Scanning and Parsing

Stephen A. Edwards

Columbia University

Fall 2010

The First Question

How do you represent one of many things?

Compilers should accept many programs;
how do we describe which one we want?

Use continuously varying values?

Very efficient, but has serious noise issues

Edison Model B Home Cylinder phonograph, 1906

The ENIAC: Programming with Spaghetti

Have one symbol per thing?

Works nicely when there are only a few things

Sholes and Glidden Typewriter, E. Remington and Sons, 1874

Have one symbol per thing?

Not so good when there are many, many things

Nippon Typewriter SH-280, 2268 keys

ial System

tor

ina

Use a Discrete Comb

Solution

Use combinations of a small number of things to represent

(exponentially) many different things.

ENGLISH SOUNDS

Every Human Wr1t1ng S stem is Dlscrete Combinatorial

Chinese

IBM Selectric

Mayan

The Second Question

How do you describe only certain combinations?

Compilers should only accept correct programs;
how should a compiler check that its input is correct?

Just List Them?

The Oxford
English

Dictionary

Gets annoying for large numbers of combinations

Just List Them?

3 AA—ARARAAAARAAAA
uunmgaw»g

AAAA A Canadion kW
Properties 5399 EgintonV §20-1577
1001 Arowtd.

4120 FinchE,
AAARAG
AAAAA Critter Cor

nirol
190 fumcrest Unionle. 410-072
fass

16 WilbyCr. 241:5468
Mink-Warehouse

ARARAAA A CES Haiing
130 Lsdowne. $33-1138

AARA,
AR AR AR
Servce., 4652767

v
" w'!m\muusmﬂw 6632211
AAAAAKA AR Accident

AAAAAAAANAAA 4

AARAAAAAAAA A Cass Above
Lmusng 173 Gorfrtiy. 465.5643

Movi
7552 8 Woosbine 4230239
AAAAAAAAARAAMESS

Victoria, 967.7176
AAAAAAARAAAAA

RABBAARAARARAL
renceRvi 2561600

Lawrén
AARAADevco Giass_ ying InjuriesC uuuuunuuuuu
AAAAAMIMWhLIﬂ e Tors mehw_663.2211 ARARAAA. 6996700
oronto AARARAAAAAARARA
A AR A evering e Serice_ 3239522 AAAAAAAAAAAAAAAA
ARRAR EIf Mini Storage ARAKAAAAA ARARBC Manle Zeller 255 DuncanMillRd_441-9500
555 Trtheweior. 247.6204 1880 boon i Vissams. 1483667 AARRAAARAAAARAA
AAAAARAAAAAG ARARARAAAARAAAA Coheng
o Sonassiv. 253 0808 Assecites | SCaire. 323-0907
AAAAAKAAAA Rlert Auto ARARRAARAARRAAN
Glass. 3984585 A AKA & Azbaco
or 5993410 A emamiions 135 W rapon. 287.0000
A i AARARAAAAAAAAAR
A2 A A A Move Master N 1150 Moperidelr. 1135660 AAAAARAAAAA A ALy
A& AR Neul Profassond Vi AAARARA NS Ao s 17 Conso 2426662
450 LomrerceAst. 1856325 Hotline_ 283.0042 A.u.u.uuu AAAARRRA
AR AR Fies ke ing T BBTET8 AAAAARAARA Collsae
ARAAA SiKk Stockings. 3si Cartage Ltd 33 Coronet . 2392891 Stoage. 3660237
AARAA Woodine it astarage Lid ARAAANAAAACompetition Auto ANAARAAAAAAAAA.
ockford. 7514900 Glass_ 2231292 AAAAAAAAA un,,ms
AARA At lsskiror - $359989 A AAAAA A AR A Campettion Atazston. 9640128
AARAR AR iy 0002 AARARARARRARAA
603 Evins, 259-1578 AAAAAAAAAA Competition Auto ARARARARAR AL Adtar v
AAAAA R Armstrong 07693 r 64StCIarw, 9442018
Storage. 233:2477 AAAAAAAA A A intemational A,\AAAAAAAAAA‘ AARAARA
AAAAA A HSL Moving&Storage Escorts 9206848 A AAA A Abba Auto Collsion
503 Frans 253.7280 AAAAAAAAA A Jewel DatingBéscort Glass_ 7779595
R AR A B A Middup MovingRstor Semice. 4610625 AAAARARAAAARAAA
60 EsnafortDr. 4949451 AAAAAAAAAAMarketing A AL A & Amor Lock And.
AAAA R A1 MovingkStorage - 413.0044 Safe 6083 Yonge . 225-5589
637 Lansdowne. $16-3536 AAAAAAAAA ANothing But AAAAMARAARAAARL
AARAA A Prestige Movers 5s 5951884 AAAAAAAAABasement Systems
703 Gladstonesy 5332633 AAAAAA A A A AOn The Wid Side nada 38 Garnforth. 285-6002
AAAARA South Western Ontario Wikdife Sensational scort Senviee 255-1320 AAAAAAAAAAAAAAA
AAARARAAA A The Geod
AAAAAA Speedy Mwh% 21 McCaul 973-1422
AR Spcdy g e e un W
1540 Victorigbark 51,9532 303 Thtacta 55 2225867
AAAARAA Across The World Courier 1 Busy Call ARAAARA
08 Kudcen 5000008 AR RAR AR KN KAHGTHA e, AAAA A 3420 Fich . 499-2142
AAMAAAA Auto Glass sive Deercs 4950 Yorpesl_ 1217108 AAAAAARRAAAAARA
855 Ainess, 663-8676 ARRAAR AR Campbel M AARALw 305 Miner 293-6660
AAAARAA Calforeia Dreams Escort mmmz%auss AAAAAARAAAARAA
Senice 3233099 ARARARAAAAR idi To ction msmumuw 2530888
AAAARAA Calfornia Dreams Massage 59Dynever. 787.8039 AAAAAAA ARAAAA
Sl 3223899 ARAAAAARA AR St it 401 By 35431
Escorts 6221177 AAAAAAAAAAAAAAAAAA AL
F Kplng. 035833 AAARARAAAAAABestOf The uto: 1 Kiplng 2334773
Day ... 9293039 AAAAAAAAAAAAAAAAAEgE
§rt] Auuunnumamum ms orfd . 2470000
forgeils Eicori 398.8337 RoyaiYork. 2558518 AAAAAAAAAAARAAAAS

Ao B2 . s
AARAAAAA Caforia Beach Chb s
Servics. 3239822

Towing 18 Canso . 2457676

Can be really redundant

ARARAAAAAAAAAAAAE
Towing 18 Canso.. 2457676
AAAAARAAAAAARAAA
Robertson Movingt
236 NorthQueen 6201212

