

PIANO PLAYER WITH VIRTUAL
TOUCH KEYBOARD

2/23/2014 Project Design

CSEE W4840 EMBEDDED SYSTEMS

Spring 2014 Prof. Stephen A. Edwards

By Daran Cai (dc2946@columbia.edu)

 Linjun Kuang (lk2578@columbia.edu)

 Wei Xia (wx2147@columbia.edu)

 Wenyuan Zhao (wz2262@columbia.edu)

Piano player with Virtual touch keyboard

Page 1

Piano player with Virtual touch
keyboard

P R O J E C T D E S I G N

ABSTRACT
This document describes our preliminary project design implementation based on our research so far. For
our project, we are going to implement a piano player. Unlike traditional piano player software and
applications, we will use a normal screen and a camera to realize a virtual touch screen and a virtual
keyboard. We will use a Sockit board, an ARM Cortex- A9 processor, a camera (Logitech HD Portable
1080p Webcam C615 with Autofocus), a VGA display and a pair of speakers.

INTRODUCTION
The key point of our project is how to use a camera and a normal screen to realize the function of a touch
screen. The basic idea is that camera is used to capture the image of fingers and the screen in real time,
and then using computer vision algorithm to recognize the relative position of the finger on screen. Using

this relative position, we can achieve the function of the touch screen.

As for the user interface, we will use sprite graphics. There will be a keyboard on the bottom of the
screen. When users press those virtual keys, the corresponding sounds will come out.

FIGURE 1: THE INTRODUCTION OF THE KEY CONCEPT

Piano player with Virtual touch keyboard

Page 2

Except for the basic free mode, in which users can play whatever they like, we will provide other modes
such as tutorial mode and player mode. If we can realize these modes, we can add more interesting
mode.

We got the basic idea of our project from a project made by Cornell student, but we will do many
innovations and improvements in our project. The description of this Cornell project is listed in reference
part.

The implementation of image processing and user interface will be done using FPGA. Sound samples will
be stored in the board, and called using software.

HIGH LEVEL BLOCK DIAGRAM

Set	 up	 the	 whole	 system	
and	 plug	 in	 the	 camera	 to	
the	 development	 board

Image	 capture	 and	
preprocessing	 module

Display	 the	 user	
interface	 in	 the	
display	 monitor

VGA	 Display	 module

Finger	 detection	
module

Current	
frame	

image	 data

Current	
finger	
position

Exchange	 data	
between	

memory	 for	
Linux	 system	
and	 memory	
for	 FPGA

Whether	 stop

No

EndYes

Start

Display	 the	 visual	
feedback	 for	
pressed	 key

Audio	 module

Play	 the	
corresponding	

note

Software	 part Hardware	 part

FIGURE 2: HIGH LEVEL BLOCK DIAGRAM

We will introduce those four main modules in the detailed implementation section.

Piano player with Virtual touch keyboard

Page 3

DETAILED IMPLEMENTATION

Image capture and preprocessing module

Hardware implementation

As design sketch in Figure 33(a) showed, in order to implement a virtual touch display screen, we have to
use a camera to capture the image of finger and display monitor in a special angle. To approach this
design, in real hardware implementation for capturing image, there are three main parts which are a
web-camera, a camera clip and a normal display monitor.

In our implementation, we fix the web-camera with the camera clip and fix this camera clip at the top of
the display monitor. Since the camera clip we used can be set to almost any angle, we will set it to an
appropriate angle to make sure the web-camera can capture the entire keyboard area in the display
monitor. The whole hardware implementation is showed in Figure 33(b).

(a) Desin sketch.

(b) Real implemenation.

FIGURE 3: THE WHOLE HARDWARE IMPLEMENT FOR IMAGE CAPTURE.

We will introduce each component of this implementation in detail below.

WEB-CAMERA
Since there are some USB ports in our development board, we decide
to use a USB Web-camera as the camera to capture the image of
finger and display monitor. In order to make this real-time
reorganization system has enough sensitivity to the position of the
finger, we hope this Web-Camera can have higher resolution and fps.
Therefore, finally, we decide to use Logitech C615 Web-Camera and
the specifications of the Web-Camera are list below:

• Full HD 1080p video capture (up to 1920 x 1080 pixels) with
recommended system

• Autofocus
• Hi-Speed USB 2.0 certified (recommended)

FIGURE 4: LOGITECH C615 WEB-CAMERA

Piano player with Virtual touch keyboard

Page 4

• Universal clip fits laptops, LCD or CRT monitors

CAMERA CLIP
For the camera clip, it should satisfy the follow requirements:

1. Can be fixed at any kinds of display monitor.
2. Can hold the Web-Camera stable.
3. Can be set to any angle.

After saw a lot of kinds of camera clip, we found the camera clip in Figure 55 can satisfy those
requirements.

