Name: Shant Stepanian

Uni: sps2141

Semester: Summer 2013 CVN
Course: COMS W4115
Assignment: Final Project

BoredGame: The Language

1. An Introduction to BoredGame
2. Tutorial
2.1 A First Example
2.2 How to Compile and Run
3. Language Reference Manual
3.1 Lexical Convetions
3.1.1 Whitespace handling
3.1.2 Comments
3.1.3 Identifiers
3.1.4 Keywords
3.1.5 Numeric literals
3.1.6 String literals
3.2 Data Types
3.2.1int
3.2.3 boolean
3.2.4 enum
3.2.5 board<T>
3.3 Expressions
3.3.1 Primitive Literals
3.3.2 Board Literals
3.3.3 ldentifiers
3.3.4 Parenthesis
3.3.5 Bracket operator [.]
3.3.6 dot operator
3.3.7 binary operator
3.3.8 Function Calls
3.4 Statements
3.4.1 Variable Declaration
3.4.2 Variable Assignment
3.4.3 Variable Declaration and Assignment
3.4.4 Return Statements
3.4.5 if/elseif/else Conditionals

3.4.6 Loops

https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.oz11xug44set
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.deayi2b8hf3t
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.6rv9wfg4r8ny
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.vh3bomsouwhc
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.t3mxh1t75xoe
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.yge326yetx4p
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.5jnlm9wm2hwe
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.b8wodscog00q
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.hmb8nohd3z0q
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.6yyozgg8npbg
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.7qnzrbd7je7x
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.i81u6yb0tbfq
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.4uzdjclvpbtj
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.munf36ht1qsp
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.7532goqfdfh7
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.dpp4y1caky2
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.li36utti5et1
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.wpjriuyfaut7
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.gke42pwv602f
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.et8ozeowm92n
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.hhnvql8ppzsh
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.56eufqt2qugr
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.u13sguwavgdu
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.6t8fjptcwu5d
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.jhtjb569a99u
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.m54fls6csyev
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.90hdipskicbz
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.7w0zg13dwsi3
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.wysq9m395u6t
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.obsmekc3ioas
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.msh68mnqkyt1
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.efvmf81eihn4
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.f6ihj9hufip2
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.lnj7fye82yqa

3.5 Programs
3.5.1 Overall Structure

3.5.2 Function Definition
3.6 Built-in Functions
3.7 Formal Definition
4. Project Plan
Timelines and Schedule
Development Environment
5. Design
5.1 Architecture
5.1.1 Component Diagram
5.1.2 Component And Interaction Details
Common and Core Components
Part 1) Reading the Input
Part 2) Initialization
Part 3) Parsing the Lexbuf into an AST and environment
Part 4) Converting the AST to a SAST
Part 5) Generating the C code from the SAST
Part 6) Calling the C compile to create the binary
Part 7) Done
5.2 Runtime Environment
5.2.1 Code Generation Strategy using register-based-like IR
5.2.2 Type System w/ Generics/Templates
5.2.3 Memory Usage and Array Representation
5.2.4 Reqular Expressions
5.3 Error Recovery
6. Test Plan
6.1 Test Case Setup and Automation
6.2 Test Case Strategy and Examples
7. Thoughts on the Project
7.1 Ideas Learned
7.2 Lessons Learned / Advice to Other Teams
8. Appendix
8.1 Example Program - Checkers
8.2 testcompile code / test case examples
8.3 Full Source Code Listings

https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.6mn1y6r6ks8k
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.8kcpezgcbfra
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.9s17djnznqqj
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.f27l3ggjdinx
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.jbp2i9jj3xxs
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.8q2r6xnq7cra
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.q4ocp9u7fa21
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.yr957i161y3r
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.k98tx2lly5ou
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.ja5trvpe2eop
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.oj05db8gi8b0
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.4vixbbyt6prx
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.wk933qom5hjr
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.89patwfidvzu
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.g2wo6t5e5rey
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.g6elocv8eoay
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.3ibwww87gofq
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.64zbl05cqmt1
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.637i96lb9765
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.n7cvmcc3qkv1
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.7ch4o34raxc6
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.4e4c85vzfdkp
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.idtl86j092ea
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.579vjzvtdvq8
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.1ttmi1uigoi6
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.7snuqxun3wph
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.oqzw0qxk7980
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.bltewwt061h5
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.rklu5up55pfu
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.qvo6q4moov5r
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.rdo0vp3kbg4a
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.6lragkob1d7e
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.dky668gqr0pj
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.6bkxm210gs98
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.6be24qse4ta5
https://docs.google.com/document/d/s9HYHvypGPNbjmHWq2g3-xQ/headless/print#heading=h.r67sft8b6ch5

1. An Introduction to BoredGame

BoredGame is a language designed to help people create their own games. As the tagline goes,
“if you are bored from your existing board games, create a new one!”

BoredGame will specialize in specifying games based on a two-dimensional board. Among the
features of the language that will help in this goal:

e Defining symbols for players and pieces

e Reading input and printing output

e Flexible input parsing to support various input formats

e Quick setup and access for the 2d board data

The rest of the documentation will cover the details of the language. Some of the conventions
and style here is borrowed from the C Language Reference Manual by Ritchie

2. Tutorial

2.1 A First Example

A game typically consists of the following parts:
e Players
e Pieces
e A board, typically representable in a 2D matrix fashion
e Moves, that players can execute with pieces to modify the board and its state

The BoredGame language has constructs that help with each of these:
e Players and Pieces can be represented using the “enum” construct, which basically
denotes select symbols to represent something in a game.

o For example, in Monopoly, the Piece enum would be represented using the values

of Car, Dog, Thimble, Shoe, and so on
e Boards can be represented using the “board” construct, where you can draw out your
board representation in the programming language itself.
e Moves can be represented by reading in data from the user, and then using typical
programming language constructs like functions and conditional statements to use that
information to control the game

As a quick tutorial, let’s try to play Tic-Tac-Toe.

First, what concepts do we have here?

e Players - playerX and playerO

e Pieces on the board - X, O, and B (for blank)

e The board: an example
XOB
BXO
XBB

(playerQ is in trouble!)

So how do we represent this in our program? Here is a start!

enum Player
playerX, playerO

end enum

enum Piece
X, 0, B

end enum

function int main ()
board<Piece> myboard = {

B BB

B BB
B BB

}
Player turn = playerX

printLine ("Hello " @ turn)

string mymove = readLine ()

dosomething (myboard, mymove)
// Now let’s calculate!
return 0

end function

function int dosomething (board<Piece> myboard, string move)

if move ~= " ([1-3])-([1-3])" -> int a, int b then
myboard[a, b] = X

end 1if

return 0

end function

Let’s go through some points:
e Define your enums using the “enum” declaration. Note that the declaration includes the
comma-separated values that you'd like to represent.
The main function is the entrypoint to your program. It must be defined.
Note a couple of the programming conventions:

o Blocks of code, such as enum declarations, function declarations, and if
statements, typically end in “end” statements (e.g. end if, end function), so that it
is clear when something starts and when something ends

o Statements are separated by newlines. So a contiguous block of a statement
must be laid out on a single line

e We define the board and that it would have “Piece”s as its components using the syntax
with the braces {}. As should be clear above, we create a 3x3 board here

e We can print and read text using the printLine and readLine functions, respectively.
These are provided for you, the client.

e For printing strings, we can concATenate strings with other types to create text
dynamically using the at @ symbol.

e You can call other functions and have them do something, as shown in the dosomething
example above

e Note the regular expression syntax in the first like of “dosomething” - via the use of
parenthesis, it says that we will capture the text that matches what is inside of it and
place it inside the “int @” and “int b” variables. Thus, it is easy to read texts and extract the
data that we need.

e Each function should end in a return statement to indicate the result.

That is all for the tutorial - do dig deeper into the Language Reference Manual to get a fuller flavor
of what you can do with the language, and see a larger example in the appendix with a 2-player

5

implementation of the game of checkers!

2.2 How to Compile and Run

To setup and compile your program:

e Create a file containing your code with the extension .game, e.g. checkers.game

e cd into the directory where your file resides

e Then run the compile command:
o ./boredgame.out -f yourgamename
o Note - you should not specify the .game extension here

e If the compilation is successful, the game binary is created, which you can run:
o ./yourgamename.out

3. Language Reference Manual

returning a method early and having code after will not be marked as an error, just ignored. at
least until we get a working compiler

undeclared vars give runtime exceptions, not compile-time checked yet
reserved functions, including the generated ones

vars cannot share names of classes

no preference of and over or. use parenthesis to make it clear

no nulls

stmts can change the exec env; expressions just return

3.1 Lexical Convetions

3.1.1 Whitespace handling
Spaces, tabs, and comments will be ignored from a logical perspective and are simply there to
separate tokens.

Newlines (i.e. \r\n or \n) are not ignored by the language. They are used to separate statements
and constructs. This will be detailed in later sections, but in summary:
e They are used to separate the beginning and end declaration of block statements
e They separate statements within blocks.
o See examples of the above two below
e Extra newlines can be added between function/enum declarations or within function
declarations as extra whitespace

while 1 == a do \newline-enforced-before-and-after-this-block-declaration
stmt1 \newline
\newline
\newline
stmt2 \newline
end while \newline-enforced-before-and-after-this-block-declaration

For the reference manual below, the text \newline will be used to denote areas where newlines
must be used to demarcate regions of code.

3.1.2 Comments
Comments can be marked in two ways:

1) For a single-line via two backslashes, e.g.

my code line1 // my comment

my code line2
The commented text consists of everything to the right of the // including the // itself, up until the
end of that line. Hence, the “// my comment” is the commented code above

2) The characters /* introduce a comment, which terminates with the characters */
This can /* also extend over

multiple lines,

like this */

3.1.3 Identifiers

Identifiers will consist of alphanumeric characters (the letters a-z, A-Z, and numbers 0-9). The
first character of an identifier must be a letter. Identifiers are case sensitive; e.g. the identifier
“iden1” is different from the identifier “IDEN1”

3.1.4 Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

int if do function
string then while return
boolean elseif for

board else true

enum end false

3.1.5 Numeric literals
Integer literals will be as a consecutive sequence of digits, e.g. 12345 or 00123

There are no floating point numbers or fractions. Any operations leading to fractions (e.g.
division) will have the fractional part truncated

Negative numbers are not represented as a part of the numeric literal. You must use an operator
for that, e.g. 0-9

3.1.6 String literals
Strings literals will start with a double quote and continue until the next double quote found on the

8

same line. e.g.
“12345” => results in a string 12345
“” => results in a blank string

A string cannot span lines in the source code. If it does, this will result in a compile error
Escape characters that are compatible in C can work in BoredGame as well (see

http://en.wikipedia.org/wiki/Escape_sequences_in_C), except for escaping double-quotes \". It is
currently not possible to escape or print quotes in BoredGame

3.2 Data Types
The language will support the following data types

3.2.1int

Definition:

int objects in the language represent numeric integer values
In memory, they will be represented as 32-bit signed integers

3.2.2 string
Definition:
string objects represent a sequence of characters

3.2.3 boolean
Definition:
boolean objects represent either true or false in boolean logic

3.2.4 enum

Definition:

The enum keyword is used to define a set of identifiers that can describe the values of a
particular domain

For example:
e |n a deck of cards, a suit of a card can have the values diamond club heart spade
e The colors of a rainbow can have the values red orange yellow green blue indigo violet

An enum can be used in the language when the game developer would like to constrain chosen
variable values to a particular type. Hence, each enum declaration would define a new type in the
program.