Rezz. 6525252
ARARAAAARAAAAAAAcess

Law. 7842020
ARARAAAAAARAANR At
Accompany il
obics 1000 6632211
AAAAARAARAAARAA Accident
ims 2 SHCiinW_ 9442313
ARARARAARARARAA Nt
2 SheppardAvE.
ARAAARARANAARK A MG
Edge Do Systoms. 2129312
ARAAAAARAKAAAAA AN
Executive’s Choce. 9209390
ARAAAAAAAARARAA
Automatic Garage Doars
4 Caren. 1457820

ARRER AR AR RAR G
Alarms 280 Consumers_ 4949777
ARAAARAAAAAAAAA Hegant
Meature Escorts_ 9233333
ABRAAARARARARAR
Professional

" siden 504111
AARAARAARARAAA A Sweét
Escorts¥ou, 259.3940
A RARA AARA AARA AARA An
Marco 1205 StClair# - 6512299
A ARAA AAAA AARA AAAA Domenic

Taglola 1205 StClaic¥ . 651:2299
ARARRAAAAARLARAARA &

Available. 4659191
ATol
‘Class Escart Service, 4618110

Auto Glass
e - 1800 506.5665

Crtil Custom Bubing 3 Sloor. 9664724
ARRARAALY Sudent Movars..

580 BomiRe g
~Toronta 748-3667
AAAARABS Movers

643 LansdowneAv. 5881499
A Ak ARBBCCDEF Locksmith
B0 StCiafE . 922:2255
AAARAABCMavers inc
6 Columbus . $35-3413
AAAAAGE Best Movers .
M0 | Moving Systems

-.5039321

~Tororita 748-3667

Choices: CS Research Jargon Generator

Pick one from each column

an integrated mobile network

a parallel functional preprocessor
a virtual programmable compiler

an interactive distributed system

a responsive logical interface

a synchronized digital protocol

a balanced concurrent architecture
avirtual knowledge-based database

a meta-level multimedia algorithm

E.g., “aresponsive knowledge-based preprocessor.”

http://www.cs.purdue.edu/homes/dec/essay.topic.generator.html

SCIgen: An Automatic CS Paper Generator

Rooter: A Methodology for the Typical Unif
of Access Points and Redundancy

Jeremy Stribling, Daniel Aguayo and Maxwell Krohn

ABSTRACT

Many physicists would agree that, had it not been for
congestion control, the eval uation of web browsers might never
have occurred. In fact, few hackers worldwide would disagree
with the essential unification of voice-over-IP and public-
private key pair. In order to solve this riddle, we confirm that
SMPs can be made stochastic, cacheable, and interposable.

I. INTRODUCTION

Many scholars would agree that, had it not been for active
networks, the simulation of Lamport clocks might never have
occurred. The notion that end-users synchronize with the
investigation of Markov models is rarely outdated. A theo-
retical grand challenge in theory is the important unification

http://pdos.csail. mit.edu/scigen/

The rest of this paper is organized as foll
we motivate the need for fiber-optic cable
work in context with the prior work in tl
dress this obstacle, we disprove that even tf
tauted autonomous agorithm for the constri
to-analog converters by Jones [10] is NP-c
oriented languages can be made signed, d
signed. Along these same lines, to accomplist
concentrate our efforts on showing that the fe
agorithm for the exploration of robots by S
Q((n + logn)) time [22]. In the end, we cor

I1. ARCHITECTURE

Our research is principled. Consider the e
by Martin and Smith; our model is similar,

How about more structured collections of things?

The boy eats hot dogs.

The dog eats ice cream.

Every happy girl eats candy.

A dog eats candy.

The happy happy dog eats hot dogs.

N

happy

The / \ boy hot dogs.

A girl ~ eats ice cream.
Every dog candy.

Pinker, The Language Instinct

Part Il

Lexical Analysis

Lexical Analysis (Scanning)

Translate a stream of characters to a stream of tokens

L 42, .a);

[ID| | EQUALS | [ID | [PLUS | [ID | [LPAREN| [NUM | [COMMA

[ID | |LPAREN | | SEMI |

Token ‘ Lexemes ‘ Pattern

EQUALS | = an equals sign

PLUS + a plus sign

ID a foo bar | letter followed by letters or digits

NUM 0 42 one or more digits

Lexical Analysis

Goal: simplify the job of the parser and reject some wrong
programs, e.g.,

%t @IN# | @HY%H S
——

is not a C program’
Scanners are usually much faster than parsers.

Discard as many irrelevant details as possible (e.g., whitespace,
comments).

Parser does not care that the the identifer is
“supercalifragilisticexpialidocious.”

Parser rules are only concerned with tokens.

T It is what you type when your head hits the keyboard

Describing Tokens

Alphabet: A finite set of symbols

Examples: {0,1}, {A, B, C, ..., Z}, ASCII, Unicode
String: A finite sequence of symbols from an alphabet
Examples: € (the empty string), Stephen, afy
Language: A set of strings over an alphabet

Examples: ¢ (the empty language), {1, 11,111, 1111}, all English
words, strings that start with a letter followed by any sequence of
letters and digits

Operations on Languages

Let L={€e,wo}, M ={man, men}

Concatenation: Strings from one followed by the other
LM = { man, men, woman, women }

Union: All strings from each language

LU M = {¢, wo, man, men }

Kleene Closure: Zero or more concatenations

M*={cfUMUMMUMMM---=
{e, man, men, manman, manmen, menman, menmen,
manmanman, manmanmen, manmenman, ...}

Kleene Closure

The asterisk operator (*) is called the Kleene
Closure operator after the inventor of
regular expressions, Stephen Cole Kleene,
who pronounced his last name “CLAY-nee.”

His son Ken writes “As far as I am aware this
pronunciation is incorrect in all known
languages. I believe that this novel
pronunciation was invented by my father.”

Regular Expressions over an Alphabet

A standard way to express languages for tokens.