1. The clip part of this camera clip can fix at almost any kind of display monitor.
2. By using screw to combine with Web-Camera, it can make sure the stability of the Web-Camera.
3. The ball head part of this clip make it possible to be set to the any angle.

Therefore, in our design, we decide to use this camera clip.

FIGURE 5: NEEWER® MULTI-FUNCTION SPRING CLAMP CLIP HOLDER MOUNT WITH BALL HEAD W/ STANDARD 1/4" SCREW FOR SLR, DIGITAL SLR,

VIDEO CAMERAS

Piano player with Virtual touch keyboard

Page 5

Software implementation

The key part of our design is to use a Web-Camera to capture the image of the finger and the display
monitor and recognize the position of the finger on the display monitor. We decide to split this part in to
two main subparts. One is to get the real time captured image from the Web-Camera and send it to the
memory in FPGA and the other one is to do some image processing program on this captured image to
find the position of the finger. We decide to implement the first part in LINUX environment named “image
capture and preprocessing” and implement the second part in FPGA environment named “finger
detection”. In this section, we will talk about the software implementation of the part “image capture and
preprocessing”. The high level block diagram of this part is showed below:

Web-‐
Camea

USB	
Port

Raw	 image	 data

V4L	 diver

Received	 raw	 image	 data

Open	 the	 Web-‐Camera	 device
V4L_open()

/dev/video

Get	 the	 basic	 information	 of	 the	 Web-‐Camera
V4L_get_capability()

Get	 the	 property	 of	 the	 image
V4L_get_picture()

Set	 the	 property	 of	 the	 Web-‐Camera	 and	 the	 image
V4L_set_picture()

Map	 the	 image	 data	 to	 the	 main	 memory
V4L_memoy_map()

Start	 the	 image	 capture
V4L_sart_get()

Preprocessing	 the	
captured	 image

Whether	 to	 stop
	 the	 image	 capture

Transmit	 the	
preprocessed	 image	
data	 to	 the	 SDRAM	
in	 the	 FPGA	 board

NO

Close	 the	 Web-‐Camera	 device
V4L_close()

End

FIGURE 6: HIGH LEVEL BLOCK DIAGRAM FOR SOFTWARE IMPLEMENTATION OF "IMAGE CAPTURE AND PREPROCESSING" PART

Piano player with Virtual touch keyboard

Page 6

INTRODUCTION TO V4L
Video4Linux (V4L) is the driver for video devices from LINUX kernel, it can provide a series of APIs for
the program which intend to use video devices as input. If we want to use this driver, we have to make
sure our Web-Camera can support UVC (USB Video Class). Fortunately, he Web-Camera we used can
support UVC.

Under the LINUX environment and the function of V4L, all the peripherals are considered as special files
named device file. The APIs the V4L diver provided can allow us to read and set this files to get the
image data we want. This device file will be store at the folder “/dev/video”.

SET THE FRAME IMAGE PROPERTY AND MAP IT TO THE MAIN MEMORY
• Use V4L_open() to open the device file, set the path of the device file to “/dev/video”.
• Use V4L_get_capability() and ioctl() to get the information of the Web-Camera, and store those

information to the struct video_capability.
• Use V4L_get_picture() and ioctl() to get the property of the image, and store those property to the

struct video_picture.
• Use the V4L_set_picture() and ioctl() to set the property of the image in order to get the

appropriate resolution and so on.
• Use V4L_get_mbuf() and ioctl() to get the information of frame image from the buffer of Web-

Camera, and store information to the struct video_mbuf.
• Use V4L_set_mmap() to set the property of the frame image we want to get from the device file.
• Use V4L_memoy_map() and ioctl() to map the device file to the main memory.

CAPTURE THE FRAME IMAGE DATA
Use V4L_sart_get() and ioctl() to begin mapping the frame image to the main memory. After get the
frame image, convert this image to the 3-D array to present the RGB parameter of each pixel. The block
diagram is showed below.

Begin	 to	 capture	 the	 frame	 image
V4L_start_get()

While() No EndYesUse	 V4L_sync()	 to	
synchronizse

Get	 the	 map	 address
V4L_get_mapaddress()

Convert	 the	 frame	 image	
data	 get	 from	 map	

address	 to	 3D	 array	 to	
store	 the	 RGB	

information	 of	 each	 pixel

Update	 the	 frame	 number

Begin	 to	 capture	 the	 frame	 image
V4L_start_get()

Store	 this	 array	
to	 be	 used	 in	
preprocessing	

part.

