Altera's Avalon Communication Fabric

Stephen A. Edwards

Columbia University

Spring 2014

Something like "PCI on a chip"

Described in Altera's Avalon Memory-Mapped Interface Specification document.

Protocol defined between peripherals and the "bus" (actually a fairly complicated circuit).

Intended System Architecture

Source: Altera

Masters and Slaves

Most bus protocols draw a distinction between

Masters: Can initiate a transaction, specify an address, etc. E.g., the Nios II processor

Slaves: Respond to requests from masters, can generate return data. E.g., a video controller

Most peripherals are slaves.

Masters speak a more complex protocol

Bus arbiter decides which master gains control

The Simplest Slave Peripheral

Basically, "latch when I'm selected and written to."

Slave Signals

For a 16-bit connection that spans 32 halfwords,

clk reset chipselect address[4:0] read Avalon Slave write byteenable[1:0] writedata[15:0] readdata[15:0] irq

Avalon Slave Signals

clk reset chipselect address[..] read write writedata[..] byteenable[..] readdata[..] irq

Master clock Reset signal to peripheral Asserted when bus accesses peripheral Word address (data-width specific) Asserted during peripheral→bus transfer Asserted during bus→peripheral transfer Data from bus to peripheral Indicates active bytes in a transfer Data from peripheral to bus peripheral→processor interrupt request

All are optional, as are many others for, e.g., flow-control and burst transfers.

In SystemVerilog

<pre>module myslave(input</pre>	logic		clk,
input	logic		reset,
	logic	[7:0]	writedata,
input	logic		write,
input			chipselect,
input	logic	[2:0]	address);

Basic Async. Slave Read Transfer

Bus cycle starts on rising clock edge.

Data latched at next rising edge.

Such a peripheral must be purely combinational.

Slave Read Transfer w/ 1 Wait State

Bus cycle starts on rising clock edge.

Data latched two cycles later.

Approach used for synchronous peripherals.

Basic Async. Slave Write Transfer

Bus cycle starts on rising clock edge.

Data available by next rising edge.

Peripheral may be synchronous, but must be fast.

Basic Async. Slave Write w/ 1 Wait State

Bus cycle starts on rising clock edge.

Peripheral latches data two cycles later.

For slower peripherals.

The VGA_LED Emulator Peripheral

The VGA_LED Emulator Peripheral