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FEscape_sequences_in_C&sa=D&sntz=1&usg=AFQjCNEVQ_ZfEJM5uuflHrePyP-G-Dc56A

The identifiers used for each enum value are of a global scope; hence, they cannot be used
anywhere else, whether in other enums or as variable names

Note the usage of the newlines to segregate the declaration lines from the enum lines. We also
cannot have extra blank lines here - hence, each enum declaration essentially comes out to be 3
lines.

BNF Syntax:
enum_decl:

enum ID \newline
formal_list \newline
end enum \newline

where
formal_list:
| ID
| formal_list COMMA 1D

Examples:
enum Suit
diamond, club, heart, spade
end enum

3.2.5 board<T>

Definition:

The board type represents a 2d array that would represent the board structure of a game. This
type can be parameterized by specifying another enum type inside the brackets when declaring
the variable. The idea is to be able to “graphically” define the board structure of a game in the
program using the representative symbols of the game that the developer decides on

The board is defined using the syntax as follows:
board<T> board = { \newline
id11id12id13 ... \newline
id21id22 id23 ... \newline
... \newline
} \newline
where
e The board declaration starts with { and ends with }, with lines in between for the pieces
on the board
e id11id12 ... are of the type T, and T is a reference to an enum value.

10

e Each row has the same amount of identifiers, thus resulting in an n-by-m array

e Each row is split via a newline, and we cannot have any blank lines within the braces

e Atleast 1 row and 1 column must be defined in the board

A board object exposes some information via the following operators and identifiers. These
examples use boardvar as the variable identifier
e boardvar.rowlength => (read-only) returns an integer representing the number of rows on

the board

e boardvar.collength => (read-only) returns an integer representing the number of columns

on the board
e boardvar[r,c] => (read and assign) accesses the element at the r-th row and c-th column

of the board. These accesses are 1-indexed, not 0-indexed, as to fit more naturally
towards the notations that board games use.

BNF:
board_literal:

{ \newline
id_array

}

where:
id_list:
| ID

|id_list ID

id_array:
| id_list

| id_array \newline id_list

Example: Using Chess

enum ChessPiece

b, r, n,

Oy

end enum

board<ChessPiece>

r

— ™» ™ O O O O T

n

Z ™ O O O O T
W ™ O O O O T
© ™ O O O O 'O
= ™ O O O O T

b

q

k

W ™ O O O O T T
Z ™ O O O O T
W ™ O O O O 'O

b, q,

myboard

nr

11

3.3 Expressions
An expression represents some combination of tokens that will denote an object

Here are the various ways to form them, in order of precedence (highest to lowest)

3.3.1 Primitive Literals
Specifying a literal for ints, strings, and booleans, as mentioned in sections 3.1-3.3, will result in
an expression for that given type

3.3.2 Board Literals
Specifying the literal for the board, as mentioned in section 3.5, will result in an expression for
that type

3.3.3 Identifiers
Specifying an identifier will result in an expression of that type. The way to declare identifiers and
their types will be discussed in section 5

3.3.4 Parenthesis
An expression can be surrounded by parenthesis to help give a finer control to the developer
over precedence of operations (and to override the defaults)

(expression)

3.3.5 Bracket operator [,]
expr1 [expr2 , expr3]
When used in conjunction with a board identifier (e.g. boardvar[row,col]), this will return the
element
expr1 must be of type board
expr2 and expr3 must be of type int

3.3.6 dot operator
expr . id
When used in conjunction with a board identifier (e.g. boardvar.collength), this will return the
value of the property associated with that board variable
Currently, only expressions of type board are supported for the expr value

12

3.3.7 binary operator
These operators are used in expressions of the following form:

expression binop expression

For a given pair of expressions in a binary operation, the order of evaluation is always left to right.
For certain cases outlined below, the right-hand expression may not need to be evaluated.

Within the class of binary operators, we have the following precedences (highest to lowest):

*/
o For multiplication and division
o Expects int expressions as inputs and returns an int value w/ the given result. As
mentioned earlier, for a division operation resulting in a fractional value, the
fractional part would be truncated
o Left-associative
+ -
o For addition and subtraction
o Expects int expressions as inputs and returns an int value w/ the given result
o Left-associative
<><=>===|=
o These are the comparison operators
o These operators will return a boolean value indicating the value of the comparison
o The left-hand and right-hand operators must have the same type
o The expected input expression type depends on the operator:
B <><=>= must have int expressions
m ==I= must have int, string, boolean, enum expressions
&&
o Boolean “and” operator
o Expects boolean expressions as input; returns a boolean expression of value true
if both are true, and false otherwise
m The right-hand expression will only be evaluated if the left-hand expression
is true, as otherwise, we already are guaranteed that the expression as a
whole will be false
o Left-associative
I
o Boolean “or” operator
o Expects boolean expressions as input; returns a boolean expression of value true
if at least one of them is true, and false otherwise
m The right-hand expression will only be evaluated if the left-hand expression
is false, as otherwise, we already are guaranteed that the expression as a
whole will be true
o Left-associative
@

13

String concatenation operator
Returns a string expression
One of the expressions involved must be a string. The other expression can be
either a string, int, boolean, or enum. (i.e. no boards are allowed to be
concatenated)

o Left-associative

3.3.8 Function Calls
Functions, in addition to returning values to be used for expressions, can be called as
standalone statements. This is for cases where the function has a side effect, e.g. printing out
some values to the console
call:
identifier(args,,,)
actuals_opt:
| <blank>
| actuals_list
actuals_list:
| expr
| actuals_list,expr

The arguments of the function call will be evaluated in a left-to-right order. The count and types of
the arguments in the call must match the count and types of the arguments in the function
declaration.

3.4 Statements

A statement represents the most granular unit of work to be executed in a program. Statements
themselves don’t return values (as expressions do) and can modify the environment of the
program (e.g. adding symbols to the symbol table)

The following are the kinds of statements that can be defined in BoredGame.

3.4.1 Variable Declaration
To declare a variable, use the form:
vdecl:
type_id id \newline

type_id:
| id
| id < type_id >

14

where type-specifier represents a type (e.g. int, string, boolean, custom enum type, or a board
type w/ the enum subtype specified, e.g. board<myenum>)

Example:
int myvar
board<myenum> myboard

3.4.2 Variable Assignment

To assign a value to a variable, use the form:
identifier = expression \newline
The type of the returned expression must equal the type of the identifier

Example:
myvar = 1

3.4.3 Variable Declaration and Assignment

This combines both the variable declaration and the expression.
vdecl = expr \newline
(vdecl was defined earlier)

The type of the returned expression must equal the type of the variable

Example:
int myvar = 1

3.4.4 Return Statements

A return statement indicates the end of the execution flow within a function and the value to be
returned to the caller. The type of the expression must match the type defined in the function
declaration (more on the function declaration structure in section 6)

return expression \newline

3.4.5 if/elseif/else Conditionals

Regular If/else statements:
If/else statements will follow the pattern below.
e The elseifs and else clauses are optional.

15

e We can have a list of elseifs
e The expression after the if keyword and elseif keywords must return a boolean

if_else:
if expression then \newline
statement-list
elseifs
else
end if \newline
elseifs:
| <blank>
| elseif expression then \newline
statement-list
else:
| <blank>
| else \newline
statement-list

In terms of execution:

e The expression of the if clause is evaluated. If it is true, then the associated statement-list
is executed, and we skip through the rest of the if/else block

e Otherwise, we iterate through the expressions in the elseifs until we hit one that is true. At
that point, the associated statement-list is executed, and we skip through the rest of the
if/else block.

e |[f none evaluate to true, then we evaluate the statement-list associated with the else
clause. If none exist, then we continue to the next statement after the if/else statement

Example:
if 1 ==0 then
dosomething()
elseif 1 == 1 then
dosomething()
end if

Regular Expression Clauses:

A special kind of expression is allowed within the conditional clauses for if statements. These are
the regexp expressions, and they are not allowed anywhere else othern than within an if
statement

The syntax is as follows:
regexp_match:
expr ~= expr -> vdecl list

16

Both expressions here must be of type string. The first expression represents the string to
check, and the second represents the regular expression to match against. To the right of the
arrow are variable declarations that will be mapped to the clauses found in the regular
expression.

The processing will go as follows:

e Regexp syntax is the one that is used from the C regex.h library -
http://www.regular-expressions.info/posixbrackets.html

e If the regular expression matches, then the groups of the matched expression will be
searched. Otherwise, the expression returns false and the code continues to the next
part of the if/else

e The compiler will attempt to bind the variables declared in vdecl! list with the groups found
in left-to-right order.

o Conversions will be done from strings to int or enums or strings, depending on
the type of variable declared

e [f the binding to the variable is not successful, whether from having differing variable list
lists or mismatched types, then the statement will still return false and proceed to the
next part of the if/else

3.4.6 Loops
while loops and for loops will be supported to facilitate repeated invocations of code

while loops:
while expression do \newline

statement-list
end while \newline

The expression must return a boolean value.

Order of execution:
1. The expression will be evaluated.
2. If true is returned, the statement-list will be executed, after which we go back to step 1
3. Otherwise, we will exit from the while-loop

for loops:
for var-assignment; expression; expression do \newline

statement-list
end for \newline

The for-loop executes as follows.
e Step 1: The first var-assignment is executed.

17

http://www.google.com/url?q=http%3A%2F%2Fwww.regular-expressions.info%2Fposixbrackets.html&sa=D&sntz=1&usg=AFQjCNEJEsUBZg39xWsxet1FBVXC6VpC8g

e Step 2: The expression is evaluated, and must return a boolean value
o If the value is false, the loop exits
o If the value is true, the statement-list is executed, and the second expression is
invoked. Then repeat step 2

3.5 Programs
The above elements will be combined to form a program. Here are the details on what the final
program will look like.

3.5.1 Overall Structure
The program will consist of a series of either function definitions or enum definitions
e We have specified enum definitions earlier; function definitions will be specified in the
next section
Functions must each have distinct names
There must be 1 function defined with the name “main” and with no arguments. This will
be the entry point to the program
e The function names, the enum type names, and the enum value names are all identifiers
that will have global scope in the program. No local variables can use these same names
e The order in which the functions or enums are defined does not matter, i.e. a function
can call another function that is defined later in the code

3.5.2 Function Definition

Functions are the containers for statements that will be executed, i.e. we have defined individual
statements in the earlier section to define what can be done, and a function is the structure that
organizes the flow of execution of these statements

The structure is as follows
function type-specifier identifier (type-argument-list)
statement-list
end function

Notes:
e The type-argument-list is optional. The parenthesis are still needed in that case
e All variables declared within a function will have scope within the entire function
o This includes variables declared in the type-argument-list and in standalone
var-declaration statements
e The flow of control of a function must return a value using the “return” statement

18

o Ifit is detected at runtime that the end of the function has been reached without a
return statement, then an error will be raised and the program will halt execution

Example:
function int dosomething (int a1)
intb1=a1+5
print(b1)
return O

end function

3.6 Built-in Functions

The program provides some built-in functions to help w/ the application development. Invoking
these would involve the same syntax for calling as defined in Section 3.3.8

int print(String str) - prints out the text in str to stdout without a newline appended

int printLine(String str) - prints out the text in str to stdout with a newline appended
String readLine() - reads a line from stdin (terminated by the enter-key) and returns the
value to the string

The following methods are generated for each enum that is defined (for these examples, we will
refer to the enum name as enumname
e int printBoard_enumname(board<enumname> myboard) - prints the row x col contents
of the board to stdout
e int printRow_enumname(board<enumname> myboard, int n) - prints the nth row of the
board to stdout. This is used in case we want a finer grain of what to print out
e enumname parseEnum_enumname(string) - returns the enum whose id ref matches the
input string

3.7 Formal Definition

4. Project Plan

Timelines and Schedule
As | am a CVN student, | worked alone on this project, and so there were no considerations in

19

terms of splitting up work or scheduling across team members.

