
Wei Duan (wd2214@columbia.edu)
Yi-Hsiu Chen (yc2796@columbia.edu)

Cryptography is a discipline that has important influence on information security such as data protection, information
privacy and identity authentication. It is widely applied in fields of scientific research, electronic communication, E-
commerce, etc. Though highly intersected with computer science, building cryptography programs often requires
much of the endeavor from programmers, as not many programming languages are able to perform even some
usual cryptographic operations with convenience.

With the issues being addressed, we decided to develop a programming language, CLIP, which emphasizes on
important cryptographic operations include data shifting, bit-wise manipulation and several operations in number
theory. Moreover, by allowing a rather strict memory allocation strategy, CLIP could perform calculation with higher
efficiency, thus strengthen its ability of processing big numbers. From a high level viewpoint, CLIP is essentially a
language that facilitates the mathematical computation of a sequence of data. Hence, we intend to implement it with
a paradigm that is similar to functional languages. As most of the cryptography manipulations are pure mathematic
operations, functional programming would maintain much of the true nature of cryptographic operations. In fact, CLIP
shares many features with Lisp and Ocaml.

CLIP is designed specifically for cryptographers. It could be adopted to express existing cryptography concepts,
develop new algorithms and implement cryptographic functions with a simple and concise fashion. For example, a
popular algorithm, Advanced Encryption Standard, could be implemented easily due to the specific functions, say
modulo operation, provided by CLIP. In addition, CLIP has built-in support for data shifting, data rotation, type
casting, logic operations like xor, etc. All of them help to reduce the level of complication in cryptographic
programing.

Key Word Description

int# bit integer

char single character

poly integer-valued polynomial

vector a sequence of integers, characters, polynomials, strings or vectors

string a sequence of characters

CLIP - A Cryptal Language with Irritating Parentheses

Motivation

Language Features

Potential Applications

Language Specification
1. Data types

n n

Other than some common functions and operator in programming language, including '+', '-', '*', '%', 'and', 'or', 'not',
'xor' and relational function, CLIP also have below built-in function.

Function name Description

defun Defining a function

defvar Defining a global variable

let Binding of a variable or a function

map Applying a function to all elements in a vector

cast Casting data type

Function name Description

car The first element in a vector

cons Inserting an element to the begining of a vector

cdr A vector with the first element removed

concat Concatinating vectors into one large vector

transpose Transposing a vector

Function name Description

<< Left shifting

>> Right shifting

<<< Left rotating

>>> Right rotating

2. Built-in Function

Basic functions

Vector function

Operators for shifting and rotation

Miscellaneous function

Function name Description

inv Inverse of multiplication

pow Exponentiation

gcd Finding the greatest common divisor

group Dividing a vector into a group of subvectors

merge Combining several small vectors into a vector with subvectors

len Number of elements in a vector or number of bits of an integer

reverse Reversing a vector or the sequence of bit of an integer

~ This is a single line comment

~~~ This is a

    long comment. ~~~

defun f para1 para2 ... =

    do-something;

(function-name para1 para2 ...)

if expression then

    do-something

else if 

    do-something

else

    do-something

3. Syntax
comments

function definition

function call

control flow

local assignments



(let <var1 value1>

     <var2 value2>

     ......

     do-something

)

~~~ global variable binding ~~~

defvar pi 3.1415;

~~~ function definition ~~~

defun lcm a:int# b:int# =

    (* (gcd a b) a b);

~~~ polynomial calculation ~~~

(let <a $1 5x^3 9x^5$#4>

 <b $3 4x^3 7x^4 10x^5$#4>

 (+ a b))

=> $4 9x^3 7x^4 3x^5$

~~~ some vector operations ~~~

(concat [1, 2, 3] [4, 5, 6]);

=> [1, 2, 3, 4, 5, 6]

(split 2 [1, 2, 3, 4, 5, 6]);

=> [[1, 2], [3, 4], [5, 6]]

~~~ Fibonacci number ~~~

defun fib x:int# =

 if (= x 0) then

 0

 else if (= x 1) then

 1

 else

 (+ (fib (1- x)) ((- x 2)));

Sample Program