1. eisaregular expression that denotes {e}
2. Ifae X, ais an RE that denotes {a}
3. If r and s denote languages L(r) and L(s),

> (r) | (s) denotes L(r) U L(s)
» (r)(s) denotes {tu:te L(r),uc L(s)}
> (r)* denotes U L' (L° = {e} and L' = LL'™")

Regular Expression Examples

2 ={a, b}
RE Language
alb {a, b}
(a|b)(a|b) | {aa,ab,ba, bb}
a* {e,a,aa,aaa,aaaa,...}
(alb)* {e,a,b,aa,ab,ba,bb,aaa,aab,aba,abb,...}
ala*b {a,b,ab,aab,aaab,aaaab,...}

Specifying Tokens with REs

Typical choice: X = ASCII characters, i.e.,
{,L"#9%,...,01,...,9,...,A,...,Z,...,~}

letters: A|B|---|Z|a|---|z
digits: 0[1---19

identifier: letter (letter | digit)*

Implementing Scanners Automatically

’Regular Expressions (Rules) ’

Y
’ Nondeterministic Finite Automata ’

Subset Construction

Y
] Deterministic Finite Automata ’

Tal;les

Nondeterministic Finite Automata

1. Set of states

“All strings containing an S:{ @ @ }

even number of 0'sand 1’s”

N

Set of input symbols X : {0, 1}
3. Transition function o : S x £, — 25
state ‘ e 0 1

A | o (B} {C
B | ¢ {A} (D}
C |o {D} {4
D | ¢ {Ct (B}

4. Start state sg :
5. Set of accepting states F : {}

The Language induced by an NFA

An NFA accepts an input string x iff there is a path from the start
state to an accepting state that “spells out” x.

Show that the string “010010” is accepted.

Translating REs into NFAs

a H(}—a>C>> Symbol

rir @@ Sequence

r|r Choice

Translating REs into NFAs

Example: Translate (a | b)* abb into an NFA. Answer:

D4EE%1W)

Show that the string “aabb” is accepted. Answer:

—~@*D“@* @D ®D"

Simulating NFAs

Problem: you must follow the “right” arcs to show that a string is
accepted. How do you know which arc is right?

Solution: follow them all and sort it out later.

“Two-stack” NFA simulation algorithm:

1. Initial states: the e-closure of the start state
2. For each character c,

» New states: follow all transitions labeled ¢
» Form the e-closure of the current states

3. Accept if any final state is accepting

Simulating an NFA: -aabb, Start

— OROLONOND

Hb
€ 6 €
b

€

Simulating an NFA: a-abb

wa b
b

€

Simulating an NFA: aa-bb

wa b
b

€

Simulating an NFA: aab-b

Simulating an NFA: aabb-, Done

Deterministic Finite Automata

Restricted form of NFAs:

» No state has a transition on €

» For each state s and symbol q, there is at most one edge
labeled a leaving s.

Differs subtly from the definition used in COMS W3261 (Sipser,
Introduction to the Theory of Computation)

Very easy to check acceptance: simulate by maintaining current
state. Accept if you end up on an accepting state. Reject if you end
on a non-accepting state or if there is no transition from the current
state for the next symbol.

Deterministic Finite Automata

{
type token = ELSE | ELSEIF

rule token =
parse "else" { ELSE }
| "elseif" { ELSEIF }

Deterministic Finite Automata

{ type token = IF | ID of string | NUM of string }

rule token =
parse "if" { IF }
| [’a’-’z’] ['a’-’z’ ’0’-"9’]% as 1it { ID(lit) }
as num { NUM(num) }

| [105_19!]+

Building a DFA from an NFA

Subset construction algorithm

Simulate the NFA for all possible inputs and track the states that
appear.

Each unique state during simulation becomes a state in the DFA.

Subset construction for (a | b)*abb

Subset construction for (a | b)*abb

Subset construction for (a | b)*abb

Subset construction for (a | b)*abb

Subset construction for (a | b)*abb

Result of subset construction for (a | b)*abb

Is this minimal?

Subset Construction

An DFA can be exponentially larger than the corresponding NFA.
n states versus 2"

Tools often try to strike a balance between the two representations.

Part I11

Lexical Analysis with Ocamllex

Constructing Scanners with Ocamllex

ocamllex
scanner.mll ~ scanner.ml

(subset construction)
An example:

scanner.mll

{ open Parser }

rule token =
parse [’ ’ ’\t’ ’\r’ ’\n’] { token lexbuf }
T4’ { PLUS }
T { MINUS }
Tx? { TIMES }
A { DIVIDE }
[’0’-"9°]+ as 1it { LITERAL(int_of_string 1lit) }
eof { EOF }

*

Ocamllex Specifications

{
(* Header: verbatim OCaml code; mandatory =)

3

(+ Definitions: optional =)
let ident = regexp
let ...

(* Rules: mandatory =*)
rule entrypointl [argl ... argn] =
parse patternl { action (% OCaml code =) }
| ...
| patternn { action }
and entrypoint2 [argl ... argn]} =

anc.l....

(* Trailer: verbatim OCaml code; optional =)

3

Patterns (In Order of Decreasing Precedence)

Pattern Meaning

¢’ A single character

_ Any character (underline)

eof The end-of-file

"foo" A literal string

[’1” ’5" ’a’-’z’] “1,”“5 or any lowercase letter
[~ ’0°-"9"] Any character except a digit

(pattern) Grouping

identifier A pattern defined in the let section
pattern = Zero or more patterns

pattern + One or more patterns

pattern ? Zero or one patterns

pattern, patterny

pattern; followed by pattern,

patterny | patterny

Either pattern; or patterny

pattern as id

Bind the matched pattern to variable id

An Example

{ type token = PLUS | IF | ID of string | NUM of int }

let letter = [’a’-
let digit = ['0’-

rule token =

v !Ay_!zv]
791]

parse [’ ’ ’\n’ ’\t’] { token lexbuf } (* Ignore whitespace =)
| ’+’ { PLUS } (+ A symbol =)
| "if" { IF } (+ A keyword =)
(+ Identifiers =)
| letter (letter | digit | ’_’)+ as id { ID(id) }

(* Numeric literals =x)

| digit+ as 1it { NUM(int_of_string 1it) }

| "/+" { comment lexbuf } (# C-style comments =)

and comment =

parse "x/" { token lexbuf } (* Return to normal scanning =)
| _ { comment lexbuf } (* Ignore other characters =x)

Free-Format Languages

Typical style arising from scanner/parser division
Program text is a series of tokens possibly separated by whitespace

and comments, which are both ignored.

» keywords (if while)

» punctuation (, (+)

v

identifiers (foo bar)
» numbers (10 -3.14159e+32)
strings ("A String")

\4

Free-Format Languages

Java C C++ C# Algol Pascal
Some deviate a little (e.g., C and C++ have a separate preprocessor)

But not all languages are free-format.

FORTRAN 77

FORTRAN 77 is not free-format. 72-character lines:

100 IF(IN .EQ. 'Y’ .OR. IN .EQ. 'y’ .OR.
$ IN .EQ. T’ .OR. IN .EQ. 't’) THENJ

- .
Statement label Continuation Normal

— S —

When column 6 is not a space, line is considered part of the
previous.

Fixed-length line works well with a one-line buffer.

Makes sense on punch cards. '

Python

The Python scripting language groups with indentation

i=0
while i < 10:
i=1+1
print i # Prints 1, 2, ..., 10
i=0
while i < 10:
i=1+1
print i # Just prints 10

This is succinct, but can be error-prone.