At a high level, | carried out my work in the following manner:
e Start of semester
o Project Proposal
e Mid-semester
o Language Reference Manual draft
e End of semester (approximately a month before due date)
o Development environment setup and microc example setup
o Parser implementation for basic features
m functions, enums, variables, math operations, if-statements, printing
output, using existing C-like conventions for white-space and statement
separators
Test harness implementation for parser
Compiler implementation for basic features
Parser/Compiler/Test (PCT) implementation for advanced features
m board literals and operations, built-in functions for boards, regular
expression handling
Test harness improvements to allow for input and output verification in code
PCT implementation for final cleanups
m newlines for line separators, for/while loops, checkers example, and bug
fixes found upon final testing

Development Environment

Operating System: Ubuntu 13.04
OCaml Version: 3.12.1 (from Ubuntu repositories)
Build: using ocamlopt as the code to execute system commands required this
Development IDE: Eclipse with the OCaml Development Tools feature
e http://ocamldt.free.fr/
e |DE was not used for compilation - | still relied on command-line and make for that
e |DE helped with:
o Syntax highlighting
o Automatic code-formatting and indentation
m e.g. during typing and hitting the enter key, the code being edited would be
indented and aligned with reference to its surrounding code
m This was very helpful as | did not know the OCaml formatting conventions,
and it was nice for the IDE to decide this for me
o Window/file management
Coding Conventions for OCaml: Used the IDE’s suggestions
Version Control: Git + Dropbox
e Used Git via Eclipse to commit to a local Git repository so that changes can be
committed and viewed easily

20

http://www.google.com/url?q=http%3A%2F%2Focamldt.free.fr%2F&sa=D&sntz=1&usg=AFQjCNFtkqbndSzOEgu1slAlfy-e3zdJNg

e Git repository was backed by Dropbox in case my local machine failed (I had Dropbox on
my machine anyway, so it was easy to leverage)

21

5. Design

5.1 Architecture

5.1.1 Component Diagram

Common Components

ast

Main Compaonent Interaction

boredgame

T) complete wi
compiled binary

testcompile

1) input - lexbuf

1) input - lexbuf

2} initialize

compile

any

CoOmmon

3} input - lexbuf, env

return - AST, env

parser
scanner

4) Input - AST, env
return - SAST »

saster

S)input - SAST, out channel
return - C code file

codagenerator

B) input - C code file
return - compiled binary
c-compilar
{in compile.ml)

5.1.2 Component And Interaction Details
The diagram above shows the components required to go from some input buffer to a compiled
binary. Each component name above corresponds to a file in the provided source code of the

project.

Here are the details

Common and Core Components

The core component that ties everything together is compile. This takes in the input from the
user and handles calling the various other components to get its work done.

22

We should also highlight the common components used by most of the modules:
e ast - Contains the types used to represent the abstract syntax tree (AST) and the
semantically-analyzed syntax tree (SAST). More detail on the SAST in the sections below
e env - Contains the code to access the symbol and compiler environment used to compile
the program.
o This includes:
m The symbol table
m The function and type metadata
m The current function name that is being processed
m Lookup methods to facilitate accessing and adding to the environment
o Note that the symbol table is just a simple map.
m Originally, | had planned on having nested symbol tables as to represent
the different scopes that arise when creating blocks in the code
m However, the functional nature of OCaml allowed me to achieve the same
effect without needing a child symbol table. More details on this in the
code
e common - Contains some general utility methods

Part 1) Reading the Input

In this part, we show the compile component reading its input as a lexbuf from its clients - this is
done via the compile_program_from_* methods. This is done generically as we may have
different sources of input

We used 3 different sources during development via these 2 components:

e boredgame component
o This takes in -f <programname> or -c <programname> as args. A binary called
<programname>.out will result
o -freads in a file <programname>.game as the input
o -creads in the input from stdin
e testcompile component
o This was used for unit testing the application.
o Here, the input is a string that is written directly inside the test code

Part 2) Initialization
Here, we do some basic setup like creating the initial environment and adding some built-in
function definitions (e.g. for printLine) to the env

Part 3) Parsing the Lexbuf into an AST and environment
Using parser.mly and scanner.mll, we parse the lexbuf into the AST.
After this step, we will enrich the environment to add the enum and function information, as well

23

as the built-in functions for the enums (e.g. printBoard_*)

Part 4) Converting the AST to a SAST
Now that we have the AST, we need to do the semantic analysis using the saster component.
Tasks will include:
e Checking that expressions used by statements and other expressions have the correct
type
Doing symbol lookups and storing the symbols to the symbol tables
Assigning the SAST-ed expression a machine address for the code generation (will
expound on this in the “Runtime Environment” section

We will throw CompileExceptions here in case we detect any violations of the rules set forth in
the LRM.

Part 5) Generating the C code from the SAST
With the SAST defined, we can now generate the C code. Note that we won’t need the
environment here, as we’ve already saved the relevant pieces of information from it.

Generally, the print_sast_expr method will create the code to calculate values for the expression
if the original machine code itself did not suffice (e.g. we don’t need any extra calculations for
string or integer literals), whereas print_sast_stmt takes care of the various control statements.

These methods take in the out variable, which is used by fprintf to write the value. The only
current input so far is the file channel to write out to a temp C file.

We will also throw CompileExceptions here in case we detect something amiss that we could
not detect before without duplication of code.

Part 6) Calling the C compile to create the binary

We directly invoke gcc to do the compilation to the binary. We will throw a
CriticalCompileException if the compile fails, as ideally we should catch all potential compile
errors during steps 4 and 5. Note that this won’t mean we’d guard fully against runtime
exceptions, but at the very least, our code should compile in C.

Part 7) Done
And that is it!

5.2 Runtime Environment

24

Here are some details on the C code generation.

5.2.1 Code Generation Strategy using register-based-like IR

For this project, we decided to compile to machine code by first translating our input code to C,
and then compiling the C code. We could not do a simple translation directly from the AST, as
some of the constructs we tried to model could not be taken care of by an equivalent number of
lines in C (e.g. representing the board construct in BoredGame took many lines in C to create
the struct and fill in the arguments, or representing multiple if conditions and condition clauses).

As a result, we had to denote a memory address to store the value of an expression, and given
that address, the code generator can use that value to write out the code. As we had to define a
C variable, we also needed to define the type, which is why sast_expr in the code also stores the
expected type of the expression.

Hence, we had a choice between stack-based IR and register-based IR. We went with
register-based IR as it was easier to translate from our code to a 3-address based code in this
manner. One of the problems w/ register-based IR though is that we are limited in the number of
registers. However, as we are representing this in C, we can think of local variables as registers
(i.e. temporary storage of variables that the function can use), and as we can name variables as
we choose, we essentially have a very number of “registers” to work with! Hence, we describe
this as “register-based--like” IR.

5.2.2 Type System w/ Generics/Templates
We mentioned earlier that the environment component stored program metadata such as types.

Of particular note is that we store not just basic types like int, string, and boolean, but
genericized or templated types (depending on if you like the Java description or the C++
description) like board<T> and enum<T>. This was required as we wanted to form behaviors on
certain categories of types, while allowing parts of it to be parameterized. For example, the board
concepts works generally as a 2D array representation of some information, but depending on
the variable declaration, we wanted to limit it to only a certain subtype of references to use.

In the compile code, this was represented via the type_id type, which was either a SimpleTypeld
or a GenericTypeld (which itself referred to its subtype). Generally, most comparisons of type
behavior were done on a string comparison of either the main type name or the full genericized
type name, which possibly would not scale well for more complex uses, but which sufficed for
our model so far.

5.2.3 Memory Usage and Array Representation
As we were dealing with C code, we had to guard against improper memory leaks. As to keep

25

things simple for the users of the language, we looked to keep everything on the stack so that
clients did not have to keep track of memory or worry about garbage collection.

This meant a few trade-offs:

e The 2D array for the boards was actually represented as a 1D array in C, as it proved
difficult to manipulate the elements of a 2D array on the stack with the way | was code
generating.

e Strings were given a max length (defined as 1024) and the full char array for it was
always allocated on the stack. With more time to develop, we could have been smarter to
do proper mallocs and callocs, but given the time and the relatively small game programs
to be written in the first iteration of the language, | deferred on this optimization to start.

e One area where we do still have a memory leak to be resolved is reading in of input from
users. | could not get this to work directly off stack data - this will have to be a TODO
item

5.2.4 Regular Expressions

The regular expression feature in BoredGame is implemented under the hood in C using the
regex.h library. We were able to work this on the stack as well, using the strategy of fixed size
char arrays mentioned above.

5.3 Error Recovery

Error detection for the BoredGame language is handled in the various components mentioned
earlier (mostly in the saster and codegenerator components), but the recovery and error display
mechanisms are currently rather light.

The main features added for this is to be able to show the location of the error code and the
surrounding text in case. See the scanner component and the parse_program_from_lexbuf
method in the compile component for more information.

6. Test Plan

6.1 Test Case Setup and Automation

The main structure of the tests was to pass in an example program and then to verify its output.
Its output could have been:
e For positive-result tests - the text that the compiled binary would print out upon execution
e For negative-result tests - just the expectation that a CompileException was raised. If not,
an error would be thrown by the tests

The setup and execution of the tests were done directly inside the OCaml code using a separate
testcompile.ml module. | preferred doing this in code as it resembled Java JUnit tests that | am
used to, and there was one less hop from code compilation to test execution, thus saving time

26

as multiple iterations of tests would occur. Another subtle benefit is that some of the early
iterations of the test harness code were reusable as components in the regular code base.

The test harness would stop upon any test failure. Hence, running tests to ensure that the code
still worked proved to be easily done in two steps:

e Running “make testcompile” to build the test

e Running “./testcompile.out”

6.2 Test Case Strategy and Examples

In terms of the strategy, | looked to test out both positive and negative use cases (e.g. cases
where the feature in question worked fine, and cases where a parsing or compiling or semantic
exception took place, and | expected the compiler to detect it).

I looked to have sets of tests for each of the features of the language as mentioned in the
“Project Plan: Timelines and Schedule” section. Some of the tests would happen to combine
some trivial cases, but generally, | tried to keep them separate.