FIGURE 7: BLOCK DIAGRAM FOR CAPTURING THE FRAME IMAGE

Piano player with Virtual touch keyboard

Page 7

PREPROCESSING THE CAPTURED IMAGE
The input of this part is the 3D array of the captured frame image which includes the RGB parameter for
each pixel. In order to make it convenience for “finger detection” in hardware and decrease the memory
cost, we want to use software part to do some preprocessing of the frame image. The block diagram for
this algorithm is showed below:

3D	 array	 to	 store	 the	 RGB	
parameter	 for	 each	 pixel

Scan	 each	 pixel

R	 >	 G	 &&	 R	 >	 B	
&&	 R	 >	 200

Initial	 a	 2D	 array	 to	 store	 the	
segmented	 frame	 image

Store	 the	 segmentation	 label	
for	 Red	 to	 2D	 array	 at	 the	

corresponding	 pixel	
YesB	 >	 R	 &&	 B	 >	 G	

&&	 B	 >200 No
Store	 the	 segmentation	 label	
for	 Blue	 to	 2D	 array	 at	 the	

corresponding	 pixel	
Yes

G	 >	 R	 &&	 G	 >	 B	
&&	 G	 >150

No

Store	 the	 segmentation	 label	
for	 Geen	 to	 2D	 array	 at	 the	

corresponding	 pixel	
Yes

Store	 the	 segmentation	 label	
for	 Black	 to	 2D	 array	 at	 the	

corresponding	 pixel	

No

Whether	 scan	
all	 the	 pixel

No

Transmit	 the	 2D	 array	 to	 the	
SDRAM	 in	 FPGA	 board Yes

FIGURE 8: BLOCK DIAGRAM FOR THE ALGORITHM OF "PREPROCESSING THE CAPTURED IMAGE"

Firstly, we will use the RGB parameter for each pixel to segment the frame image to four kinds of colors,
the red, the blue, the green and the black. The rule of this segmentation is presented in the table below.

TABLE 1: THE RULE OF THE SEGMRNTATION

Color Condition Segmentation label
Red R > G && R > B && R > 200 1
Blue B > R && B > G && B >200 2

Green G > R && G > B && G >150 3
Black Otherwise 0

The Figure 98 show the result of the segmentation of a frame image. However, in order to compress the
image data which will be stored in SDRAM in FPGA, we will create a 2D array to store the segmentation
label for each pixel and transmit this to the “finger detection” part in hardware implementation.

Piano player with Virtual touch keyboard

Page 8

(a)The frame image captured by Web-Camera.

(b)The frame image after segmentation.

FIGURE 9: SEGMENTATION OF THE FRAME IMAGE

Finger detection module
The finger detection algorithm takes an 800*600 array as input and outputs two signals: one 1-bit signal
telling if there is a key being pressed, one 4-bit signal telling which key is pressed since we could have 8,
12 or 16 keys displayed on screen.

The image data we get from the SDRAM only has four colors: black, red, green, and blue. The
background is in black. Red is used to separate the background and keyboard area. Green and blue

are used as two alternating colors of keys. The actual image is shown in figure 10.

The basic idea can be described below.

1. Scan the vertical pixels, if we find several consecutive red pixels (There may be noise pixels and
a single red pixel cannot tell anything), we will know that the area below these red pixels are
keyboard area. Then we assign the horizontal line, say 30 pixels below the last detected red

FIGURE 10: IMAGE DATA

Piano player with Virtual touch keyboard

Page 9

pixel, as the target horizontal line. This target horizontal line is used to label different keys and
detect if there is a key being pressed.

2. Scan the target line from left to right. If there are several pixels that are green, we will assign the
position of the first detected green pixel to the label0_start signal. Continue scan the target line,
if there are several blue pixels, we will assign the position of the first detected blue pixel to the
label1_start signal. The label0_end will be assigned as label1_start – 1. After scanning the
whole line, we compare the number of labels with the number of keyboards. If they are different,
we must do it again. The label information is used as a reference when trying to detect if there is
a finger. (Here we need to design a finite state machine to get rid of noise, since there may be
some noise pixels in the middle of a key and will cause disaster. This is also for the purpose of
robustness.)

3. Finally, we compare the difference in each label of our real time image with the original color
(Green or blue). If the different pixels exceed the threshold value, we could say that the
corresponding key is pressed.

 The detailed design is below.

The whole algorithm should be divided into 3 modules: keyboard detection, label, diff. Figure 11 shows a
high level block diagram of the connection between these three parts.