How do you wrap a conditional around instructions?

Syntax and Language Design

Does syntax matter? Yes and no

More important is a language’s semantics—its meaning.
The syntax is aesthetic, but can be a religious issue.

But aesthetics matter to people, and can be critical.
Verbosity does matter: smaller is usually better.

Too small can be problematic: APL is a succinct language with its
own character set. Here is program that returns all primes < R

PRIMES : (R€Re.xR)/Re141R |

There are no APL programs, only puzzles.

Syntax and Language Design

Some syntax is error-prone. Classic FORTRAN example:

1,25 ! Loop header (for i = 1 to 25)
1.25

DO 5 T
DO 5 T | Assignment to variable DOS5I

Trying too hard to reuse existing syntax in C++:

vector< vector<int> > foo;
vector<vector<int>> foo; // Syntax errorJ

C distinguishes > and >> as different operators.

Bjarne Stroustrup tells me they have finally fixed this.

Part IV

Modeling Sentences

Simple Sentences Are Easy to Model

The boy eats hot dogs.

The dog eats ice cream.

Every happy girl eats candy.

A dog eats candy.

The happy happy dog eats hot dogs.

("

happy

The / \ boy hot dogs.

A girl ~ eats ice cream.
Every dog candy.

Pinker, The Language Instinct

Richer Sentences Are Harder

If the boy eats hot dogs, then the girl eats ice cream.

Either the boy eats candy, or every dog eats candy.

o

happy

the / \ boy hot dogs

Eithera a girl — eats — ice cream — o
I then

Does this work?

Automata Have Poor Memories

Want to “remember” whether it is an “either-or” or “if-then”
sentence. Only solution: duplicate states.

(v

happy

the / \ boy hot dogs O

Either » a ———»girl > eats » ice cream > or h

every dog candy \ appy

O the / \ boy hot dogs
h a ——— girl > eats » ice cream
appy every dog candy
the / \ boy hot dogs
If» a ——girl > eats > ice cream - then

every dog candy

Automata in the form of Production Rules

Problem: automata do not remember where they’ve been

S— Either A

S— If A
A— the B
A— the C
A— a B
A— a C
A— every B
A— every C
B — happy B
B — happy C
C— boy D
C— girl D
C— dog D
D — eats E

E— hot dogs F
E— ice cream F

E— candy F
F— or A
F— then A
F— €

S:
Either
If

B:happy
A: C:
the bo
! bor D]

E:
hot dogs

ice cream

F:
or
then

everw

Solution: Context-Free Grammars

Context-Free Grammars have the ability to “call subroutines:”

S— Either P, or P. Exactlytwo Ps

S— If P, then P.

P— A H S eats O One each of A, H, S, and O
A — the

A— a

A— every

H — happy H H is “happy” zero or more times
H— ¢

S — boy

S— girl

S — dog

O — hot dogs

O — ice cream

O — candy

A Context-Free Grammar for a Simplified C

program
fdecl
formals
vdecls
vdecl
stmts

stmt

expr

actuals

€| program vdecl| program fdecl
id (formals) { vdecls stmts }
id| formals , id

vdecl | vdecls vdecl

int id;

€| stmts stmt

expr ; |return expr ; | { stmits} | if Cexpr) stmt|
if C expr) stmtelse stmt|

for (expr ; expr; expr) stmt|while (expr) stmt
lit|id|id Cactuals) | Cexpr) |

expr + expr| expr - expr| expr = expr| expr / expr |
expr == expr| expr ! = expr| expr < expr| expr <= expr |
expr> expr | expr>= expr| expr = expr

expr| actuals, expr

PartV

Constructing Grammars and Ocamlyacc

Parsing

Objective: build an abstract syntax tree (AST) for the token
sequence from the scanner.

2 %3+ 4

/\
* 4
/\
2 3

Goal: verify the syntax of the program, discard irrelevant
information, and “understand” the structure of the program.

Parentheses and most other forms of punctuation removed.

Ambiguity

One morning I shot an elephant in my pajamas.

Ambiguity

One morning I shot an elephant in my pajamas.
How he got in my pajamas I don’t know. —Groucho Marx

BROTHERS \«

fs‘@‘-

e ‘; ANIMAL
o
H(RAcums

Ambiguity in English

I shot an elephant in my pajamas

S — NPVP
vP — VNP

VP — VNPPP
NP — NPPP
NP — Pro

NP — Det Noun
NP — Poss Noun
pp — PNP

v — shot
Noun — elephant
Noun — pajamas
Pro - 1

Det — an

P — in

Poss — my

NP VP /

‘ / \ NP vp

Pro V NP ‘ / ‘ \

‘ ‘ / \ Pro V NP PP

I shot NP PP ‘ ‘ ‘ / \

/ \ I shot NP P NP

Det Noun P NP / \ ‘ / \
‘ ‘ / \ Det Noun in Poss Noun
an elephant in Poss Noun ‘ ‘ ‘ ‘

an elephant My pajamas

my pajamas

Jurafsky and Martin, Speech and Language Processing

The Dangling Else Problem

Who owns the else?

if (a) if (b) c(); else d(Q);

if if
AN
Should this be a/ \if or a/ilf do ?
VELRN /\
b cO dO b cQ

Grammars are usually ambiguous; manuals give disambiguating
rules such as C’s:

As usual the “else” is resolved by connecting an else with the
last encountered elseless if.

The Dangling Else Problem

stmt : IF expr THEN stmt
| IF expr THEN stmt ELSE stmtJ

Problem comes after matching the first statement. Question is
whether an “else” should be part of the current statement or a
surrounding one since the second line tells us “stmt ELSE” is
possible.

The Dangling Else Problem

Some languages resolve this problem by insisting on nesting
everything.

E.g., Algol 68:

if a < b then a else bfi;J

“fi” is “if” spelled backwards. The language also uses do—od and
case—esac.

Another Solution to the Dangling Else Problem

Idea: break into two types of statements: those that have a dangling
“then” (“dstmt”) and those that do not (“cstmt”). A statement may
be either, but the statement just before an “else” must not have a
dangling clause because if it did, the “else” would belong to it.

stmt : dstmt
| cstmt

dstmt : IF expr THEN stmt
| IF expr THEN cstmt ELSE dstmt

cstmt : IF expr THEN cstmt ELSE cstmt
| other statements...

We are effectively carrying an extra bit of information during
parsing: whether there is an open “then” clause. Unfortunately,
duplicating rules is the only way to do this in a context-free
grammar.