Here are some quick examples showing both positive and negative test cases. The full test suite
is

test progress program expect exception "testBadMainWithArgs" "
function int main (int arg)

return 0
end function

L1
’

test progress program expect exception "testMismatchedFunctionAssignType" "
function int main ()
boolean myvar
myvar = func2 ()
return 0
end function
function int func?2 ()
return 1
end function

"o
’

test progress program compare "testBasicFunctionCallAndAssign" "
function int main ()
/// testing out comments work
int myvar = func2 ()
printLine (\"myvar=\" @ myvar)
return 0
end function
function int func2 ()

27

return 1

end function

"myvar=1";

test progress program compare "testBasicStringConcat"

function int main ()

printLine (\"abc\" @ 123)

string mystring

mystring = \"abc\"

printLine (mystring)

mystring = \"abc\" @ \"do re mi\"
printLine (mystring)

printLine (\"abc\" @ \"do re mi\")
mystring = \"abc\" @ 123
printLine (mystring)

return 0

end function

abc

"abcl23

abcdo re mi

abcdo re mi
abcl23";

28

7. Thoughts on the Project

7.1 Ideas Learned

The purpose and techniques behind 3-address code generation were rammed home during this
project! My first try at the code generation started off as a translation effort, but as | started to
implement more complex features, | found that | could not do it easily (very prescient call by the
professor to have me do it in C). Hence, | switched to the register-like IR code generation, and it
helped the design of the compiler a lot.

The semantic analysis and code generation were also very interesting to do. | had not had the
chance to do anything like it before in my projects at school and work, so it was enjoyable to do
here, e.g. to work out the tree for the syntax and to know what kind of validations to put in

It also helps to have a good understanding of your functional domain when creating your
language, as then you would know which features will be useful. In addition, your initial ideas may
look good on paper initially, but after trying out some code, you may find reasons to adapt. For
my change, | made such a change when | started off with a switch statement to work w/ the
regular expression feature, and | decided to avoid the switch and just make the regular
expressions a standard part of the if/else statement, which was more flexible. In addition, | had
more ideas on stuff | can add to the program only after completing the core language
implementation and then trying to implement the fully working Checkers example.

7.2 Lessons Learned / Advice to Other Teams

Use version control (e.g. Git, Subversion) to track your code. It is very helpful to be able to
commit your code, and then be able to compare against your last committed code after making
some changes.

Having an IDE like Eclipse helped immensely for the formatting support and version control
integration, but | would not suggest to try to actually build with it. Using the command line and
make file does the job.

OCaml can have a steep learning curve to start, so get used to some pain at first. One negative
of not having a mature IDE support is that you cannot do things like refactor or diagnose
problems easily. It can be very frustrating at first to get a cryptic OCaml error message and not
know what to do with it. It maybe took a few days of coding in OCaml before | finally got the hang
of it and was able to spend more time writing working code instead of figuring out what the error
message that the OCaml compiler emitted meant.

Start early! The compressed summer schedule did not help things, but it would have been better
for me to start coding earlier, especially to get over the initial OCaml learning curve.

29

Set goals for what you want to get out of the project and which features to implement; get the
professor’s feedback if necessary. It was hard for me to come up with an idea, so | used this
mainly as an exercise to get practice in creating a language and doing new things. For example,
the professor suggested having my language use line-breaks to separate statements; though
that may not be the design decision I'd take if | had to create a language at work, it was an
opportunity for me to get more practice at working on the scanner and parser, and learning is
always valuable when taking a course.

Have a short-term and long-term plan for the features to implement. While | knew overall what |
wanted to implement (the long-term plan), it helped to keep track of the next few items | wanted
to take care of in the short-term, so that | can focus on only those goals, instead of having my
mind wander to other goals.

30

8. Appendix

8.1 Example Program - Checkers

enum PieceType
c, C, noPieceType

end enum

enum Player
pl, p2, noPlayer

end enum
enum Piece

r, R, b, B, o

end enum

function int main ()
printLine ("Welcome to Checkers!"™)

board<Piece> myboard = {

r or or or o
oOorororor
ror or or o
0O 0 0O0O0OO0OO0OO0
0O 00 O0O0OO0OO0OO0
obobobob
bobobobo
obobobob
}

Player turn = pl

while true do
Player winner = gameover (myboard, turn)

if winner == noPlayer then
printLine ("")
printLine ("It is Player " @ turn @ "'s turn")

printCheckersBoard (myboard)

printLine("")

printLine ("Player " @ turn @ ", please enter your move in the format
of [a-h][1-8] [a-h][1-8], e.g. a8 b7")

if eval move (readLine (), myboard, turn) then

turn = getOtherPlayer (turn)
else

printLine ("Invalid move - please try again")
end 1if

else

31

printLine ("Player " @ winner @ " has won. Congratulations!\nExiting
the program now")
return 0
end if
end while
end function

/* We customize the printing here so that we can see the board coordinates
Maybe we can add something like this as a helper method later on in
the language itself */
function int printCheckersBoard (board<Piece> myboard)
printLine (" abcdefgh")
printLine (" -——————————————- ")
int i
for i = 1; 1 <= myboard.rowlength; i = 1 + 1 do
print(i @ " | ")
printBoardRow Piece (myboard, i)
end for
return 0

end function

// We have this pattern-matching switch statement to allow for various input // moves,
e.g. for chess 0-0-0 or 0-0 for castling notation, which is
// different from the other move notations that are of the form
// (la-hl) ([0-911)-(la-h]) ([0-9]1)
function boolean eval move (string input, board<Piece> myboard, Player player)
int srcrow
int srccol
int tgtrow
int tgtcol

if input ~= "([a-h]) ([1-8]) ([a-h]) ([1-8])" -> string s _srccol, int s _srcrow,
string s _tgtcol, int s tgtrow then
SIrCrow = S _SICIrow
srccol = ind to number (s srccol)
tgtrow = s_tgtrow
tgtcol = ind to number (s _tgtcol)

else
printLine ("Invalid move input format")
return false
end 1if
printLine ("Read move " @ srcrow @ srccol @ "-" @ tgtrow @ tgtcol)

return processMove (myboard, player, srcrow, srccol, tgtrow, tgtcol)

end function

32

function boolean processMove (board<Piece> myboard, Player player, int srcrow, int srccol,
int tgtrow, int tgtcol)
Piece curpiece = myboard[srcrow,srccol]
if player != getPiecePlayer (curpiece) then
printLine ("Invalid move - player must own the piece")
return false
end 1if

Piece targetpiece = myboard[tgtrow, tgtcol]

if getPiecePlayer (targetpiece) != noPlayer then
printLine ("Invalid move - target must be unoccupied")
return false

end if

int rowmove = srcrow - tgtrow

int colmove = srccol - tgtcol

if abs (rowmove) != abs(colmove) then

printLine ("Not a diagonal move")
return false
end 1if

1if getPieceType (curpiece) == c then
if player == pl and rowmove < 0 then
printLine ("Player " @ player @ " can only move up the board with a
small piece")
return false
elseif player == p2 and rowmove > 0 then
printLine ("Player " @ player @ " can only move down the board with a
small piece")
return false

end 1if
end if
if abs (rowmove) == 0 then
printLine ("Small piece can only move 1 space diagonally. A move of " d
abs (rowmove) @ " was tried")

return false

elseif abs (rowmove) == 1 then
myboard[srcrow, srccol] = o
if (tgtrow == 1 or tgtrow == 8) and getPieceType (curpiece) == c then
myboard|[tgtrow, tgtcol] = promote (curpiece)
else
myboard|[tgtrow, tgtcol] = curpiece
end 1if
return true
elseif abs (rowmove) == 2 then
int intermRow = (srcrow + tgtrow) / 2
int intermCol = (srccol + tgtcol) / 2

33

if getPiecePlayer (myboard[intermRow,intermCol]) != getOtherPlayer (player)
then
printLine ("Invalid move - to move 2 spaces, must jump over the
opponent's piece")
return false

end 1if

myboard[intermRow, intermCol] = o

myboard[srcrow, srccol] = o

if (tgtrow == 1 or tgtrow == 8) and getPieceType (curpiece) == c then
myboard|[tgtrow, tgtcol] = promote (curpiece)

else
myboard[tgtrow, tgtcol] = curpiece

end 1if

return true

else
printLine ("Pieces cannot move more than 2 spaces diagonally. A move of " @
abs (rowmove) @ " was tried")

return false
end 1if

end function

function int abs (int num)
if num > 0 then
return num
else
return 0 - num
end 1if

end function

// Would have preferred a more succinct way to represent this in the language,
// e.g. some kind of mapping syntax (x => X), but de-scoping this for now
function Player getPiecePlayer (Piece piece)
if piece == b or piece == B then
return pl
elseif piece == r or piece == R then
return p2
else
return noPlayer
end 1if

end function

function Player getOtherPlayer (Player player)
if player == pl then
return p2

34

elseif player == p2 then

return pl
else

fail ("Invalid case - player must be pl or p2")
end if

end function

// Would have preferred a more succinct way to represent this in the language,
// e.g. some kind of mapping syntax (x => X), but de-scoping this for now
function PieceType getPieceType (Piece piece)
if piece == b or piece == r then
return c
elseif piece == B or piece == R then
return C
else
return noPieceType
end if
end function

function int ind to number (string input)

if input == "a" then
return 1

elseif input == "b" then
return 2

elseif input == "c" then
return 3

elseif input == "d" then
return 4

elseif input == "e" then
return 5

elseif input == "f" then
return 6

elseif input == "g" then

return 7
elseif input == "h" then
return 8

end if

fail ("This condition should not reach")

end function

function Player gameover (board<Piece> myboard, Player player)
int 1
int J
int plscore = 0

int p2score

for i = 1; i1 <= myboard.rowlength; i = i + 1 do
for j = 1; j <= myboard.collength; j = 3j + 1 do
Piece piece = myboard[i,]]

if (getPiecePlayer (piece) == pl) then
plscore = plscore + 1
elseif (getPiecePlayer (piece) == p2) then
p2score = p2score + 2
end 1if
end for

end for

printLine("pl " @ plscore @ " p2 " @ p2score)
if plscore == 0 and p2score == 0 then
fail("Invalid state - both scores cannot be zero")
elseif plscore == 0 then
return pl
elseif p2score == 0 then
return p2
else
return noPlayer
end if
end function

function Piece promote (Piece p)
if p == r then
return R
elseif p == b then
return B
else
return p
end 1if
end function

8.2 testcompile code / test case examples

open Ast
open Printf
open Compile

module StringMap = Map.Make (String);;

(* Obtained from:
http://stackoverflow.com/questions/2214970/collecting-the-output-of-an-external-command-u
sing-ocaml *)

let syscall and collect output = fun command ->
let chan = Unix.open process in command in
let res = ref ([] : string list) in

36

let rec process otl aux () =

let e = input line chan in
res := e::!res;
process_otl aux() in

try process_otl aux ()
with End of file ->
let stat = Unix.close process in chan

in (String.concat "\n" (List.rev !res)), stat;

(* TODO delete this method - no longer needed *)

let test progress program program name program text =
printf "Test case (%s) START\n" program name;
compile program from string program name program text;

printf "Test case (%s) SUCCESS\n" program name;

let test progress program compare program name program text expected result =
printf "Test case (%s) START\n" program name;
compile program from string program name program text;
let program output, = syscall and collect output ("./" ~ program name ~ ".out") in
if program output = expected result
then printf "Test case (%s) SUCCESS\n" program name
else
(printf "Expected program output:\n[[[%s]]]\nbut was:\n[[[%$s]]]\n" expected result
program output;
raise (Failure ("Mismatched expectation and actual output. See previous messages"))