Keyboard	 detection	 module

Key	 label	 module

Target_line

Read	 2D	 image	 array	
from	 SDRAM

Initial	 state

Horizontal	
line	 with	 label	
information

Diff	 	 module

Read	 2D	 image	 array	
from	 SDRAM

Pressed	 key	
position

Whether	 to	 stop

Yes

End

No
Press	
or	 not

FIGURE 11: FINGER DETECTION BLOCK DIAGRAM

Keyboard detection module

The keyboard detection module takes the image array as input and outputs a 10-bit signal telling which
horizontal line we are using to label and detect finger positions. The image array has 800 * 600 pixels
and each pixel is implemented using 2 bits. 00 stands for black, 01 stands for red, 10 stands for green,
and 11 stands for blue.

At the rising edge of clock, compare the color of each vertical pixel with red. If it is not red, the vertical
counter increases by 1. If it is red, assign the target signal with the current vertical counter plus 30. We
also need a FSM to control the flow of operation.

Piano player with Virtual touch keyboard

Page 10

Scan	 vertical	 pixels	 of	 a	
given	 horizontal	 value

Red

No

Target	 line	 =	
vertical	 pixel	 +	 30Yes

FIGURE 12: KEYBOARD DETECTION MODULE

Key Label module

The label module takes the image data and the 10-bit target horizontal line value as input. It outputs up
to 32 10-bit signals telling the beginning and ending position of each label.

Scan	 target	 line

Green

No

Label_start	 =	 current	
horizontal	 pixel

Blue

Label_end	 =	 current	
horizontal	 pixel	 –	 1
Nextlabel_start	 =	

current	 horizontal	 pixel

Current	
horizontal	 pixel	 >	

799

Scan	 next	
horizontal	 pixel

Store	 labelYes

No

Yes

YesNo

FIGURE 13: LABEL MODULE

Piano player with Virtual touch keyboard

Page 11

Diff module

The diff module takes the label information as inputs and outputs a 1-bit signal and a 4-bit signal telling
the sound and display block whether there is a key being pressed and which key is pressed.

Calculate	 difference	
in	 each	 label	 with	
stored	 image

Difference	 pixels	
>	 threshold Not	 pressed

Pressed

Yes

No

FIGURE 14: DIFF MODULE

Audio module
For our project, we are going to store the audio file in the SDRAM. The ARM processor will fetch audio
data from the SDRAM, computes and sends commands to the audio controller to play the sound.

The hardware part of the audio is simple. The hardware structure of the audio is built in the SRAM, and it
will connect with CPU, who connects data in SDRAM. Memory is big enough to store sound samples (see in
memory requirements) and CPU can easily call those samples.

The board could provide 24-bit audio via the CODEC encoder/decoder. This chip supports microphone-in,
line-in, and line-out ports with a sample rate adjustable from 8kHz to 96kHz. The audio chip is
configured in master mode. The audio interface is configured as I2S and 16-bit mode. We will also use
an 8kHz sample rate. (Try to make the memory requirement small. If there is a need, we will adjust the
sample rate later.)

The slide switch setting for sample rate for audio player is shown below.

TABLE 2: SLIDE SWITCH SETTING FOR SAMPLE RATE FOR AUDIO PLAYER

SW3 (0-down, 1-up) SW2 (0-down, 1-up) SW1 (0-down, 1-up) Sample rate
0 0 0 96K
0 0 1 48K
0 1 0 44.1K
0 1 1 32K
1 0 0 8K

Unlisted combination 96K

Piano player with Virtual touch keyboard

Page 12

The software implementation of audio part is done by CPU. When a key is pressed, the finger is
detected by the camera and after the image processing, it will call the corresponding sound samples and
the piano sound will be played via speaker.

VGA Display module
There are five kinds of elements to be shown

• A keyboard on the bottom of the screen
• A background on the rest of the screen
• A shadow effect when a key is being pressed
• Falling blocks
• An effect when a falling block hits the corresponding key

Detailed arrangement is shown below.

TABLE 3: ELEMENTS DEINITION FOR SPRITE

Sprite # content Sprite # content
0 keyboard 1 background
2 shadow 3 blocks
4 Hitting effect

Sprite with bigger number of index will overlap on the sprite with smaller number of index. Hence, we
manually divide these five sprites into two levels. Sprites 0 and 1 consist the basic first level, they are
fixed images on the screen and are not involved in any kinds of motion. Sprites 2, 3, and 4 consist the
second level, they are not fixed, involving changing position and motion, and they are not always
displayed on the screen, and there are interactions between them and the information we get from the
image processed.

