
csee 4840
Embedded System Design

Lab 3: Peripherals and Device Drivers

Stephen A. Edwards
Columbia University

2014

Implement on the fpga a memory-mapped peripheral that communicates with the arm
processors on the Cyclone V. Communicate with your peripheral through a Linux userspace
program that accesses a device driver you have written.
Your peripheral should display a ball on the vga screen at coordinates given to it through

so�ware. Your device driver should implement an ioctl that takes a coordinate from the user
and sends it to your peripheral
1 Introduction
In this lab, you will control your own hardware from your own so�ware, communicating
through a Linux device driver. We supply a base hardware design to extend, a Linux kernel
and root �lesystem, a working example of a vga peripheral that you will have to modify, and
a working device driver for the existing peripheral that you will have to adapt to work with
your own peripheral.
You will implement a video bouncing ball in this setting. Your peripheral will generate an

vga raster consisting of a ball at a particular location, your userspace C program (so�ware)
will make this ball bounce around the screen, and your device driver will mediate between
your program and your peripheral.
2 Add the vga Component to the Base Design
In this section, you will tell Qsys about a new peripheral component, connect it ultimately to
the arm processors, and synthesize a new fpga con�guration bitstream.
Download lab3-qsys.tar.gz from the class website and unpack it on your workstation.

Start Quartus and open the supplied lab3.qpf project. From within Quartus, start Qsys
(Tools→Qsys) and open the lab3.qsys project.
Create a new vga_led component and connect it to the base design. In Qsys, select

File→New Component.

1



Under the Component Type tab, set its name to vga_led and its display name to VGA LED
Emulator.
Under the Files tab, under “Synthesis Files,” add theVGA_LED.sv andVGA_LED_Emulator.sv

�les. �e �rst �le contains the code for the memory-mapped peripheral that drives the vga
raster generator in the second. Click on “Analyze Synthesis Files.” �e top-level module name
should now be “VGA_LED.”
2.1 Assigning Signals to Channels
When Qsys analyzes the syn-

thesis �les, it makes some good
guesses about the meaning of each
signal on the peripheral, but it is
not perfect. Below, you will �x
these mistakes manually.
Under the Signals tab, create a

new interface by selecting “NewRe-
set Sink...” under the Interfaces col-
umn for the reset signal.
Create a new conduit by select-

ing “New Conduit...” under the
Interfaces column for one of the
vga signals. Set the interface of
each vga signal to this new “con-
duit_end.”
Set the Signal Type of each vga

signal to “export.”
Your signals show now appear

like the list on the right. If errors
remain, the next steps should re-
solve them.



Under the Interfaces
tab, click on “Remove In-
terfaces with no signals.”
Set the associated clock

of “reset_sink” to “clock.”
Set the associated reset

for “avalon_slave_0” to
“reset_sink.”

�e avalon_slave_0 in-
terface should now ap-
pear as it does on the
right.
Once you have re-

solved any errors or
warnings, click on
“Finish” and save the
component. �is creates
the �le vga_led_hw.tcl to
record metadata about
the new component.

2.2 Connecting the vga Component
Now that Qsys knows about your custom component, you will connect it to the rest of your
design.
In Qsys, add an instance of the new VGA LED Emulator component by selecting it under

“Project” in the library and clicking on the green +. By default, it will be named vga_led_0.
On the new vga_led_0 component instance, connect the clock to clk from clk_0 and connect

the reset_sink to clk_reset from clk_0.
Connect the avalon_slave_0 port on vga_led_0 to both the h2f_lw_axi_master port on the

hps_0 component (this is the lightweight bus from the arm processors) and to themaster port
onmaster_0 (this will allow you to write its registers from the System Console—see below).
Double-click to export vga_led_0’s conduit_end in the Export column. Set the name of the

export to vga.
Run System→Assign Base Addresses to assign the base address for the vga_led_0 peripheral.
�e System Contents tab should now look as it does below.