)

let test progress program expect exception program name program text =
try
printf "Test case (%s) START\n" program name;
compile program from string program name program_ text;
raise (Failure ("Expecting to throw an exception in this case for " ”~ program name))
with CompileException() -> printf "Test case (%s) SUCCESS: successfully caught the

expected exception!\n" program name;

r

let =

printf "Starting Test Suite:\n";

test progress program expect exception "testenum-duplicatevar" "
enum myenum
a, b, ¢, c
end enum
function int main ()
return 0

37

end function

test progress program expect exception

’

enum myenum

a, b, dupe

end enum

enum myenum2

dupe, e, f

end enum

function int main ()

return 0

end function

"o

test progress program expect exception

’

enum myenum

a, b, ¢, myenum2

end enum

enum myenum2

d, e, £

end enum

function int main ()

return 0

end function

test progress program expect exception

’

enum myenum

a, b, c

end enum

function int main ()

myenum el
el =6
return O

end function

test progress program expect exception

’

function int main ()

if 1 + 2 then
end 1if
return 0

end function

"o

test progress program expect exception

’

function int main ()

return true

end function

’

"testenum-duplicatevar2" "

"testenum-enum-var-conflict"

"testMismatchedAssignment" "

"testBadIfCondition" "

"testMismatchedReturnType" "

38

test progress program expect exception "testDupeFuncs" "
function int main ()
return 0
end function
function int main (int a)
return 0
end function

"o,
’

test progress program expect exception "testMissingMain" "
function int notAMain ()

return 0
end function

"o,
’

test progress program expect exception "testBadMainWithArgs" "
function int main (int arg)

return 0
end function

"o
’

test progress program expect exception "testMismatchedFunctionAssignType" "

function int main ()
boolean myvar
myvar = func?2 ()
return 0

end function

function int func2()
return 1

end function

"o,
’

test progress program compare "testBasicFunctionCallAndAssign" "
function int main ()
/// testing out comments work
int myvar = func2()
printLine (\"myvar=\" @ myvar)
return 0O
end function
function int func2 ()
return 1
end function

" "myvar=1 " ;

test progress program compare "testBasicStringConcat™ "
function int main ()
printLine (\"abc\" @ 123)

string mystring

39

mystring = \"abc\"
printLine (mystring)
mystring = \"abc\" @ \"do re mi\"
printLine (mystring)
printLine (\"abc\" @ \"do re mi\")
mystring = \"abc\" @ 123
printLine (mystring)
return 0O
end function
" "abcl23
abc
abcdo re mi
abcdo re mi
abcl23";

test progress program expect exception
function int main ()
boolean me = true
printLine (me @ 123)
end function

"o
’

test progress program expect exception
function int main ()

printLine (123 @ 123)
end function

"o,
’

test progress program expect exception
function int main ()
me ()

end function

function int me (int a)
return 0
end function

"o
’

test progress program expect exception
function int main ()

me (2)
end function

function int me ()
return 0
end function

"o,
’

test progress program expect exception
function int main ()

"testBadConcatWrongTypesl" "

"testBadConcatWrongTypes2" "

"testBadFunctionCallArgsMissingl" "

"testBadFunctionCallArgsMissing2" "

"testBadFunctionCallArgsWrongType" "

40

me (true)
end function

function int me (int a)
return 0
end function

"o,
’

test progress program compare "testOperatorAssociativity" "
function int main ()
int myint = (6 + 14) * 20
int myint2 = 6 + (14 * 20)
int myint3 = 6 + 14 * 20
printLine (\"test operator associativity \" @ myint @ \"-\" @ myint2 @ \"-\" @
myint3)
return 0O
end function
" "test operator associativity 400-286-286";

test progress program expect exception "testOpTypeMismatch" "
function int main ()

boolean comp = true and 1

return 0
end function

"o,
’

test progress program compare "testAndOr" "
function int main ()
if andTrue (0) then
printLine (\"Basic casel success\")
else
printLine (\"Basic casel failed\")
end if
if andFalse (0) then
printLine (\"Basic case2 failed\")
else
printLine (\"Basic case2 success\")
end 1if

if andTrue (0) and andTrue (1) and andTrue(2) then
printLine (\"case3 success\")

else
printLine (\"case3 failed\")

end 1if

if andTrue (0) and andTrue(l) and andFalse(2) then
printLine (\"case4 failed\")

else

printLine (\"case4 success\")
end 1if

if andFalse (0) and andTrue (1) and andTrue(2) then

printLine (\"case4.l - verify lazy evalution failed\")
else

printLine (\"case4.l - verify lazy evalution success\")
end 1if

if orFalse(0) or orFalse(l) or orTrue(2) then
printLine (\"case5 success\")

else
printLine (\"case5 failed\")

end 1if

if orTrue(0) or orFalse(l) or orFalse(2) then

printLine (\"case5.1 - verify lazy evalution success\")
else

printLine (\"case5.1 - verify lazy evalution failed\")
end 1if

if orFalse(0) or orFalse(l) or orFalse(2) then
printLine (\"case6 failed\")

else
printLine (\"case6 success\")

end 1if

if orFalse(0) or andTrue(l) and andTrue (2) then
printLine (\"case 7 ambiguous true\")
else
printLine (\"case 7 ambiguous false\")
end 1if

if (orFalse(0) or andTrue(l)) and andTrue(2) then
printLine (\"case 7.1 success\")

else
printLine (\"case 7.1 failed\")

end 1if

if orFalse(0) or (andTrue(l) and andTrue(2)) then
printLine (\"case 7.2 success\")

else
printLine (\"case 7.2 failed\")

end 1if

if andTrue (0) and andTrue(l) or orFalse(2) then
printLine (\"case 8 ambiguous true\")
else
printLine (\"case 8 ambiguous false\")
end 1if

42

if (andTrue(0) and andTrue(l)) or orFalse(2)
printLine (\"case 8.1 success\")

else
printLine (\"case 8.1 failed\")

end 1if

if andTrue (0) and (andTrue(l) or orFalse(2))
printLine (\"case 8.2 success\")

else
printLine (\"case 8.2 failed\")

end 1if

return 0

end function

function boolean andTrue (int a)
printLine (\"andTrue\" @ a)
return true

end function

function boolean andFalse (int a)
printLine (\"andFalse\" @ a)
return false

end function

function boolean orTrue (int a)
printLine (\"orTrue\" @ a)
return true

end function

function boolean orFalse (int a)
printLine (\"orFalse\" @ a)
return false

end function
" "andTruel

Basic casel success
andFalseO

Basic case2 success
andTrue0

andTruel

andTrue?2

case3 success
andTruel

andTruel

andFalse?2

case4 success
andFalse0

cased4.l - verify lazy evalution success
orFalse0

orFalsel

orTrue?

caseb5 success

then

then

43

orTruel

case5.1 - verify lazy evalution success
orFalse0

orFalsel

orFalse?2

case6 success
orFalse0

andTruel

andTrue?2

case 7 ambiguous true
orFalseO

andTruel

andTrue?2

case 7.1 success
orFalseO0

andTruel

andTrue?2

case 7.2 success
andTruel

andTruel

case 8 ambiguous true
andTruel

andTruel

case 8.1 success
andTruel

andTruel

case 8.2 success'";

test progress program compare "testIfElse" "
function int main ()
/* Ensure that only the first valid path is taken for these tests
(i.e. do not process subsequent paths even if the condition is successful */

if 1 == 1 then

printLine (\"Case 1 is good!\")
elseif 1 == 1 then

printLine (\"Don't print this!\")
elseif 1 == 1 then

printLine (\"Don't print this!\")
else

printLine (\"Don't print this!\")
end 1if

if false then

printLine (\"Don't print this!\")
elseif true then

printLine (\"Case 2 is good!\")
elseif true then

printLine (\"Don't print this!\")
else

44

printLine (\"Don't print this!\")

end 1if
if 1 == 555 then

printLine (\"Don't print this!\")
elseif 1 == 555 then

printLine (\"Don't print this!\")
elseif 1 == 1 then

printLine (\"Case 3 is good!\")
else

printLine (\"Don't print this!\")
end if
if 1 == 555 then

printLine (\"Don't print this!\")
elseif 1 == 555 then

printLine (\"Don't print this!\")
elseif 1 == 55 then

printLine (\"Don't print this!\")
else

printLine (\"Case 4 is good!\")
end if
return 0O

end function

" "Case 1 is good!
Case 2 is good!
Case 3 is good!
Case 4 is good!"™;

test progress program expect exception "testBoardWrongRowColCount" "
enum myenum
a, b, ¢
end enum
enum myenum2
d, e, £
end enum
function int main ()
board<myenum> myboard
myboard = {
aaaa
b b
cccc
}
/* todo validate the enum types */
board<myenum> myotherboard
end function

L1
’

test progress program compare "testRegexp" "
enum myenum
aa, bb, cc
end enum
function int main ()
string input = \"__ abcl23def __ \"

if input ~= \"[a-z]*([0-9]+) ([a-z]*)\" -> string inputA, string inputB then
printLine (\"#1 I made it in with these values \" @ inputA @ \"-\" @ inputB)

else
printLine (\"I did not make it \")
end if
if input ~= \"[0-9]+([a-z]*)\" -> string inputA then
printLine (\"#2 My string value is \" @ inputA)
else
printLine (\"I did not make it \")
end 1if

if input ~= \"[5-9]+([a-z]*)\" -> string inputA then
printLine (\"Should not get to this point \")

elseif input ~= \"([0-9]+) ([a-z]*)\" -> int numberA, string inputB then
printLine (\"#3 Made it with this value \" @ (numberA + 100) @ \"-\" @ inputB)
end 1if
return 0

end function

" "#1 I made it in with these values 123-def
#2 My string value is def
#3 Made it with this value 223-def";

test progress program compare "testLogic" "
enum myenum
aa, bb, cc
end enum
function int main ()
int intl =5
string strl = \"abcd\"
printLine (\"equality int-\" @ (intl == 5))
printLine (\"equality int false-\" @ (intl == 6))
printLine (\"inequality int-\" @ (intl != 6))