Ambiguous Arithmetic

Ambiguity can be a problem in expressions. Consider parsing

3-4+%2+5
with the grammar

e—e+ele—elexele/e|N

VANNVAN oSN
/ / \ - + /\
\ 5 /\ /\ 4 +

/\ /\ 3 42 5 /\
2 5

/\
* 5
/\
+ o2

/\
3 4

Operator Precedence and Associativity

Usually resolve ambiguity in arithmetic expressions
Like you were taught in elementary school:
“My Dear Aunt Sally”

Mnemonic for multiplication and division before addition and
subtraction.

Operator Precedence

Defines how “sticky” an operator is.

17‘:2+3~k4

+
* at higher precedence than +: VAR
(1%2) + (3 +4) VANEEAN
1 2 3 4
/\
+ at higher precedence than »: * 4
/\
1 * (2 + 3) * 4 1 +
/\

2 3

Associativity
Whether to evaluate left-to-right or right-to-left

Most operators are left-associative

1-2-3-4

/\ /\

N\ A

A /\
/\ /\
1 2 3 4
(1-2)-3)—4 1-(2-(3-4))

left associative right associative

Fixing Ambiguous Grammars

A grammar specification:

expr :
expr PLUS expr
expr MINUS expr
expr TIMES expr
expr DIVIDE expr
NUMBER

Ambiguous: no precedence or associativity.

Ocamlyacc’s complaint: “16 shift/reduce conflicts.”

Assigning Precedence Levels

Split into multiple rules, one per level

expr : expr PLUS expr
| expr MINUS expr
| term

term : term TIMES term
| term DIVIDE term
| atom

atom : NUMBER

Still ambiguous: associativity not defined

Ocamlyacc’s complaint: “8 shift/reduce conflicts.”

Assigning Associativity

Make one side the next level of precedence

expr : expr PLUS term
| expr MINUS term
| term

term : term TIMES atom
| term DIVIDE atom
| atom

atom : NUMBER

This is left-associative.

No shift/reduce conflicts.

Statement separators/terminators

C uses ; as a statement terminator.

if (a<b)
printf("a less");
else {
printf("b"); printf(" less");

Pascal uses ; as a statement separator.

if a < b then

writeln(’a less’)
else begin

write(’a’); writeln(’ less’)
end

Pascal later made a final ; optional.

Ocamlyacc Specifications

9
A{(* Header: verbatim OCaml; optional =)
%3

/* Declarations: tokens, precedence, etc. x/
%%

/% Rules: context-free rules =/

%%

(* Trailer: verbatim OCaml; optional +)

Declarations

» %token symbol...
Define symbol names (exported to .mli file)

» %token < type> symbol ...
Define symbols with attached attribute (also exported)

» %start symbol...
Define start symbols (entry points)

> %type < type> symbol...
Define the type for a symbol (mandatory for start)

» %left symbol...
» %right symbol...

» %nonassoc symbol ...
Define predecence and associtivity for the given symbols,
listed in order from lowest to highest precedence

Rules

nonterminal :
symbol ... symbol { semantic-action }
| ...
| symbol ... symbol { semantic-action }

” «

» nonterminalis the name of arule, e.g., “program,” “expr”

» symbolis either a terminal (token) or another rule

» semantic-action is OCaml code evaluated when the rule is
matched

» In a semantic-action, $1, $2, ...returns the value of the first,
second, ...symbol matched

» Arule may include “%prec symbol” to override its default
precedence

An Example .mly File

%token <int> INT
%token PLUS MINUS TIMES DIV LPAREN RPAREN EOL

%left PLUS MINUS /+ lowest precedence =/
%left TIMES DIV
%nonassoc UMINUS /= highest precedence =/

%start main /% the entry point */
%type <int> main

%%
main
expr EOL { %1}
expr:
INT { $1 }
| LPAREN expr RPAREN { $2 }
| expr PLUS expr {$1+ $3}
| expr MINUS expr { $1 - %3}
| expr TIMES expr { $1 % $3 }
| expr DIV expr {$1/ %31}
| MINUS expr %prec UMINUS { - $2 }

Part VI

Parsing Algorithms

Parsing Context-Free Grammars

There are O(n®) algorithms for parsing arbitrary CFGs, but most
compilers demand O(n) algorithms.

Fortunately, the LL and LR subclasses of CFGs have O(n) parsing
algorithms. People use these in practice.

Rightmost Derivation of Id * Id + Id

l:ie—t+e
2:e—t
3:t—Id =t
4:t—1Id

At each step, expand the rightmost nonterminal.

nonterminal

| “handle”: The right side of a production |

Fun and interesting fact: there is exactly one rightmost expansion if
the grammar is unambigious.

Rightmost Derivation of Id * Id + Id

e
l:ie—t+e C+¢
2:e—t

3:t—Id =t

4:t—1Id

At each step, expand the rightmost nonterminal.

nonterminal

| “handle”: The right side of a production |

Fun and interesting fact: there is exactly one rightmost expansion if
the grammar is unambigious.

Rightmost Derivation of Id * Id + Id

e
l:ie—t+e C+e
2:e—t r+
3:t—Id =t

4:t—1Id

At each step, expand the rightmost nonterminal.

nonterminal

| “handle”: The right side of a production |

Fun and interesting fact: there is exactly one rightmost expansion if
the grammar is unambigious.

Rightmost Derivation of Id * Id + Id

e
l:e—t+e +e
2:e—t t+
3:t—Id *t t+@

4:t—1Id

At each step, expand the rightmost nonterminal.

nonterminal

| “handle”: The right side of a production |

Fun and interesting fact: there is exactly one rightmost expansion if
the grammar is unambigious.

Rightmost Derivation of Id * Id + Id

e
l:e—t+e +e
2:e—t t+
3:t—Id *t t+@
4:t—1d

id «)+ Id

At each step, expand the rightmost nonterminal.

nonterminal

L“handle”: The right side of a productionJ

Fun and interesting fact: there is exactly one rightmost expansion if
the grammar is unambigious.

Rightmost Derivation of Id * Id + Id

e
l:e—t+e +e
2:e—t t+
3:t—Id *t t+@
4:t—1Id
d + o+ 1d
Id «(Id+ Id

At each step, expand the rightmost nonterminal.

nonterminal

L“handle”: The right side of a productionJ

Fun and interesting fact: there is exactly one rightmost expansion if
the grammar is unambigious.

