Penrose World

CSEE4840 Embedded System Design
03/26/2014
Project Design

Group member

Yuanhui Luo(yl3026)
Yao Luo(yl3028)
Cong Zhu(cz2311)

Implement details: Algorithm

Induction

We consider use Ray-Casting algorithm to implement our game. Ray-Casting is a kind of
basic graphic projection technology which is frequently implied in 3D area. In our game, we
need to project a visual 3-D object into our image plane (screen) by Ray-Casting. The sketch

map is shown as below.

It just like see the projection of a cubic object on a plane from a eye. We connect every point
on the surface of our visual 3-D structure and our eye point P, and then calculate projection
of that point on the image plane (screen) (or we can call it image plane). Also we will divide
our image plane (screen) into many pixel, each pixel has a set of value which represent its
range, the color value (just like lab3) of pixels are depended on the projection results of
points in visual cubic structure. Finally, we can finish the display on image plane (screen) by

the value of set of pixels on image plane (screen).
Below is the flow path of our algorithm

1. Build a computer-held visual 3-D composed cubic structure. We store the boundary
constraint of all planes to represent a composed cubic structure in visual space.

2. Initialize and record the value of a three-dimension vector R(6,y,) which represents
the rotation angles according to x-axis, y-axis and z-axis. The method of rotation will be
described later.

3. Generate enough points in our visual 3-D space in each plane by the initial boundary
constraint, which is the initial points in our visual 3-D space. Location of every point is
represented by a three-dimension vector . And then by multiplexing the initial location
matrix of each point to rotation matrix which is generated from rotation vector R, we
get the location of all points after rotation.

4. Renew our image plane (screen), which is constructed by 480x680 pixels, besides its
location, each pixel records the plane number and the distance of a point which is
projected on that pixel. It is possible that more than one point projected on the pixel, we
will also record the related value of the nearest quailed point to our pixel. If no point is
projected to that pixel, we just record NULL.

5. For each plane, we project every point on that plane to image plane (screen). If the point
is projected in the area of a pixel, we record the distance between that pixel and point
and the plane number of the point in the pixel. We always renew the distance and plane
number when the distance between new point and that pixel is smaller than the prior
one.

6. After projecting all planes, the four-dimension pixel matrix (x-coordinate, y-coordinate,
plane number, distance) is passed to image plane (screen) controller block by data bus.
And the image plane (screen) controller can generate the projected graph on image
plane (screen).

7. Repeat step 2-6 when new command signal from gamepad is sent to CPU.

The method of Rotation
In our game, we will rotate our visual space cubic object accord to x-axis, y-axis and z-axis.
We implement the operation by rotate every point which compose the whole cubic object.
We consider the rotation in 2-D space. The original point P(x,y) is shown in the figure below.
The vector (x,y) is rotated by angle 6. Assume the original vector is (Acose, Asing). After
rotation, the new vector is (Acos(g + 6), Asin(p + 0)).
As x' = Acos(p + 0) = A(cospcosO — singpsingd) = xcosd — ysinf

y' = Asin(p + 0) = A(sin@cos6 + cospsin®) = ycosO + xsinf

so we can take a rotation matrix R to finish operation above.
[x" _ [cosG - sin@] [x]
y'] sin 0 cos@lLly
(xy’)

0_-9x.y)

Which means

In the same way, we know when we rotate a point according coordinate axis. For example,
x-axis. The x coordinate of that point will not change, and the y coordinate and z coordinate
will change with the rotation angle.

So R(8,y,®) which 6,y, ¢ represent the rotation angle separately.

theta

90

90 y

X

So we can define three Rotation Matrixes RotX(8), RotY (y), RotZ(p), and calculate the
rotated coordinate of each point P.

[1 0 0
RotX(0) = |0 cosf —sinf
0 sinf cos0 |
[cosy 0 siny]
RotY(y) = 0 1 0
|—siny 0 cosy.

[cosp —sing O
RotZ(¢p) = |sing cosp O

0 0 1
X x'
-
Z 7'

P = RotX(0)RotY (y)RotZ(p)P’

Ray casting

We need to calculate if points on the visual cubic structure can project on the image plane as
well as the location in where it projects. We implement it by calculate the intersection
points of the image plane and the line from eye point to points on cubic structure(vp). we
set the eye and the image plane into a fixed position. The eye will locate on y-axis,
E(0,y.,0) represent its space location. Obviously , the image plane is perpendicular to y
axis. We can represent the location of pixels in a 480640 image plane by a set of
coordinate P(x,0,z),x vary from -319 to 320, z vary from -239 to 240.

To calculate the projection coordinate from points on cubic structure(we name it vp) on
image plane, we need at first represent the direction vector from eye point to vp, and then
give the value of y coordinate y, into the connection lines above to calculate x and z, which
are the coordinate of intersection point. Finally set the value of those points and calculate
the distance between vp and that intersection points. The sketch map is shown as below.

Hardware Peripheral

The components of our system include the HPS and FPGA core on the Sockit Board as well
as the SRAM block. One task for the FPGA is mainly used to build the controller (driver) of
SRAM, VGA, and the gamepad. The FPGA is also responsible for the parallel computation of
point projection on screen, generate input data stream into the VGA screen. We use
gamepad to control direction of rotation, store the location information of 3-D object and its
2-D projection in the SRAM. Finally, all the communications are happened on the Avlon bus.

AN

| IR, .
’

image plane

Further details about each part is described as bellow:

HPC
BUS
~ ~_~ ~
Audio Gamepad Screen SRAM
controller controller controller controller
N N N
Audio Gamepad Screen SRAM

FPGA

Besides the controller of all the peripherals, FPGA is also responsible for the parallel
computation of each point on the object onto the screen. In each clock cycle, we generate
several rays which pass through the eye and each point on the surface of target object,
record the two dimensional location on the screen and calculate the distance from the
screen to the object’s surface. We can do the calculation of each line in parallel for the
reason that every single computation has no data dependency with others. The detail of

every calculation is shown in the algorithm implementation.