(

(

(
printLine (\"equality string const-\" @ (strl == \"abcd\"))
printLine (\"equality string const false-\" @ (strl == \"zzzzabcd\"))
printLine (\"equality string dynamic-\" @ (strl == (\"ab\" @ \"cd\")))
printLine (\"inequality string dynamic-\" @ (strl !'= (\"zzzab\" @ \"cd\")))
return 0O

end function

46

"equality int-true

equality int false-false
inequality int-true

equality string const-true
equality string const false-false
equality string dynamic-true
inequality string dynamic-true";

test progress program compare "testWhile" "

function int main ()

int 1 = 0
while i < 5 do
int sameattrname = 999

print (i @ \"-\" @ sameattrname @ \" \")
i=1i+1

end while

i =20
while 1 < 0 do

print (\"This should never get called\")
end while

printLine (\"!\")

i=0
while i < 3 do

int j
3 =20

while j < 2 do
print (\"j\")
j=3+1

end while

/* show that the variable scope is kept within the block */
int sameattrname
sameattrname = 333
print (i @ \"-\" @ sameattrname @ \" \")
i=1+4+1
end while

return 0
end function
" "0-999 1-999 2-999 3-999 4-999 !
330-333 jj1-333 jj2-333 ";

test progress program compare "testFor" "
function int main ()

int 1
for 1 = 0; 1 < 5; 1 =1 + 1 do

int sameattrname = 999

print (i @ \"-\" @ sameattrname @ \" \")
end for
for i = 0; 1 <0; 1i =1+ 1 do

print (\"This should never get called\")

end for
printLine (\"!\")

for i = 0; 1 < 3; i =1 + 1 do

int j
for 3 = 0; 31 <2; J =73+ 1 do
print (\"j\")
end for

/* show that the variable scope is kept within the block */
int sameattrname

sameattrname = 333

print (i @ \"-\" @ sameattrname @ \" \")

end for

return 0O
end function
" "0-999 1-999 2-999 3-999 4-999 !
330-333 jj1-333 jj2-333 ";

test progress program expect exception "testLoopsNestedScopeVarFail" "
function int main ()
int 1 = 0
int 3 =0
while i < 5 do
int sameattrname
sameattrname = 999
while j > 5 do
int sameattrname /* this should throw a compile exception */
sameattrname = 998
end while
end while
return 0
end function
test progress program compare "testBoardDiffSize" "
enum Piece
r, b, B, R, o

end enum

function int main ()

O U O O O KB O
o O U O O O H~

board<Piece> myboard2 = {

ror or or or
Or orororo
r or or or or
0O 00 O0OO0OO0O0OO0O
0O 0O 0O0O0OO0O0OO0OO
obobobobo
bobobobob
obobobobo

}
printBoard Piece (myboard?2)
return 0

end function

" "rorororor

O U O O O KB O
o O U O O O H~
O U O O O KB O
o O U O O O R
O U O O O KB O

o O U O O O H~
O o O O O KB O

test progress program compare "testBoardAndFuncCalls™ "
enum myenum
aa, bb, cc
end enum
enum myenum2
dd, ee, ff

end enum

function int main ()
board<myenum> myboard = {
aa aa aa bb
bb bb bb cc
cc cc cc aa
}
printLine (\"Board 1!\")
printBoard myenum (myboard)

board<myenum2> myotherboard = {
dd dd dd ee
ee ee ee ff
ff £ff £f dd
}
printLine (\"Board 2!\")
printBoardWithMyFunction (myotherboard, 5, 6)

myenum testvar = myboard[l, 1]
printLine (\"Board has \" @ myboard.rowlength @ \" rows and \" @ myboard.collength

49

@ \" COlS\")

printLine (\"Hello my enum value is \" @ testvar @ \".
printLine (\"Hello my enum value is \" @ myboard[l, 1]

myboard[l, 1] = bb

printLine (\"Hello my enum value is \" @ myboard[l, 1]

myenum2 myreadenum = parseEnum myenum2 (\"ee\")

printLine (\"I just read in \" @ myreadenum)

return 0

end function

function int printBoardWithMyFunction (board<myenum2> myboard,

@ \ll-

That's 1it!\")
That's it!\")

\". That's 1it!\")

printLine (\"My new function with \" @ varl @ \" and \" @ var2)

printBoard myenum2 (myboard)
return 0
end function
" "Board 1!
aa aa aa bb
bb bb bb cc
cc cc cc aa
Board 2!
My new function with 5 and 6
dd dd dd ee
ee ee ee ff
ff £ff £ff dd
Board has 3 rows and 4 cols
Hello my enum value is aa. That's it!
Hello my enum value is aa. That's it!
Hello my enum value is bb. That's it!
I just read in ee";

printf "Finished all test cases - we have a success!\n";

8.3 Full Source Code Listings

(********************* ast.ml *********************)

open Printf

exception CompileException of string;;
exception ParseException of string;;
exception CriticalCompileException of string;;

type op = Add | Sub | Mult | Div | Equal | Neg | Less | Leg
And | Or

r

type type id =

Greater

int varl,

Geqg

int var2)

Concat

50

| SimpleTypelId of string
| GenericTypeld of string * type id

type var decl = { vtype : type id; vname : string; }

rrs

type expr =
IntLiteral of int
StringlLiteral of string
BooleanLiteral of bool
BoardLiteral of string list list
Id of string

|

|

|

|

| Binop of expr * op * expr

| MatrixOp of expr * expr * expr
| ClassOp of expr * string

| Assign of expr * expr

| Call of string * expr list

| RegexpMatcher of expr * expr * var decl list (* both expressions should evaluate to
strings *)

r

type stmt =
Block of stmt list
Expr of expr
Return of expr
If of expr * stmt * (expr * stmt) list * stmt
For of expr * expr * expr * stmt

|
|
|
|
| While of expr * stmt
| VarDecl of var decl

| VarDeclAndAssign of var decl * expr
| NoOpStmt

type func decl =

{rettype : type id;

fname : string;

params : var decl list;

body : stmt list; (* TODO make the body a stmt so that we can limit it to be a block
early on ¥*)

}

type enum decl = {
ename : string;

ids : string list;

51

type program = enum decl list * func decl list

rrs

(* Corresponds to a reference to be used in the 3-address code generation
The code name would represent some snippet of C (whether a variable name
or a literal) that can directly be plugged in anywhere

*)

type reference =
{ref type : type id;
code name : string;

}

(***********
* Semantically-analyzed syntax tree (i.e. SAST data structures)
*)
type sast _expr = { e : sast expr detail; etype : type id; eref : string }
and sast expr detail =
SastIntLiteral of int
SastStringlLiteral of string
SastBooleanLiteral of bool
SastBoardLiteral of int * int * sast expr list list
SastId of string
SastMatrixOp of sast expr * sast expr * sast expr

|
|
|
|
|
| SastBinop of sast expr * op * sast expr
| SastClassOp of sast expr * string

| SastAssign of sast expr

| SastCall of string * sast expr list

| SastRegexpMatcher of sast expr * sast expr * var decl list * reference list (* both

expressions should evaluate to strings *)

rrs

type sast stmt =
SastBlock of sast stmt list
SastExpr of sast expr
SastReturn of sast expr
SastIf of (sast expr * sast stmt) list * sast stmt
SastFor of sast expr * sast expr * sast expr * sast stmt

SastVarDecl of string * reference

|

|

|

|

| SastWhile of sast expr * sast stmt

|

| SastVarDeclAndAssign of string * reference * sast expr
|

SastNoOpStmt

52

(****

type

let

khkkkhkAkhAk kA Kk Kk kA Ak kKK boredgame ml *********************)

action = Console | File

let action,

filename =

if Array.length Sys.argv > 1
then

else raise(Failure("Pass in -c for console or -f fileName for the file"))

(let input = List.assoc Sys.argv.(l) [("-c", Console); ("-f",

input, Sys.argv.(2)

)

match action with

Console ->

let lexbuf = Lexing.from channel stdin in
Compile.compile program from lexbuf filename lexbuf
File ->

let lexbuf = Lexing.from channel (filename »~ ".game")) in

(open_in

Compile.compile program from lexbuf filename lexbuf

(********************* COdegenerator.ml *********************)

open
open
open

Ast;;
Printf;;
Common; ;

let type to codetype = function

| SimpleTypeld(simp type) ->

| GenericTypelId (gentype,

enum

(match simp type with
| "boolean" -> "bool"
| "string"™ -> "const char*"
| any -> any
)
paramtype) ->
(match gentype with
| "board" -> "struct board"

| "enum" -> "const char*"

File)

]

in

in

| -> raise(CompileException("No other generic type allowed other than board or

: " 7 gentype))
)

op_to string = function
Add -> "+"

Sub -> "-"

Mult -> "*"

53

Div -> "/"

And -> "&&"
Concat -> raise(CompileException ("concat is not implemented via this methodology"))

|

| Equal -> "=="
| Neq -> "!="

| Less -> "<"

| Leg -> "<="

| Greater -> ">"
| Geg —-> ">="

| Or => "||"

|

|

(* emits the format value to use for the printf function on the C side *)
let type to print format for concat sexpr =

if type is of type "int" sexpr.etype then "%d", sexpr.eref

else if type is of type "string" sexpr.etype then "%s", sexpr.eref

else if type is of type "enum" sexpr.etype then "%s", sexpr.eref

else if type is of type "boolean" sexpr.etype then "%s", (sprintf " (%s ? \"true\"
\"false\")" sexpr.eref)

else raise (CompileException("No other type than string or int supported for
concatenation:" * (type id to string sexpr.etype)));

r

(*
print out the 3-address code to generate the values for a particular expression
You will note that some of the blocks won't do anything. This is because the eref
value itself already
has the full informatio to represent the value (e.g. the literal in code, or the

variable name)

For the others, it is the responsibility of this method to emit the code to set the
value for the
sexpr.eref value that is passed into here
*)
let rec print sast expr out sexpr =
match sexpr.e with
| SastIntLiteral(l) -> ();
| SastStringLiteral(l) -> ();
| SastBooleanLiteral (l) -> ();
| SastBoardLiteral (numrows, numcols, board elems) ->
fprintf out "const char* $sArray[%d];\n" sexpr.eref (numrows * numcols);
for row = 0 to numrows - 1 do
for col = 0 to numcols - 1 do
let elem = List.nth (List.nth board elems row) col in
fprintf out "$sArray([%d] = %$s;\n" sexpr.eref (calc matrix to array index row

col numcols) elem.eref;

54

done
done;

fprintf out "struct board %s;\n" sexpr.eref;

fprintf out "%$s.boardarray = %$sArray;\n" sexpr.eref sexpr.eref;
fprintf out "$s.rowlength = %d;\n" sexpr.eref numrows;
fprintf out "%$s.collength = %d;\n" sexpr.eref numcols;
| SastId(id) -> ()
| SastMatrixOp (board, row, col) -> () (* the code earlier already did the 3-address

code encompassing *)
| SastClassOp (classexpr, member name) ->
if not (type is of type "board" classexpr.etype)
then raise (CompileException ("Dot operator can only be used on classes (e.g.
board) ")) ;