Rightmost Derivation: What to Expand

e

l:e—t+e
2:e—t t+
3:t—1d *t t +(1d)
4:1—-1d (id+D+ 1d
Id «(Id)+ Id
e

e+
 +1
+ Id
M+ Id

Expand here { Terminals only

Reverse Rightmost Derivation

lie—t+e
2:e—t
3:t—1Id =t
4:t—1Id

viable prefixes

t+

t +(Id)
Id *)+ Id
Id +(Id)+ Id

Id <« Id + Id

terminals

Reverse Rightmost Derivation

e

l:e—t+e ¢ +e
2:e—t t+
3:t—Id ¢ t +(1d)
4:1—1Id d * D+ Id
Id +(Id)+ Id
Id +fid + Id I‘d
Id « £+ Id t

viable prefixes terminals

Reverse Rightmost Derivation

lie—t+e
2:e—t
3:t—1Id =t
4:t—1Id

e
& +e
t+)

t +(1d
d* 9+ 1d
Id «(Id + 1d

Id «[Id + Id Id
ﬁ ‘

+Id Id * ¢t
NI/
t+1d t

viable prefixes terminals

Reverse Rightmost Derivation

e

l:e—t+e &+ e
2:e—t t +
3:it—Id * ¢ ¢ +Id)
4:t—1d d+ 9+ 1d
Id «(Id) + Id
Id xAd+ Id Id
ﬁ ‘
+Id Id\T/t
t+ t Id
A9 ‘
t+t t

viable prefixes terminals

Reverse Rightmost Derivation

e

l:e—t+e &+ e
2:e—t t+@
3:t—Id * ¢ t +(1d)
4:t—1d d *)+ 1d
Id «(Id+ Id
Id xAd+ Id Id
ﬁ ‘
+Id Id\T/t
r+ Id
A9 ‘
t +(D ‘t
t+e e

viable prefixes terminals

Reverse Rightmost Derivation

e

l:e—t+e E+e
2:e—t r+
3:t—1Id =t t+@
4:1—1d (d+ D+ 1d
Id «(Id) + Id
Id «(d+ Id Id

@+ Id Id\T/t
t+ r Id
p ‘
i
e

t+(@D
+
//
e e

viable prefixes terminals

Shift/Reduce Parsing Using an Oracle

e

lie—t+e ¢+ e
2:e—t t+U
3:t—1Id * ¢ ¢ +1d)
4:t—1d @ D+ 1d
Id +(Id)+ Id

Id x Id + Id shift

stack input

Shift/Reduce Parsing Using an Oracle

e

lie—t+e Ete
2:e—t t+
3:t—1Id * ¢ ¢ +1d)
4:t—1d d+ 9+ 1d
Id +(Id)+ Id

Id x Id + Id shift
Id x1d + Id shift

stack input

Shift/Reduce Parsing Using an Oracle

e
lie—t+e Ete
2:e—t t+

3:t—1Id =t t +({1d
4:1—1d (d * 9+ 1d
Id *(Id)+ Id

Id x Id + Id shift

Id x1d + Id shift
Id =« Id + Id shift

stack input

Shift/Reduce Parsing Using an Oracle

e
lie—t+e Ete
2:e—t t+

3:t—1Id =t t +Ud)
4:t1—Id d+ 9+ 1d
Id = (Id)+ Id

Id x Id + Id shift

Id x1d + Id shift
Id =« Id + Id shift

Id « Id + Id reduce 4

stack input

Shift/Reduce Parsing Using an Oracle

e

l:e—t+e &+ e
2:e—t r+
3:t—Id =t t +1d
4:1—1d d * 9+ 1d
Id = (Id)+ Id
Id «Id + Id shift
Id = Id + Id shift
Id «Id + Id shift
Id +0d) + Id reduce 4
Id«t+1d reduce 3

stack input

Shift/Reduce Parsing Using an Oracle

e

l:e—t+e ¢ +e
2:e—t t+
3:t—Id =t t +1d
4:1—1d d * 9+ 1d
Id = (Id)+ Id
Id+Id+1d shift
Id+1d+1d shift
Id « Id + Id shift
Id +0d) + Id reduce 4
fd=p+1d reduce 3
t+1d shift

stack input

Shift/Reduce Parsing Using an Oracle

e

l:e—t+e &+ e
2:e—t r+
3:t—Id =t t +1d
4:1—1d d * 9+ 1d
Id = (Id)+ Id
Id «Id + Id shift
Id «Id + Id shift
Id « Id + Id shift
Id +0d) + Id reduce 4
fd=p+1d reduce 3
t+1d shift
t+1d shift

stack input

Shift/Reduce Parsing Using an Oracle

e

l:e—t+e &+ e
2:e—t r+
3:t—Id =t t +1d
4:1—1d d* 9+ 1d
Id = (Id)+ Id
Id «Id + Id shift
Id «Id + Id shift
Id « Id + Id shift
Id +0d) + Id reduce 4
fd=p+1d reduce 3
t+1d shift
t+1d shift
t+1d reduce 4

stack input

Shift/Reduce Parsing Using an Oracle

e
l:e—t+e @ +e
2:e—t t+
3:t—Id ¢t t +d
4:t—1Id Id * 0+ Id
Id = (Id)+ Id
Id « Id + Id shift
Id « Id + Id shift
Id =« Id + Id shift
Id +0d) + Id reduce 4
fd=p+1d reduce 3
t+1d shift
t+1d shift
t +Id reduce 4
t+t reduce 2

stack input

Shift/Reduce Parsing Using an Oracle

e
l:e—t+e @ +e
2:e—t t+
3:t—Id ¢t t +d
4:t—1Id Id * 0+ Id

Id = (Id)+ Id
Id « Id + Id shift
Id « Id + Id shift
Id =« Id + Id shift
Id «0@d+ Id reduce 4
fd=p+1d reduce 3
t+1d shift
t+1d shift
t +Id reduce 4
t+@ reduce 2
t+e reduce 1

stack input

Shift/Reduce Parsing Using an Oracle

e
l:e—t+e @ +e
2:e—t t+
3:t—Id ¢t t +d
4:t—1Id Id * 0+ Id

Id = (Id)+ Id
Id « Id + Id shift
Id « Id + Id shift
Id =« Id + Id shift
Id +0d) + Id reduce 4
Id*2n+1d reduce 3
t+1d shift
t+1d shift
t +Id reduce 4
t+(@ reduce 2
(te reduce 1
e accept

stack input

Handle Hunting

Right Sentential Form: any step in a rightmost derivation

Handle: in a sentential form, a RHS of a rule that, when rewritten,
yields the previous step in a rightmost derivation.

The big question in shift/reduce parsing:
When is there a handle on the top of the stack?

Enumerate all the right-sentential forms and pattern-match against
them? Usually infinite in number, but let’s try anyway.