Gamepad

We use the gamepad to control the rotation of 3D object showing on the screen. There are
four basic moving instructions in our design. The press of button will be detected by the
gamepad and send to the HPS as an internal signal. Gamepad communicate with the main
logic in HPS using USB port and Avlon bus. These moving instructions then define the
moving operations and the angle of moving to the FPGA to generate the new rotated 3-D
object. The gamepad is connected to the Sockit board using USB ports on the board. The
USB is controlled by SMSC USB3300 controller. The interface of this controller is shown as
bellow:

PERIFERAL

DATA_TYPE

FUNCTION

HPS_USB_CLKOUT

output std_logic

60MHz reference clock for signals synchronous.

HPS_USB_DATA

inout std_logic [7:0]

Transfer control signals from gamepad to HPS.

HPS_USB_DIR

output std_logic

Controls the direction of the data bus, pull it high when
gamepad buttons are pressed.

HPS_USB_NXT

output std_logic

The PHY asserts NXT to throttle the data. When the Link is
sending data to the PHY, NXT indicates when the current byte
has been accepted by the PHY. The Link places the next byte
on the data bus in the following clock cycle.

HPS_USB_STP

input std_logic

The Link asserts STP for one clock cycle to stop the data
stream currently on the bus. If the Link is sending data to the
PHY, STP indicates the last byte of data was on the bus in the
previous cycle.

clk

input std_logic

clock signal

The timing diagram for this mode is shown as below:

Clock Out -
CLKOUT

Teee— e »The
Control In -
STP
Tepe e »Tup

Data In -
DATA[7:0]

< »Toe le] P
Control Out -
DIR, NXT

[* TDD

Data Out -
DATA[7:0]

VGA Display

The data processed by main logic in FPGA and HPS has the form of a 3-D array in which the
first two columns are the X-Y coordinates of points that will display on the VGA screen. The
third column indicates which surface the current shape is projected from. The VGA
controller will first analyze the coordinates of input data to decide that which pixel on the
screen is chosen to be light up. Then, the third column of input data will be used to decide
the color of this projected surface in order to distinguish with different surfaces. The whole
protocol is much like the lab3 where VGA controller response only for lighting up specific
area of the screen based on the input data.

PERIFERAL DATA_TYPE FUNCTION
VGA_CLK output std_logic clock output to drive VGA screen
VGA_HS output std_logic horizontal synchronize
VGA_VS output std_logic vertical synchronize
VGA_BLANK n output std_logic control signal for blanking
VGA_SYNC_n output std_logic control signal for synchronize
VGA_R output std_logic [7:0] chroma of red
VGA_G output std_logic [7:0] chroma of green
VGA_B output std_logic [7:0] chroma of blue
writedata input std_logic [335:0] data of object and angle of view. 288 bits for vector
information, 48 bit for object’s surface.
clk input std_logic clock signal

The timing diagram for this mode is shown as below:

Back porch (b) Front porch (d)
|

<»| Display interval (c) (&

DATA RGB

HSYNC

A
v

Sync (a)

Audio

We use the SSM2603 Audio CODEC block on the Sockit Board to display the back ground
music. The music and some kind of sound effects are stored at the SRAM on board and the
block is controlled by the HPS core. All the music are played automatically when the system
boots and the sound effects are played whenever the HPS required. The interface of Audio
block and FPGA is shown as bellow:

PERIFERAL DATA_TYPE FUNCTION
AUD_XCK input std_logic Audio CODEC Chip Clock
AUD BCLK input std_logic Audio CODEC Bit-Stream Clock
AUD_DACDAT input std_logic_vector [23:0] Audio CODEC DAC Data
AUD_DACLRCK inout std_logic DAC Sampling Rate Clock
AUD_MUTE input std_logic DAC Output Mute, Active Low

The default work mode of audio output is I12S mode, the timing diagram for this mode is
shown as below:
Figure 25. PS Audio Input Mode

1/fg

LEFT CHANNEL RIGHT CHANNEL

RECLRC/
PBLRC

w | [Ty i

RECDAT/ 1 2 3 N 1 2 3 N X X X
PBDAT LA e

07241018

X =DON'T CARE.

SRAM and data storage

The object we show and rotate on the screen is actually stored as an array consists of many
3-D coordinates indicating a specific point on the object’s surface. To generate this object,
we only stored all the vertexes of this object. The points on every surface are actually

generated in every execution and these generated points are then used to calculate
projections of each surface. After all the surfaces are correctly generated, a 2-D array is
stored into the SRAM where each line of this array means the location on the screen. On top
of that, each pixel is attached with a flag indicating which surface it belongs to so that VGA
can display different color in different area.

Software Peripheral (HPS)

The software peripheral in our design is relatively small because most of the operation
happens in hardware. Every time when the gamepad sends a control signal to the system,
we need to pass it to the software peripheral. It is the software that generate output to other
block and hardware to react to the control instruction. Once the software detect a moving
instruction is given by the gamepad, it generates a rotate instruction to send to the FPGA so
that the main logic block in hardware could do the computation of rotation. The registers
set to communicate between software and hardware are defined as bellow:

REGISTER NAME FUNCTION
rotate_left rotate to the left
rotate_right rotate to the right
rotate_upward rotate up
rotate_downward rotate down
au_reset reset the audio
au_on begin playing music
direction_rotate direction of rotation
angle_rotate angle of rotation

