Leap Motion Piano: Design

Patrice Liang pl2279
Matthew Patey mep2167
Vanshil Shah vs2409
Kevin Walters kmw2168

Overview
In our project, we are implementing a virtual piano using a
Leap Motion device. The Leap Motion hardware contains a
camera system that enables software to use video
processing techniques to determine hand and finger
positions, as shown in the picture. Since the Leap Motion
needs to run on x86 architecture, we cannot use the Hard
gy— Processor System (HPS) on the SoCKIT board to read input
// R from the device. Instead, we collect finger position data on a
separate computer and send it through Ethernet
communication to the HPS.

Another major component of the project is a display controller that can interface with the monitor
to display the piano. The display will also track finger movement using a cursor displayed by
small sprites. Since this piano will be able to play sounds, we also need an audio controller to
speak to the audio codec on the board. The audio and video components will be designed in
hardware, as shown in the block diagram below.

To play this piano, the user will hover their fingers over the Leap Motion and press one finger
down to simulate a piano key press. Whichever note is pressed will be played through the
3.5mm audio out line.

Block Diagram
As shown in the diagram below, the ARM Processor interacts with Ethernet and various
controllers through the Avalon Bus. Its primary functions are as follows:

e receiving coordinate data from the Leap Motion device through Ethernet
communication
reading sprite data for the finger cursor from the RAM through the RAM Controller
displaying piano keys and simulating key presses on the VGA display through the
VGA Controller

e producing corresponding audio notes through the Sound Controller

ARM Processor [« Ethernet LEAP Controller

‘%

|| Avalon Bus ||
¢—} vf—} v : v

RAM Contraller WGA Contraller Sound Cantroller Sprite Logic

A

-+
x
"
+

h 4

RAM YGA Sound

Software
The software side of the project includes 3 major components:

e communication through Ethernet (on HPS and a separate workstation)
e detecting key presses on the virtual piano using finger positions (HPS)
e generating audio and video data (HPS)

The Ethernet communication will be done using sockets and a UDP connection in Java, using a
packet structure that includes the finger position data on the workstation. This will be received on
the HPS through a C program. This position data must be converted from physical
measurements (millimeters) to pixels.

The second component will then use the position data to calculate when a key is pressed based
on the velocity in a direction, and which key is pressed. This will invoke the video and audio
components which will write to the areas of memory where the components are mapped.

Memory Requirements

The memory requirements of our project will mainly come from support of the VGA display.

The VGA display consists of two components: the sprite indicating the cursor that follows the
finger’s position, and the background piano display. The sprite for the cursor will be made of an
8x8 pixel region. Each sprite/cursor consists of both sprite data and sprite attributes. This is
stored in 4 bytes of RAM, with 1 byte dedicated to the sprite attributes. The pattern table must
also store 8*8 = 8 bytes. With a maximum of ten fingers as input, this will lead to at most
(4+8)*10 = 120 bytes of sprite data. The video framebuffer functions differently, and is where we
will be displaying the piano. We have two options for displaying the keys: drawing a series of 2D
rectangles, or drawing a more elaborate design using sprites. If we decide to draw a series of
rectangles, everything can be hardcoded, so no memory will be needed. Drawing the piano in

this way, there will be a larger and a smaller sized key, for the white and black keys, respectively.
With a 640 x 480 screen, it would be too difficult for to fit an entire piano, so we will be only
displaying one octave (at least initially). This will translate to 90 pixels in width per key. If we
decide to use sprites, however, we will need to store memory. The larger keys will be 90 x 480,
while the smaller keys will be around 45 x 300. Beginning with only one octave, we will have
seven large keys and five small keys. With 12 more sprites, the information would be stored in
4*12 = 48 bytes of RAM. The pattern tables would take up 90*480 + 45*300 = 7088 bytes. Thus,
the total memory needed would be 7088 + 48 + 120 = 7256 bytes. Note that this is only an
estimate and is subject to change as our design changes.

We will not be needing any memory to support the audio portion of our project, because we will
be able to use audio files stored in the chip’s memory.