Some Right-Sentential Forms and Their Handles

lie—t+e
2:e—t
3:t—1Id =t
4:t—1Id

©

o—
/ N\
/ A
1d+(1d » 7) 1d+(1d)
i

~
1d *1d+(1d + 1) 1d +1d+(id)
/\

Some Right-Sentential Forms and Their Handles

lie—t+e
2:e—t
3:t—1Id =t
4:t—1Id

©
@)@ e A
m*@ 14+ Hmae\

1d *1d+(1d + 1) 1d +1d+(id) fet+ t+@)
/\ \

Some Right-Sentential Forms and Their Handles

lie—t+e Patterns: 1d+1dx--+{dx 1} -
2ot Id*Id*---*-~
3:t—Id *¢ N D)
4 r—1d t+ 1+ + t+{1d)
) t4 4+t IdId % - H{Id x 1)
fH L+
®

o— @
) @ c/ o

— AN
W) @) GO o +0
- ~ \
e id{ideD) et i+ @ A -+m.+m

/\ /A 1d+(1d+)+1d 1d<d)+1d

Id * Id*Id 1d * Id*.+Id
/\

The Handle-Identifying Automaton

Magical result, due to Knuth: An automaton suffices to locate a
handle in a right-sentential form.

Id«Id *---«{Id = t)}--
Id*Id*---*~-

EHt+e--

t+t+--+ t+{id)
t+t+~--+t+Id*Id*-~~*

t+t+--H{)

~
+
3

Building the Initial State of the LR(0) Automaton

e — Qe

l:e—t+e
2:e—t
3:t—Id ¢

4:t—1Id

Key idea: automata identify viable prefixes of right sentential forms.
Each state is an equivalence class of possible places in productions.

At the beginning, any viable prefix must be at the beginning of a
string expanded from e. We write this condition “e’ — @e”

Building the Initial State of the LR(0) Automaton

e — Qe
e—Qt+e
lie—t+e e—Qt
2:e—t
3:t—Id =t
4:t—1Id

Key idea: automata identify viable prefixes of right sentential forms.
Each state is an equivalence class of possible places in productions.

At the beginning, any viable prefix must be at the beginning of a
string expanded from e. We write this condition “e’ — @e”

There are two choices for what an e may expand to: ¢+ e and t. So
when e’ — Qe, e — @t + e and e — @t are also true, i.e., it must start
with a string expanded from t.

Building the Initial State of the LR(0) Automaton

e — Qe

e—Qt+e
lie—t+e e—Qt
2:e—t t—QId =t
3:t—1Id ¢ t—cld

4:t—1Id

Key idea: automata identify viable prefixes of right sentential forms.
Each state is an equivalence class of possible places in productions.

At the beginning, any viable prefix must be at the beginning of a
string expanded from e. We write this condition “e’ — @e”

There are two choices for what an e may expand to: ¢+ e and t. So
when e’ — Qe, e — @t + e and e — @t are also true, i.e., it must start
with a string expanded from t.

Similarly, £ must be either Id * t or Id, so t — @Id * ¢ and ¢ — GId.

This reasoning is a closure operation like e-closure in subset
construction.

Building the LR(0) Automaton

The first state suggests a viable
prefix can start as any string
derived from e, any string derived

¢ — Qe from ¢, or Id.

e—Qt+e
S0:e— Qr

t—QId=*t

t—QId

Building the LR(0) Automaton

“Just passed a
string derived

Jrom e The first state suggests a viable

. ol .
prefix can start as any string

b “Just passed a prefix .] .
e P P A derived from e, any string derived
ending in a string
e — Qe derived from t” from ¢, or Id.
e—Qt+e The i for th h
S0: e — @t t Sz.e—»t@+e e 1tems 1or these three states
: ol @ .
f—QIdx ¢ e—t come from ad\.zancmg the @
t—QId across each thing, then
performing the closure operation
d (vacuous here).
t—1dQ=xt
S1: t—1dQ
“Just passed a prefix

that ended in an Id”

Building the LR(0) Automaton

e

e — Qe e—t+Qe
e—Qt+e +
S0:e— @t t sz:e_”:g”/‘“

t—@Id*t et

t—QId

S4:

Id

Y

t—IdQ ¢t In S2, a + may be next. This gives
t—1dQ t+Qe.

S1:

i * In S1, * may be next, giving
t—Id =@t Id = Q¢

S3:

Building the LR(0) Automaton

e
e — Qe e—t+Qe
e—Qt+e ; oD (Gt e + e—Qt+e
S0:e— Q¢ sz:e—»t@ S4:e—Qt
t—QIdx*t t—QIdx*t
t— QId t— QId
Id
Y
s1:f™ IdQ ¢ In S2, a + may be next. This gives
“t—1d¢ t +@e. Closure adds 4 more items.
1* In S1, * may be next, giving
t—Id =Gt Id * @ and two others.
S3:r—QIdx*t
t— QId

Building the LR(0) Automaton

‘e
e — Qe e—1+Qe
e—Qt+e ; oD (Gt e + e—Qt+e
S0:e— Q¢ SZ:e @ S4:e—Qt
t—QIdx*t t t—QIdx*t
t— QId t— QId
Y Y
o1, (et
t—1IdQ
IdH*
t—Id*Qt ;
S3:r—QIdx*t S5: t—Id=*Q
t— QId

Converting the LR(0) Automaton to an SLR Parsing Table

l:e—t+e
@ 3:t—Id ¢ State Action Goto
—> S2:e— (R 0 ‘ sl ‘ 7 2

Id

From S0, shift an Id and go to S1; or
cross a t and go to S2; or cross an e
and go to S7.

Converting the LR(0) Automaton to an SLR Parsing Table

l:e—t+e
2:e—t
3:t—Id =t State Action Goto
4t—’Id Id + * $ e t
sl 7 2
1 4 s3 14

From S1, shift a * and go to S3; or, if
the next input could follow a ¢,
reduce by rule 4. According to rule 1,
+ could follow t; from rule 2, $ could.

Converting the LR(0) Automaton to an SLR Parsing Table

l:e—t+e
2:e—t
3:t—Id =t State Action Goto
4: t—’Id Id + * $ e t
S2:e— IR 0 sl 7 2
+ 1 4 s3 14
s4 r2

From S2, shift a + and go to S4; or, if
the next input could follow an e
(only the end-of-input $), reduce by
rule 2.

Converting the LR(0) Automaton to an SLR Parsing Table

l:e—t+e

2:e—t

3:t—Id =t State Action Goto

4: t—’Id Id + * $ e t
0 sl 7 2
1 4 s3 14
2 s4 r2

S1: t—Ide 3 sl 5

From S3, shift an Id and go to S1; or

’ S5: t — Id = t@‘ cross a t and go to S5.

Converting the LR(0) Automaton to an SLR Parsing Table

l:e—t+e

2:e—t

3:t—Id =t State Action Goto
4t—’Id Id + * $ e t

0 sl 7 2
1 4 s3 14
2 s4 r2

3| sl 5
4 sl 6 2

S6:e— t+e@

From $4, shift an Id and go to S1; or
crossaneorat.