Once you have resolved any errors or warnings, run Generate→Generate to have Qsys
generate all the �les Quartus needs to synthesize to make the design work.
2.3 Connect the vga Peripheral to its Pins
�e vga peripheral you just created needs to communicate o�-chip through pins. To do this,
add the following connections within the instance of lab3 near the end of the SoCKit_top.v
�le:

.vga_R (VGA_R),

.vga_G (VGA_G),

.vga_B (VGA_B),

.vga_CLK (VGA_CLK),

.vga_HS (VGA_HS),

.vga_VS (VGA_VS),

.vga_BLANK_n (VGA_BLANK_n),

.vga_SYNC_n (VGA_SYNC_n)

�e lowercase signal names are part of the conduit_end you named “vga” when you con-
nected the component to your design. �ey are being connected to named pins.
Compile your project in Quartus to produce the output_�les/SoCKit_Top.sof �le.

3 Use the System Console to Verify Your Peripheral
While we will eventually communicate with our peripheral through the Linux environment,
it is o�en easier to check the hardware without so�ware in the way.
Altera provides the System Console: an interactive Tcl environment that provides direct

access to system busses. If necessary, start Quartus and compile the design you generated
with Qsys in the previous section.



Download to the fpga your newly created sys-
tem with the vga led emulator peripheral: run
Tools→Programmer from within Quartus and
download the output_�les/SoCKit_Top.sof �le to
the board as you did in lab 1.
If you connected the outputs on your new peripheral to the appropriate pins, the board

should display the image on the right on the vgamonitor attached to the SoCKit board.
3.1 Running the System Console
Back in Quartus, run Tools→System Console→System Console. It should start up, report that
it discovered some jtag and usb connections, that it “auto-linked” to SOCKit_Top.sof, and
note that a script (system_console_rc.tcl) does not exist, which is harmless.
In the Tcl Console sub-window, type

source syscon-test.tcl

�is should load and run the syscon-test.tcl script that was provided for you in the lab3-
qsys.tar.gz �le. If all is well, it should report

Started system-console-test-script

Opened jtag_debug

Checking the JTAG chain loopback: 0x01 0x02 0x03 0x04 0x05 0x06

Sampling the clock: 100100101001

Checking reset state: 1

Closed jtag_debug

Opened master

Closed master

�e script establishes contact with the jtag de-
bugging chain, establishes that the chainworks by
pumping a short sequence of numbers through it,
veri�es that the clock is toggling (your sequence
may be di�erent: all is well provided you see both
1’s and 0’s), resets the bus, then writes a test pat-
tern to the registers that should change the dis-
play to what is shown on the right.
�e System Console can be an invaluable debugging tool to verify the operation of the

hardware without the interference of (potentially �awed) so�ware. For your project, I suggest
you write a similar script to exercise your hardware before you embark on so�ware.



4 Communicate with Your Peripheral�rough So�ware
Once you are satis�ed your hardware peripherals work properly by testing them with the
System Console, it is easier to con�gure the fpga during the boot process rather than with
the Quartus programmer.
Enter the output_�les directory of your Quartus project and from the command-line, run

quartus_cpf -c SoCKit_Top.sof soc_system.rbf

to convert the .sof �le generated by Quartus to an .rbf �le that our boards download and
program into the fpga as part of the boot process (e.g., as done in lab 2).
Copy soc_system.rbf to the /sockit directory on your workstation.
Now, turn on the board, connect to its console as you did in lab 2 using

screen /dev/ttyUSB0 57600

and make sure the fpga is con�gured as part of the boot process, displays “4840LAb3” on the
vga display, and delivers you to a root prompt (e.g., root@linaro-nano:~#).
4.1 Compile and Run the Sample Program
Download lab3-sw.tar.gz from the class website and unpack it in your workstation’s /sockit/-
root/root directory (as before, you may have to erase a previous students’ directory: use the
SoCKit console).
Compile the device driver and user program, install the kernel module, and verify that it

works. �is should look like

root@linaro-nano:~/lab3-sw# make

make -C /usr/src/linux SUBDIRS=/root/lab3-sw modules

make[1]: Entering directory ‘/usr/src/linux’

CC [M] /root/lab3-sw/vga_led.o

Building modules, stage 2.

