Network
e Parallelization

Bitcoin

e Bitcoin is an open source payment system
based extensively on cryptographic hash
functions

e Mining solves the problem of double
spending through verifying transactions

e Transactions are public, but have no
personal information

e Proof-of-work and mining pool

Proof-of-work

e Based on SHA-256

e Must find a number which added to a hashed
header will fit a certain number of zeros
(difficulty) by incrementing a number called the
nonce

e Hashes change drastically with a tiny
modification, turning it into a very complex
problem

Mining pool

The mining pool is a process where multiple
clients contribute to the solving of a block and
share the rewards

Work is organized by leader. Block data is sent
to miners to attempt to solve

Mining Algorithm

B = Block of Transactions
D = Difficulty (part of B)

1) Construct/Modify B
2) If SHA256(SHA256(B, nonce)) < D End
3) nonce++; Goto 1

SHA256 Algorithm

Message input M
Divide M into 512-bit chunks, pad if necessary
For each chunk Mi
Compression(Mi) //bitwise shifting and rotation
Accumulate into registers h0, h1, ... h7

hash = {h0, h1, h2, ..., h7}

System overview

SOFTWARE (TO INSTALL)

Mining Pool

A

v
SOFTWARE (TO PROGRAM)

Userspace

A

v
SOFTWARE (TO MODIFY)

Driver

A

h 4

HARDWARE

Miner

System overview

Avalon

Y

Miner Controller [*

\J

\ 4

\

Miner —
Miner —
Result_RAM
Miner >
Miner —

Hardware implementation

FSM

\ ticket

Memory Map Interface

input:
clk
reset
write
read
chipselect
writedata[7:0]
address[7:0]

output:
readdata[7:0]

Miner Top

<tickel><gold nonce>

<gold nonce>

Results RAM

——— :
fpgaminer_top
//
fpgaminer_top <ticket>
1
nonce —_— 7 d 32 3
NONCEHANGE ——pn —
nonce+2*range e
Nonce
RAM
fpgaminer_top >
NONCEN ranpe —is
—>
header_buffer
fpgamines_top

FPGA Miner*

header_buffer

»| state, data > Il —» nonce_out —>
nonce++

C

(o]

difficulty

n —lo o0
t 3
r B
o J sHA256 » SHA256 » 2

h A

*Used an Open Source Miner. Modified it for our interface
https://github.com/gardintrapp/Open-Source-FPGA-Bitcoin-Miner

SHA256

e0, e1, ch, maj, s0,
s1 - bitwise
operations

LOOP parameter
determines how
many “digester”
blocks are
instantiated

Big LOOP = less
space, slower

Small LOOP = more
space, faster

K is array of constant
values

state

data

v

el, e1, ch,
maj, s0, s1

A4

. e0, e1, ch,
maj, s0, s1

\ 4

€0, e1, ch,
maj, s0, s1

hash

This is the Compression function unrolled

Software implementation

getwork.c

e Userspace program written to facilitate communication
between Mining pool and our FPGA miner

e Creates a getwork request to mining pool

e Sends the work down to the hardware with I[OCTL calls
defined in modified vga led.c/h

e Separate threads reads and listens for solved work from
fpga and new work from the mining pool

Challenges and difficulties

Debugging hardware logic
Writing scalable Verilog code
Bookkeeping data and Simulating

[
o
o
e |earning the Bitcoin system

Lessons learned

e Be more thorough with initial planning/design process

e Simulate/Test carefully and thoroughly at each step of
hardware implementation (ModelSim and System
Console). Use scripts

e Start from Lab3 skeleton code

e \Work on hardware and software in parallel

e Begin hardware software integration as early in
development as possible

Half-fast: a Bitcoin miner for the FPGA

Thank you!