Peripherals

VGA:

The VGA controller will include VGA output logic and a custom frame buffer that renders the
piano keys. The controller interface allows additional images to be added to the buffer, such as
the cursor. The sprite controller reads the sprite information from RAM, determines the location
of the image and sends it to the frame buffer. The sprite controller is sent coordinates from the
processor that tell it where to display the cursor.

Software-Hardware:

We will need three registers for the software-hardware VGA interface, consisting of an
x-coordinate, a y-coordinate, and a y-velocity. Each register is an integer and will
therefore be made up of 4 bytes.

Hardware-Hardware:
Timing Diagram

: HTOTAL -
EACE.__PE:IRCH HACTIVE FRDN'II';:F:"ORCH
Video | \ C
HSYNC H L_J
HSYNC

Inputs to our VGA controller:
- Clock
- Framebuffer that holds image data
Outputs to the monitor:
- VGA monitor signals that go to the VGA DAC

Ethernet:

On a separate computer, raw input from the Leap Motion device is sent through Ethernet to the
SoCKIT board. Because the VGA display will be constantly updated with high frequency, some
packet loss and error can be tolerated. Thus UDP will be used. The structure of the UDP data is
simply the x-coordinate, followed by the y-coordinate, followed by the y-velocity. Each value
consists of 4 bytes, for a total of 12 bytes per data delivery. Software on the board converts
these raw input coordinates to VGA display coordinates and determines where to render the
cursor on the screen (translating from mm to pixels), as well as whether a key has been
pressed.

Audio:
When the program determines that a key has been pressed it chooses the appropriate audio file.
It then writes the file to the audio controller, which sends it to the SoCKIT board’s audio device.

Hardware-Hardware:
Below is the timing diagram for the interface between the audio controller and the audio
codec device.

< [T U Uu Uiy

X =DON'T CARE.

PBLRC is the digital audio frame clock which is used to determine whether the audio
data stream is left channel data or right channel data. BCLK is the digital audio bit clock,
which informs the device when a new bit is on the data stream. PBDAT contains the time
domain multiplexed left and right channel audio stream data.

Software-Hardware:

The register we will be using is a “buffer” for the audio file. The software will write the
audio file into this buffer, which will then be sent to the audio codec. There will also be
another register used as a start signal, so the device will know when to begin playing the
file.

Memory:
The sprite data needed for the cursor will be stored in memory. This data is accessed by the

sprite hardware when drawing to the screen. The memory controller takes read and write
requests, and then passes them on to the memory.

Hardware-Hardware:
Below is timing for the interface between the memory controller and memory hardware.

Clock U/ U UJ

Address _A9 X Al X Al Read A1

Data In
Write __ [|

Data Out | Do Jold D1) D1

Address is a 16 bit signal that informs the memory which address to access. Data In and
Data Out are 32 bits wide, and transfer data between the devices. When write is 1, the
memory reads data from Data In into the specified address. When write is 0, the memory
writes data from the specified address onto Data Out.

Milestones

Milestone 1:

Write software that runs on an x86 machine that reads data from the Leap APl and sends it to
the SoCKIT board via Ethernet. For this first milestone, we will start with input from only one
finger. We will also write code that runs on the SoCKIT board that reads this data and converts it
into coordinates that we then use to display a simple symbol (a ball) on the VGA display. This will
involve a basic framebuffer and VGA controller that can send output to a VGA display.

Milestone 2:

Get cursor on VGA display to track finger movement, replacing the symbol from milestone 1 with
a sprite. This will require the sprite hardware that will send the cursor image to the framebuffer.
Draw the piano to the VGA display.

Milestone 3:

Get sound and proper key press animation based on where cursor is when finger is moved
downwards. The framebuffer must be enhanced to display keys and animate a key press. The
audio controller must be written to act as an interface between the processor and the board’s
audio device. The software must be able to recognize a key press and determine which key is
being pressed. With this information it informs the framebuffer which key to display as pressed
and it must send the correct the audio file to the audio controller.