(match member name with

| "rowlength" -> fprintf out "%s %s $s.rowlength;\n" (type to codetype
sexpr.etype) sexpr.eref classexpr.eref;
| "collength"™ -> fprintf out "%s %s = %s.collength;\n" (type to codetype
sexpr.etype) sexpr.eref classexpr.eref;
| -> raise(CompileException("No other field names supported for the board
class"))
)
| SastRegexpMatcher (input, regexp, vars, var refs) ->
print sast expr out input;
print sast expr out regexp;
fprintf out "bool %s;\n" sexpr.eref;
fprintf out "char %s_groups[MAX MATCHING GROUPS] [MAX STRING SIZE];\n" sexpr.eref;
List.iter
(fun var ref -> match (type to base type var ref.ref type) with
| "string" -> fprintf out "char* %s; // local regexp var\n" var ref.code name;
| "int" -> fprintf out "int %s; // local regexp var\n" var ref.code name;
| "enum" -> fprintf out "%s %s; // local regexp var\n" (type to codetype
var _ref.ref type) var ref.code name;
| -> raise(CompileException("Do not support binding regexp params to any
other type than string, int, enums"));
) var refs;
fprintf out "int %s_val = compare regexp(%s, %s, %s_groups);\n" sexpr.eref
input.eref regexp.eref sexpr.eref;
fprintf out "if (%s_val > 0) {\n" sexpr.eref;

fprintf out "%s = true;\n" sexpr.eref;
for refnum = 0 to (List.length var refs) - 1 do
let var ref = List.nth var refs refnum in

match (type to base type var ref.ref type) with

| "string" -> fprintf out "%$s = $s_groups[%d + 1];\n" var ref.code name
sexpr.eref refnum;

| "int" -> fprintf out "%s = atoi(%s groups[%d + 1]);\n" var ref.code name
sexpr.eref refnum;

| "enum" -> fprintf out "%s = parseEnum $%s(%s_groups[%d + 1]);\n"
var ref.code name (type id to string (type to generic subtype var ref.ref type))
sexpr.eref refnum;

| -> raise(CompileException("Do not support binding regexp params to any

55

other type than string, int, enums"));

done;
fprintf out "} else if (%s_val == 0) {\n" sexpr.eref;
fprintf out "%s = false;\n" sexpr.eref;

fprintf out "} else {\n";
fprintf out "printf (\"Regexp did not compile. This is a runtime exception\");
exit (-1);\n";
fprintf out "}\n";
| SastBinop(el, op, e2) ->
print sast expr out el;
(match op with
| Concat ->
(print sast expr out e2;
fprintf out "char %s[1001];\n" sexpr.eref;

let elprintformat, elval = type to print format for concat el in
let eZprintformat, e2val = type to print format for concat e2 in
fprintf out "snprintf(%s, 1000, \"%s%s\", %s, %s);\n" sexpr.eref elprintformat

ezprintformat elval e2val
)i
| Equal ->
print sast expr out e2;

if type is of type "string" el.etype

then
(fprintf out "int %$sCmpVal = strcmp (%s, %s);\n" sexpr.eref el.eref e2.eref;
fprintf out "bool %s = %$sCmpVal == 0;\n" sexpr.eref sexpr.eref;

)
else fprintf out "%s %s = %$s %s %s;\n" (type to codetype sexpr.etype)
sexpr.eref el.eref (op to string op) e2.eref;
| Neq ->
print sast expr out e2;

if type is of type "string" el.etype

then
(fprintf out "int %sCmpVal = strcmp(%s, %s);\n" sexpr.eref el.eref e2.eref;
fprintf out "bool %s = %$sCmpVal != 0;\n" sexpr.eref sexpr.eref;
)

else fprintf out "%s %s = %s %s %s;\n" (type to codetype sexpr.etype)

sexpr.eref el.eref (op to string op) e2.eref;
| And ->
(* For And and Or, we take care to do lazy-evaluation, i.e. to ensure that we
only evaluate the code
generated for the second expression if it is warranted. For And, we break
off early if
the first arg is false, and for Or, we break off early if it is true *)
fprintf out "%s %s;\n" (type to codetype sexpr.etype) sexpr.eref;
fprintf out "if (%s == false) { %s = %s; } " el.eref sexpr.eref el.eref;
fprintf out "else {\n";
print sast expr out e2;
fprintf out "%$s = %s %s %$s;\n" sexpr.eref el.eref (op to string op) e2.eref;
fprintf out "}\n";
| Or —>

56

fprintf out "%s %s;\n"
"if

"else {\n";

fprintf out (%$s == true) {
fprintf out
print sast expr out e2;
fprintf out "%$s = %s S$s
fprintf out "}\n";

| ->

%s;\n"

print sast expr out e2;

i u %s %$s = %s %s %s;
fprintf out "%s %s %s %s %s;\n"

el.eref

)
| SastAssign(e) ->

(op_to string op) e2.eref;

print sast expr out e;

(type to codetype sexpr.etype)

sexpr.eref;

$s = %s; }

sexpr.eref el.eref (op to string op)

(type to codetype sexpr.etype)

fprintf out "%s = %$s;\n" sexpr.eref e.eref;

| SastCall (id, exprs) ->
let args = String.concat ", " (List.map (fun e -> e.eref) exprs) in
List.iter (print sast expr out) exprs;

fprintf out "%s %s = %s(%s);\n"

let rec print sast stmt out input stmt =
| SastNoOpStmt -> ()
| SastBlock (stmts) ->
fprintf out "{\n";

(type to codetype sexpr.etype)

match input stmt with

List.iter (print sast stmt out) stmts;
fprintf out "}\n";
| SastVarDecl (vname, idref) ->
fprintf out "%$s %s; // for var $s\n" (type to codetype idref.ref type)
idref.code name vname;
| SastVarDeclAndAssign (vname, idref, expr) ->

print sast expr out expr;
fprintf out "%s %$s = %s; // for var
idref.code_name expr.eref vname;
| SastExpr(e) —->
print sast expr out e;
| SastReturn (e) ->
print sast expr out e;
fprintf out "return %s;\n" e.eref;
| SastIf(conds, s2) ->
let iflabel = get next tmp id () in
fprintf out "// Start of if-else bloc
List.iter
(fun stmt) ->
print sast expr out expr;

(expr,

fprintf out "if (%s) {" expr.eref
print sast stmt out stmt;

fprintf out "goto %s;\n" iflabel;
fprintf out "}\n";

) conds;

$s\n" (type to codetype idref.ref type)

k for %s\n" iflabel;

’

" el.eref sexpr.eref el.eref;

e2.eref;

sexpr.eref

sexpr.eref id args;

57

print sast stmt out s2;
fprintf out "%s:;\n" iflabel;
fprintf out "// End of if-else block for %s\n" iflabel;
| SastWhile (sexpr, sast stmt) ->
(* The order of operations of the while loop is modeled similarly to what was shown
in class,
where the condition statement was placed "after" the body of the while in the
generated code,
so that we have one less jump/goto method to execute *)
let label = get next tmp id () in
fprintf out "goto %$sCond;\n" label;
fprintf out "$sStart:;\n" label;
print sast stmt out sast stmt;
fprintf out "%sCond:;\n" label;
print sast expr out sexpr;
fprintf out "if (%s) {" sexpr.eref;
fprintf out "goto %$sStart;\n" label;
fprintf out "}\n";
| SastFor(el, e2, e3, s) ->
(* See the comment in the SastWhile block around how the condition/body of the for is
organized.
We do it in a similar way here *)
let label = get next tmp id () in
print sast expr out el;
fprintf out "goto %$sCond;\n" label;
fprintf out "%$sStart:;\n" label;
print sast stmt out s;
print sast expr out e3;
fprintf out "%sCond:;\n" label;
print sast expr out e2;
fprintf out "if (%s) {" e2.eref;
fprintf out "goto %$sStart;\n" label;
fprintf out "}\n";

(********************* common.ml *********************)
open Ast;;

open Printf;;

(* Stored as an array so that it can be mutable *)

let sast counter = [| O [];;

(* This is to get a new symbol for use in the 3-address code generation,
essentially the equivalent of getting new registers to store addresses in

We use an array to store this so that we have a globally-accessed variable for
this. It proved to be inconvenient at first to put this as a field on environment

58

and so the global variable proved to be flexible. We can change this one day if
we choose
*)
let get next tmp id () =
sast counter. (0) <- (sast counter. (0) + 1);

A

"tmp" (string of int sast counter. (0));

(************
* Type-helper methods
*)
let type type = SimpleTypeId("type");;
let function type = SimpleTypeId("function");;
let string type = SimpleTypeId("string");;
let int type = SimpleTypeId("int");;
let boolean type = SimpleTypelId("boolean");;

let rec type id to string = function

| SimpleTypelId(id) =-> id;

| GenericTypeld(gentype,paramtype) -> sprintf "%s<%$s>" gentype (type id to string
paramtype) ;

let type to base type t = match t with
| SimpleTypeId(id) -> id;

| GenericTypeld(gentype,) -> gentype
let type is of type t2name tl = (type to base type tl) = t2name;
let rec type to generic subtype = function

| SimpleTypelId(id) -> raise(CompileException ("Cannot access generic subtype of
SimpleType")) ;
| GenericTypeld(gentype,paramtype) -> paramtype;

(****

* The two methods for calculationg the array index.
* One 1is for Ocaml to the code, and one is for the ¢ code itself

* We keep them both here so that folks can easily see the logic in both places
*

* Note - we store as a regulary array in C, and not a 2D array, as it proved to be much

harder

* to get 2d arrays to work on the stack in C.

* *****)

59

let calc matrix to array index row col numcols =

row * numcols + col

(* We use the array reference directly for thee reference, as opposed to generating a new
address via get next tmp id,
as I could not come up w/ a 3-address code representation for array references that
worked for
both retrieval and storage. This way works out. In any case, the indexes themselves
are used in a 3-address-like manner
*)

let calc matrix to array index for c code board row col =

(* Use %$s - 1 here as we index matrices in the code by l-index, whereas C does it
O-indexed *)
sprintf "%s.boardarray[(%s - 1) * %s.collength + (%s - 1)]" board.eref row.eref

board.eref col.eref

rr

(********************* compile.ml *********************)
open Ast;;

open Printf;;

open Env;;

open Common; ;

open Saster;;

open Codegenerator;;

module StringMap = Map.Make (String);;

let initialize env with globals enums funcs =
let env = Env.create new () in
(* register some default types *)
let env = Env.add type env "int" int type in

let env Env.add type env "string" string type in
let env = Env.add type env "boolean" boolean type in

(* register some default functions *)

let env = Env.add func env {fname = "print"; rettype = int type; params =
[{vtype=string type; vname="str"}]; body = []} in

let env = Env.add func env {fname = "printLine"; rettype = int type; params =
[{vtype=string type; vname="str"}]; body = []} in

let env = Env.add func env {fname = "fail"; rettype = int type; params =
[{vtype=string type; vname="str"}]; body = []} in

let env = Env.add func env {fname = "readLine"; rettype = string type; params = [];
body = []} in

(* register the functions from our own code ¥*)

let env = (List.fold left Env.add enum) env enums in

let env = (List.fold left Env.add func) env funcs in

env

60

let process _enum out env enum =

List.iter

(fun id ->
let idref = (Env.lookup symbol env id) in
fprintf out "const char *%s = \"$s\";\n" idref.code name id

) enum.ids

let func signature for prototype func =

let var strs = List.map (fun var -> sprintf "%s %s" (type to codetype var.vtype)
var.vname) func.params in
sprintf "%s %s(%s)" (type to codetype func.rettype) func.fname (String.concat ", "

var strs);

rrs

let func signature env func =
let var strs = List.map
(fun var ->
let idref = Env.lookup symbol env var.vname in
sprintf "%s %s" (type to codetype var.vtype) idref.code name
) func.params in
sprintf "%s %s(%s)" (type to codetype func.rettype) func.fname (String.concat ", "
var_ strs);

r

let process function out env func =
let env = Env.assign cur func env func.fname in
let env = List.fold left
(fun env param -> Env.add var decl env param)
env func.params in
fprintf out "\n";
fprintf out "%s\n" (func signature env func);