Converting the LR(0) Automaton to an SLR Parsing Table

l:e—t+e

2:e—t

3:t—Id *¢ State Action Goto

4: t—’Id Id + * $ e t
0 sl 7 2
1 4 s3 14
2 s4 r2
3 sl 5
4 sl 6 2
5 13 3

From S5, reduce using rule 3 if the
” S5: £ — Id * 1@ ” next ;Xglbol could follow a ¢ (again,
+and $).

Converting the LR(0) Automaton to an SLR Parsing Table

l:e—t+e

2:e—t

3:t—Id *¢ State Action Goto

4: t—’Id Id + * $ e t
0 sl 7 2
1 4 s3 14
2 s4 r2
3 sl 5
4 sl 6 2
5 13 3

© f

From S6, reduce using rule 1 if the
next symbol could follow an e ($
only).

Converting the LR(0) Automaton to an SLR Parsing Table

l:e—t+e
el
: 3:t—Id *¢ State Action Goto
4:1—1d d + + §$ e ¢
0 sl 7 2
1 4 s3 14
2 s4 r2
3 sl 5
4 sl 6 2
5 13 3
6 rl
7 v

If, in S7, we just crossed an e, accept
if we are at the end of the input.

Shift/Reduce Parsing with an SLR Table

Stack Input Action

l:e—t+e

2:e—t

3:t—Id =t

4:t—1Id

State Action Goto

d + * $ e t

0 sl 7 2
1 4 s3 14
2 s4 12
3 sl 5
4 sl 6 2
5 13 13
6 rl
7 v

0 | 1d«1d+1d$ Shift, goto 1

Look at the state on top of the stack
and the next input token.

Find the action (shift, reduce, or error)
in the table.

In this case, shift the token onto the
stack and mark it with state 1.

Shift/Reduce Parsing with an SLR Table

Stack Input Action

l:e—t+e

2:e—t

3:t—Id =t

4:t—1Id

State Action Goto

d + * $ e t

0 sl 7 2
1 4 s3 14
2 s4 12
3 sl 5
4 sl 6 2
5 13 13
6 rl
7 v

Id*Id+Id$ Shift, goto 1
Id

01 | x1d+1d$ Shift, goto 3

Here, the state is 1, the next symbol is
%, so shift and mark it with state 3.

Shift/Reduce Parsing with an SLR Table

l:e—t+e

2:e—t

3:t—Id =t

4:t—1Id

State Action Goto

d + * $ e t

0 sl 7 2
1 4 s3 14
2 s4 12
3 sl 5
4 sl 6 2
5 13 13
6 rl
7 v

Stack Input Action

0 | 1d«1d+1d$ Shift, goto 1

0 Id
1 *Id+1d$ Shift, goto 3

0 Id *
13 | id+1d$ Shift, goto 1

0 Id * Id

131 | +1d$ Reduce 4

Here, the state is 1, the next symbol is
+. The table says reduce using rule 4.

Shift/Reduce Parsing with an SLR Table

Stack Input Action
l:e—~t+e O | [d«Id+1d$ Shift, goto 1
2:e—t . Id
3. t—Id 1 1 | xId+Id$ Shift, goto 3
Id *
4:1—1d 0713 | 1d+1d$ Shift, goto 1
0 Id * Id
State Action Goto 131 | +1d$ Reduce 4
Id *
d + =+ $ e t & E +1ds$
0 sl 7 2
1 r4 s3 r4 Remove the RHS of the rule (here, just
2 s4 r2 Id), observe the state on the top of the
3 sl 5 stack, and consult the “goto” portion
4 sl 6 2 of the table.
5 r3 r3
6 rl
7 v

Shift/Reduce Parsing with an SLR Table

l:e—t+e

2:e—t

3:t—Id =t

4:t—1Id

State Action Goto

d + * $ e t

0 sl 7 2
1 4 s3 14
2 s4 12
3 sl 5
4 sl 6 2
5 13 13
6 rl
7 v

Stack Input Action
0 | 1d«1d+1d$ Shift, goto 1
0 Id
1 *Id+1d$ Shift, goto 3
0 Id *
13 | id+1d$ Shift, goto 1
0 Id * Id
131 | +1d$ Reduce 4
Id * ¢
07135 | +1d$ Reduce 3

Here, we push a ¢ with state 5. This
effectively “backs up” the LR(0)
automaton and runs it over the newly
added nonterminal.

In state 5 with an upcoming +, the
action is “reduce 3.”

Shift/Reduce Parsing with an SLR Table

Action

l:e—t+e

2:e—t

3:t—Id =t

4:t—1Id

State Action Goto

d + * $ e t

0 sl 7 2
1 4 s3 14
2 s4 12
3 sl 5
4 sl 6 2
5 13 13
6 rl
7 v

Stack Input
0 | [d+1d+1d$
o 1d
1 *Id+1Id$
o 1d x
1 3 | Id+Id$
o 1dx1d
131 | +1d$
d* ¢
0135 | +1d$
t
02 | t1ds

Shift, goto 1
Shift, goto 3
Shift, goto 1
Reduce 4
Reduce 3

Shift, goto 4

This time, we strip off the RHS for rule
3,1d * t, exposing state 0, so we push a

t with state 2.

Shift/Reduce Parsing with an SLR Table

l:e—t+e

2:e—t

3:t—Id =t

4:t—1Id

State Action Goto

d + * $ e t

0 sl 7 2
1 4 s3 14
2 s4 12
3 sl 5
4 sl 6 2
5 13 13
6 rl
7 v

Stack Input Action
0 | 1d«1d+1d$ Shift, goto 1
0 Id
1 *Id+1d$ Shift, goto 3
0 Id *
13 | [d+Id$ Shift, goto 1
0 Id * Id
131 | +1d$ Reduce 4
Id * ¢
07135 | 41d$ Reduce 3
t
02 | +1d$ Shift, goto 4
t +
024 Id$ Shift, goto 1
t +1d
0241 $ Reduce 4
t + t
0242 $ Reduce 2
r + e
0246 |3 Reduce 1
e
0 7 $

Accept

The Punchline

This is a tricky, but mechanical procedure. The Ocamlyacc parser
generator uses a modified version of this technique to generate fast
bottom-up parsers.

You need to understand it to comprehend error messages:

hif fli r .
Shift/reduce conflicts are caused Reduce/reduce conflicts are

by a statelike caused by a state like
—-Q
; @Elses t—Idx*tQ
e—1+eQ

If the next token is Else, do you
reduce it since Else may follow a
t, or shift it?

Do you reduce by “¢ — Id * t” or
by “e—t+e”?

