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Altera’s Avalon Bus

Something like “PCI on a chip”

Described in Altera’s Avalon Memory-Mapped Interface
Specification document.

Protocol defined between peripherals and the “bus”
(actually a fairly complicated circuit).



Intended System Architecture

Source: Altera



Masters and Slaves

Most bus protocols draw a distinction between

Masters: Can initiate a transaction, specify an address, etc.
E.g., the Nios II processor

Slaves: Respond to requests from masters, can generate
return data. E.g., a video controller

Most peripherals are slaves.

Masters speak a more complex protocol

Bus arbiter decides which master gains control



The Simplest Slave Peripheral
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Basically, “latch when I’m selected and written to.”



Slave Signals

For a 16-bit connection that spans 32 halfwords,

Slave

← clk
← reset
← chipselect
⇐ address[4:0]
← read
← write
⇐ byteenable[1:0]
⇐ writedata[15:0]
readdata[15:0] ⇒
irq →

Avalon



Avalon Slave Signals

clk Master clock
reset Reset signal to peripheral
chipselect Asserted when bus accesses peripheral
address[..] Word address (data-width specific)
read Asserted during peripheral→bus transfer
write Asserted during bus→peripheral transfer
writedata[..] Data from bus to peripheral
byteenable[..] Indicates active bytes in a transfer
readdata[..] Data from peripheral to bus
irq peripheral→processor interrupt request

All are optional, as are many others for, e.g., flow-control
and burst transfers.



In SystemVerilog

module myslave(input logic clk,
input logic reset,
input logic [7:0] writedata,
input logic write,
input chipselect,
input logic [2:0] address);



Basic Async. Slave Read Transfer
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Bus cycle starts on rising clock edge.

Data latched at next rising edge.

Such a peripheral must be purely combinational.



Slave Read Transfer w/ 1 Wait State
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Bus cycle starts on rising clock edge.

Data latched two cycles later.

Approach used for synchronous peripherals.



Basic Async. Slave Write Transfer
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Bus cycle starts on rising clock edge.

Data available by next rising edge.

Peripheral may be synchronous, but must be fast.



Basic Async. Slave Write w/ 1 Wait State
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Bus cycle starts on rising clock edge.

Peripheral latches data two cycles later.

For slower peripherals.



The VGA_LED Emulator Peripheral

module VGA_LED(input logic clk,
input logic reset,
input logic [7:0] writedata,
input logic write,
input chipselect,
input logic [2:0] address,

output logic [7:0] VGA_R, VGA_G, VGA_B,
output logic VGA_CLK, VGA_HS, VGA_VS,
output logic VGA_BLANK_n, VGA_SYNC_n);

logic [7:0] hex0, hex1, hex2, hex3,
hex4, hex5, hex6, hex7;

VGA_LED_Emulator led_emulator(.clk50(clk), .*);



The VGA_LED Emulator Peripheral
always_ff @(posedge clk)

if (reset) begin
hex0 <= 8’b01100110; // 4
hex1 <= 8’b01111111; // 8
hex2 <= 8’b01100110; // 4
hex3 <= 8’b10111111; // 0
hex4 <= 8’b00111000; // L
hex5 <= 8’b01110111; // A
hex6 <= 8’b01111100; // b
hex7 <= 8’b01001111; // 3

end else if (chipselect && write)
case (address)
3’h0 : hex0 <= writedata;
3’h1 : hex1 <= writedata;
3’h2 : hex2 <= writedata;
3’h3 : hex3 <= writedata;
3’h4 : hex4 <= writedata;
3’h5 : hex5 <= writedata;
3’h6 : hex6 <= writedata;
3’h7 : hex7 <= writedata;

endcase

endmodule