MODPOST 1 modules

CC /root/lab3-sw/vga_led.mod.o

LD [M] /root/lab3-sw/vga_led.ko

make[1]: Leaving directory ‘/usr/src/linux’

cc hello.c -o hello

root@linaro-nano:~/lab3-sw# insmod vga_led.ko

root@linaro-nano:~/lab3-sw# ./hello

VGA LED Userspace program started

initial state: 3e 7d 77 08 38 79 5e 00

current state: 39 6d 79 79 66 7f 66 3f

VGA LED Userspace program terminating

root@linaro-nano:~/lab3-sw# rmmod vga_led



“make” compiles the kernel module (vga_led.ko) and the userspace program (hello).
“insmod”’ loads the generated kernel module. In the supplied device driver, doing this

should change the display.
�e hello program is a userspace program that communicates with the vga_led device driver

primarily through the ioctl system call. It opens the device, reads its state, writes its state, and
animates the display for a little while.
“rmmod” removes the kernel module, which is necessary any time you modify and re-

compile the module.
5 What to Do
Modify the hardware and so�ware in the skeleton you have been provided to display a
bouncing ball. Change both the interface and contents of the hardware peripheral so that
it displays a stationary ball at a so�ware-controllable set of coordinates. Like the segments
of the faux led display, have the peripheral respond to writes to one or more addresses that
control the location of the ball.
Adapt the provided device driver to communicate with your peripheral. E.g., create an ioctl

that sets the coordinates of the ball.
You will need to modify the /sockit/socfpga.dtb �le to pass information about your new

peripheral to the kernel. Modify the provided socfpga.dts �le and replace the vga_led entry
with yours. Compile it to a .dtb �le, by running on the SoCKit board,

/usr/src/linux/scripts/dtc/dtc -O dtb -o socfpga.dtb socfpga.dts

Write a userspace program that bounces the ball by repeatedly communicating the new
coordinates to your peripheral through your device driver.
6 What to turn in
Find an overworked TA or instructor, and show him/er your bouncing ball. Once s/he is
satis�ed, collect just the �les you wrote or modi�ed for this lab in a directory called “lab3,”
make a tarball with tar zcf lab3.tar.gz lab3, and submit that via CourseWorks. �is should
include the SystemVerilog for your peripheral and source for your device driver and userspace
program.
Do not submit everything in your lab3-qsys directory: it is too big.



7 Qsys Hints
7.1 Editing the Source of Your Qsys Component
If you modify the Sys-

temVerilog for your compo-
nent (e.g., to �x a bug), you
need to regenerate your sys-
tem inQsys before re-running
Quartus. Open Qsys from
Quartus (Tools→Qsys), open
your .qsys �le, select your
component under “Project,”
and click “Edit.” �is should
bring up the Component
Editor window.
Click on the “Files” tab and

then “Analyze Synthesis Files.”
Once your �les compile suc-
cessfully, click on the “Com-
ponent Type” tab, increase the
version number, click “Finish,”
and “Yes, Save” to save the
change and return to the Qsys
main window.
In Qsys, select File→Refresh Sys-

tem (or just press F5). It should
complete with a reassuring warn-
ing indicating the version of your
component has changed. Hover-
ing over the instance of your com-
ponent should also indicate its ver-
sion has changed.

Now, select Generate→Generate. . . to instruct Qsys to regenerate your system so Quartus
can recompile it.



7.2 Don’t Edit Copies
Do not edit the �les in the synthesis directory (e.g., in lab3/synthesis/submodules). �ese are
copied or automatically generated by Qsys and will be overwritten the next time Qsys runs.
7.3 Verilog For a System Instance
Qsys can automatically generate a Verilog template for instantiating your system. Select
Generate→HDL Example. . . then copy-and-paste the sample. You will need to edit the names
of all the “connected-to-” signals to complete the connections. �e instance of lab3 in the
SoCKit_top.v �le was generated in this way.
7.4 Viewing Components as Blocks
Select a component and then View→Block Symbol. �is

shows the interface to a component.


	Introduction
	Add the vga Component to the Base Design
	Assigning Signals to Channels
	Connecting the vga Component
	Connect the vga Peripheral to its Pins

	Use the System Console to Verify Your Peripheral
	Running the System Console

	Communicate with Your Peripheral Through Software
	Compile and Run the Sample Program

	What to Do
	What to turn in
	Qsys Hints
	Editing the Source of Your Qsys Component
	Don't Edit Copies
	Verilog For a System Instance
	Viewing Components as Blocks


