
Altera’s Avalon Communication Fabric

Stephen A. Edwards

Columbia University

Spring 2014



Altera’s Avalon Bus

Something like “PCI on a chip”

Described in Altera’s Avalon Memory-Mapped Interface
Specification document.

Protocol defined between peripherals and the “bus”
(actually a fairly complicated circuit).



Intended System Architecture

Source: Altera



Masters and Slaves

Most bus protocols draw a distinction between

Masters: Can initiate a transaction, specify an address, etc.
E.g., the Nios II processor

Slaves: Respond to requests from masters, can generate
return data. E.g., a video controller

Most peripherals are slaves.

Masters speak a more complex protocol

Bus arbiter decides which master gains control



The Simplest Slave Peripheral

Avalon-MM

 Interface

(Avalon-MM

 Slave Port)

Application-

Specific

Interface

writedata[15..0]

write

chipselect

clk

pio_out[15..0]

CLK_EN

>

D Q

Avalon-MM Peripheral

Basically, “latch when I’m selected and written to.”



Slave Signals

For a 16-bit connection that spans 32 halfwords,

Slave

← clk
← reset
← chipselect
⇐ address[4:0]
← read
← write
⇐ byteenable[1:0]
⇐ writedata[15:0]
readdata[15:0] ⇒
irq →

Avalon



Avalon Slave Signals

clk Master clock
reset Reset signal to peripheral
chipselect Asserted when bus accesses peripheral
address[..] Word address (data-width specific)
read Asserted during peripheral→bus transfer
write Asserted during bus→peripheral transfer
writedata[..] Data from bus to peripheral
byteenable[..] Indicates active bytes in a transfer
readdata[..] Data from peripheral to bus
irq peripheral→processor interrupt request

All are optional, as are many others for, e.g., flow-control
and burst transfers.



In SystemVerilog

module myslave(input logic clk,
input logic reset,
input logic [7:0] writedata,
input logic write,
input chipselect,
input logic [2:0] address);



Basic Async. Slave Read Transfer

Clk

Address

read

chipselect

readdata

Bus cycle starts on rising clock edge.

Data latched at next rising edge.

Such a peripheral must be purely combinational.



Slave Read Transfer w/ 1 Wait State

Clk

Address

read

chipselect

readdata

Bus cycle starts on rising clock edge.

Data latched two cycles later.

Approach used for synchronous peripherals.



Basic Async. Slave Write Transfer

Clk

Address

read

chipselect

writedata

Bus cycle starts on rising clock edge.

Data available by next rising edge.

Peripheral may be synchronous, but must be fast.



Basic Async. Slave Write w/ 1 Wait State

Clk

Address

read

chipselect

writedata

Bus cycle starts on rising clock edge.

Peripheral latches data two cycles later.

For slower peripherals.



The VGA_LED Emulator Peripheral

module VGA_LED(input logic clk,
input logic reset,
input logic [7:0] writedata,
input logic write,
input chipselect,
input logic [2:0] address,

output logic [7:0] VGA_R, VGA_G, VGA_B,
output logic VGA_CLK, VGA_HS, VGA_VS,
output logic VGA_BLANK_n, VGA_SYNC_n);

logic [7:0] hex0, hex1, hex2, hex3,
hex4, hex5, hex6, hex7;

VGA_LED_Emulator led_emulator(.clk50(clk), .*);



The VGA_LED Emulator Peripheral
always_ff @(posedge clk)

if (reset) begin
hex0 <= 8’b01100110; // 4
hex1 <= 8’b01111111; // 8
hex2 <= 8’b01100110; // 4
hex3 <= 8’b10111111; // 0
hex4 <= 8’b00111000; // L
hex5 <= 8’b01110111; // A
hex6 <= 8’b01111100; // b
hex7 <= 8’b01001111; // 3

end else if (chipselect && write)
case (address)
3’h0 : hex0 <= writedata;
3’h1 : hex1 <= writedata;
3’h2 : hex2 <= writedata;
3’h3 : hex3 <= writedata;
3’h4 : hex4 <= writedata;
3’h5 : hex5 <= writedata;
3’h6 : hex6 <= writedata;
3’h7 : hex7 <= writedata;

endcase

endmodule