The level of the sprites is shown as follows,

Keyboard
Background

Shadow effect

Falling blocks

Effect of hitting blocks

FIGURE 15: THE LEVEL OF THE SPRITES

Piano player with Virtual touch keyboard

Page 13

All those elements can be stored as fixed figures in the SDRAM on the board. The background on the top
of the screen is 320*640 pixels. And it is drawn as one sprite.
The lower area with blue and green blocks is used as keyboard area. It is 160*640 pixels. It is also
drawn as one sprite.

When the user pressed the key, when the image processing ends, it send the command to the sound, and
simultaneously, the pressed key will be shadowed. And will be light gray. If we use 16 keys keyboard as
an example, the shadow will be a 160*40 pixels sprite.

The above are the basic function we want to implement. The following are the higher level task we want
to implement. And it is a harder part.

There are two kinds of sprites in this part. One is a small ball, the other is a larger ball.

The upper area is used to display notes that the user supposed to play. The note to be pressed is in a
small ball. If the note pressed at the right time, it will turned to a larger ball. If the user miss the note
during the appropriate time, the note will not change. Also, the key which is pressed would be shadowed.

Piano player with Virtual touch keyboard

Page 14

CRITICAL PATH ANALYSIS

Image	 capture	 and	
preprocessing	 module

VGA	 Display	 module

Finger	 detection	
module

Current	
frame	

image	 data

Current	
finger	
position

Exchange	 data	
between	

memory	 for	
Linux	 system	
and	 memory	
for	 FPGA

Display	 the	 visual	
feedback	 for	
pressed	 key

Audio	 module
Play	 the	

corresponding	
note

1

2

4

6

3

5

7

5

6

FIGURE 16: THE BLOCK DIAGRAM FOR CRITICAL PATH

The response time for the whole system should be the time interval between the finger pressing a key and
the audio feedback or visual feedback of the pressed key. As Figure 16 showed, the critical path should
be the longer one between two paths. The one is from the beginning of capturing image to the visual
feedback is displayed in monitor, and the other one is from the beginning of capturing image to the note
of that pressed key is played.

MEMORY REQUIREMENTS

Camera
We will store the image data in SDRAM. The preprocessed image data has 800 * 600 pixels. Each pixel
is represented using 2 bits, 00 for black, 01 for red, 10 for green, and 11 for blue. The memory
required to store this image is 800 * 600 * 2 = 960000bits = 120K bytes.

User interface
We will use SDRAM to store the sprites. The sprites should contain five basic parts: a keyboard on the
bottom of the screen, a background on the rest of the screen, a shadow effect when a key is being
pressed, falling blocks, and an effect when a falling block hits the corresponding key.

Considering the screen is 640*480 pixels, we intend to use 240*480 pixels to display the keyboard, and
the rest is the background.

We will make three kinds of modes which have 8 keys, 12 keys and 16 keys. The memory the

• Keyboard: 160*640* 3 = 307200 bytes;
• Background: 320*640 * 3 = 614400 bytes;
• Keyboard pressed shadow: 160*640 * 3 = 307200 bytes;
• Falling blocks: 50*640 *3 =96000 bytes.
• Effect of hitting blocks: 100*640 *3 =192000 bytes.

The total memory usage is nearly 2MB.

Piano player with Virtual touch keyboard

Page 15

Sound samples
TABLE 4: MEMORY COST FOR AUDIO NOTE

Note C3 D3 E3 F3 G3 A3 B3 C4
Memory cost 613KB 613KB 613KB 613KB 613KB 613KB 613KB 613KB
Note D4 E4 F4 G4 A4 B4 C5 C6
Memory cost 613KB 613KB 613KB 613KB 613KB 613KB 613KB 613KB
Total memory cost: 613KB * 16 = 9808KB, nearly 10MB.

MILESTONE

Milestone 1 (April 1st)

• Buy the camera and support it on the top of the screen.
• Build a Linux system on an SD card.
• Realize image capturing and preprocessing in Ubuntu operating system, develop

algorithms for finger detection.
• Try to draw a simple keyboard using sprites.

Milestone 2 (April 15th)

• Complete image capturing and processing on the board, modify the algorithm and
realizing finger detection.

• Finish all sprites for user interface, including keyboard, background, shadow
feedback and blocks. Test shadow feedback using USB keyboard.

• Add sound samples and test them using USB keyboard.

Milestone 3 (April 29th)

• Connect all parts together and do joint debugging.(camera & sprite & sound)
• Make falling blocks and hitting effects.
• Try to realize changing modes and changing tones.

REFERENCE
1. Cornell project link:
http://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/s2013/cl972_rh523/cl972_rh523/i
ndex.html

2. Sockit user manual.