(* Now we emit the code for the functions. We will have special handling here for those
functions that
have c-code already defined
*)
match func.fname with
| "print" -> fprintf out "{ printf (\"%s\", %s); return 0; } // special function\n"
"%s" (Env.lookup symbol env "str").code name
| "printLine" -> fprintf out "{ printf (\"%s\\n\", %s); return 0; } // special

function\n" "%$s" (Env.lookup symbol env "str").code name

| "fail™ -> fprintf out "{ printf (\"%s\\n\", %s); printf (\"Exiting due to
failure\"); exit(-1); return -1;} // special function\n" "%s" (Env.lookup_ symbol env
"str") .code name

61

| "readLine" -> fprintf out "{
char *myline;
myline = (char *) malloc(MAX STRING SIZE + 1);
size t nbytes = MAX STRING SIZE;
getline (&myline, &nbytes, stdin);
return myline;
// TODO handle memory cleanup
} // special function\n"
| fname ->
match func.body with
| [block] ->
(match block with
| Block(stmts) ->
let sast block, env = to sast stmt env block in
fprintf out "{\n";
print sast stmt out sast block;
fprintf out "printf (\"Runtime exception - no return defined in this path of
the code\"); exit(-2);}\n\n";
| -> raise (CompileException ("Function must only start with a block"))

| -> raise (CompileException ("Function must only start with a block"))

let process program program name env enums funcs =
let funcs = (List.map snd (StringMap.bindings env.func map)) in

A

let c file prefix = "zzzz "“program name in

let ¢ file = c_file prefix *~ ".c" in

A

let out file = program name ".out" in

let out = open out c file in

(* First, write out the contents of the code to a temporary file ¥*)
fprintf out "#include <stdio.h>

#include <stdlib.h>

#include <stdbool.h>

#include <regex.h>

#include <string.h>

#define MAX STRING SIZE 1024

#define MAX MATCHING GROUPS 5

struct board {
const char** boardarray;
int rowlength;
int collength;
bi

// credits on this code go to: http://stackoverflow.com/a/11864144
int compare regexp (const char* source, const char* regexString, char
groups[] [MAX STRING SIZE]) {

regex t regexCompiled;

62

regmatch t groupArray[MAX MATCHING GROUPS];

int foundGroups = 0;

if (regcomp (®exCompiled, regexString, REG _EXTENDED)) {
// Could not compile regular expression
return -1;

b

if (regexec(®exCompiled, source, MAX MATCHING GROUPS, groupArray, 0) == 0) {
unsigned int g = 0;
for (g = 0; g < MAX MATCHING GROUPS; g++) {

if (groupArray([g].rm so == (size t)-1)
break; // No more groups
foundGroups++;

char sourceCopylstrlen(source) + 1];

strcpy (sourceCopy, source);

sourceCopy [groupArray[g] .rm _eo] = 0;

strncpy (groups [g], sourceCopy + groupArray([g].rm so, 1024);

}

regfree (®exCompiled) ;

if (foundGroups > 0) {
foundGroups--; // this is because one of the groups in the method is the
full matched string itself
// if no groups were specified in the regexp, then this still returns 1.
Hence, we force it to 0,
// as no actual groups were found
}

return foundGroups;

List.iter (fun func -> fprintf out "%s;\n" (func_signature for prototype func)) funcs;
fprintf out "\n";

List.iter (fun enum -> process _enum out env enum) enums;

fprintf out "\n";

List.iter (fun func -> process function out env func) funcs;

close out out;

(* Now compile that C code to its final binary output ¥*)
(* Note that we throw a CriticalCompileException here if we fail. We segregate this
from the regular
CompileException, as a compilation failure in C code implies that we missed out on
some checks
here in the Ocaml code, and ideally our Ocaml code should always generate valid C
code (and if it
can't, it should throw the error before even trying to compile)

63

*)
let result = Unix.system (sprintf "/usr/bin/gcc %s -o %s" c_file out file) in
match result with
| Unix.WEXITED (exit code) ->
(match exit code with
| 0 -> printf "Compile executed successfully for program $%$s\n" program name;
| -> raise(CriticalCompileException (sprintf "Compile of c-code failed and
returned with exit code %d" exit code));

)

| _ -> ignore(raise(CriticalCompileException ("Unexpected process status"))):;

(* Here, we generate some functions specific for each enum
So far, we have:
1) parseEnum <enumName> to return an enum value given a string
2) printing out a board of enums
3) printing out a row of enums on a board ¥*)
let get enum functions enum =
let signature = sprintf "function %s parseEnum %s(string str)\n" enum.ename enum.ename
in
let body = List.fold left
(fun 1 id ->
let ifbody = sprintf "if str == \"%$s\" then\nreturn %s\nend if\n" id id in
ifbody :: 1
) [] enum.ids in

let body string = String.concat "\n" body in

let end sig = "end function\n" in
let printBoardFunc = sprintf "function int printBoard %s(board<%$s> myboard)
int row

for row = 1; row <= myboard.rowlength; row = row + 1 do
printBoardRow $%s (myboard, row)
end for
return 0
end function

function int printBoardRow %s (board<%s> myboard, int row)
int col
for col = 1; col <= myboard.collength; col = col + 1 do
print (myboard[row, col] @ \" \")
end for
printLine (\"\")
string dummy = \"\" /* This is only here to work around Eclipse syntax
highlighting issue.... */
return 0
end function

" enum.ename enum.ename enum.ename enum.ename enum.ename in

A A

signature ” body string end sig printBoardFunc

64

let parse program from lexbuf lexbuf =
let enums, funcs =
try Parser.program Scanner.token lexbuf
with Parsing.Parse error ->

let region text =

let start index = max (lexbuf.Lexing.lex start pos - 20) 0 in
let length =
if start index + 40 > String.length lexbuf.Lexing.lex buffer
then (String.length lexbuf.Lexing.lex buffer) - start index
else 40
in

String.sub lexbuf.Lexing.lex buffer start index length

in

(* need a separate printf from the raise-ParseException call, as Ocaml seems to cut

off the error message when shown via the raise call *)

printf "Found parsing error at character #%d on char %s in region\n[%s]\n"
lexbuf.Lexing.lex start pos
(Char.escaped (String.get lexbuf.Lexing.lex buffer lexbuf.Lexing.lex start pos))
region text

raise (ParseException ("Found parsing error - see previous log message"))

in

enums, funcs

let parse program from string program text =
parse program from lexbuf (Lexing.from string program text)

let compile program from lexbuf program name lexbuf =
let enums, funcs = parse program from lexbuf lexbuf in
let enumfuncs = List.fold left
(fun 1 enum ->
let , funcs = parse program from string (get enum functions enum) in
funcs @ 1
) [] enums in
let funcs = funcs @ enumfuncs in
let env = initialize env with globals enums funcs in
let main method =
try Env.lookup function env "main"
with Not found -> raise(CompileException ("Program must define a \"main\" method"))
in
if List.length main method.params <> 0
then raise (CompileException ("\"main\" methods must not have any args defined"));

process_program program name env enums funcs;

let compile program from string program name program text =

65

compile program from lexbuf program name (Lexing.from string program text);

(********************* env_ml *********************)
open Ast;;

open Printf;;

open Common; ;

module StringMap = Map.Make (String);;

(****************

* Root type definitions for the environment
***************)

type symbol table = { symbol map : reference StringMap.t }

rrs

type env =
{symbols : symbol table; (* store all symbols in this map for quick access, incl.
symbols for function names *)

func map : func decl StringMap.t; (* map for the function metadata *)
type map : type id StringMap.t; (* map for the type metadata *)
cur func name : string; (* The current function that is being processed for this

environment. Used during the code generation *)

}

let create new () =
{ func map = StringMap.empty; type map = StringMap.empty; symbols = { symbol map =
StringMap.empty }; cur func name = ""; }

rr

(****************

* Lookup methods to search the environment
***************)

let lookup function env id =
StringMap.find id env.func map

let lookup type env id =
StringMap.find id env.type map

let lookup symbol env id =
let rec lookup symbol table tab id =
if StringMap.mem id tab.symbol map

66

then StringMap.find id tab.symbol map
else raise (CompileException(sprintf "Could not find id reference [%$s] inside code
function [%s]" id env.cur_ func name))
in lookup symbol table env.symbols id

(****************

* Methods to facilitate type lookups to resolve type names to a unified

* form (e.g. converting enums classes like say MyEnum to enum<MyEnum>

***************)

let rec resolve type id env typeid = match typeid with
| SimpleTypeId(t) -> lookup type env t
| GenericTypeld(gentype, paramtype) ->
(* This is to handle the case where the type is already property resolved, e.g.
board<enum<myenum2>> should not resolve to board<enum<enum<myenum2>>>

for

This won't scale well for "pure" generics, but for our limited case, this should

work
*)
let resolved type = (resolve type id env paramtype) in
if (type id to string typeid) = (type id to string resolved type)
then typeid
else GenericTypeld(gentype, resolved type);

let resolve var decl env v =
{ vtype = resolve type id env v.vtype; vname = v.vname }

(****************

* Processing-specific methods to modify some state of the environment

* while functions are being processed

***************)

let assign cur func env func name=
{ func map = env.func map; type map = env.type map; symbols = env.symbols;
cur func name = func name }

r

(****************

* Methods to add symbols and other information to the environment

***************)

(* The core method to add symbols to an environment *)
let add symbol env symbol p ref type =
let add symbol to table table symbol p ref type =
if StringMap.mem symbol table.symbol map

67

~

then raise (CompileException ("Symbol already exists: " symbol))

else {symbol map = StringMap.add symbol { ref type=p ref type; code name="var"

get next tmp id () } table.symbol map;}
in
{func map = env.func map;
type map = env.type map;
symbols = add symbol to table env.symbols symbol p ref type;
cur func name = env.cur_ func name;

}

let add var decl env v =
let v = resolve var decl env v in

add symbol env v.vname v.vtype

let add type env typename typeval =
let env = add symbol env typename type type in
{func_map = env.func map;
type map = StringMap.add typename typeval env.type map;
symbols = env.symbols;
cur func name = env.cur func name;

}

(*
For enums, we register the enum itself as a type class, and all the enum
elements inside of it as symbols in the global environment
*)
let add enum env enum =
let enum type = GenericTypeld("enum", (SimpleTypelId(enum.ename))) in
let env = add type env enum.ename enum type in
let env = List.fold left (fun env enumid -> add symbol env enumid enum type)
enum.ids in

env

(*
We always resolve the type information prior to adding something to the
environment, as this makes the code generation logic easier to handle
*)
let add_func env func =
let func =
{rettype = resolve type id env func.rettype;
fname = func.fname;
params = List.map (fun p -> resolve var decl env p) func.params;
body = func.body} in
let env = add symbol env func.fname function type in
{func_map = StringMap.add func.fname func env.func map;

env

68

type map = env.type map;
symbols = env.symbols;

cur_ func name = env.cur func name;

}

(***********‘k*‘k*‘k*‘k*‘k* Makeflle ml *********************)

PARSER FILES = ast.ml parser.ml scanner.ml
PARSER_OBJS = ast.cmo parser.cmo scanner.cmo

COMPILE FILES = ${PARSER FILES} common.ml env.ml saster.ml codegenerator.ml compile.ml

COMMON FILES = unix.cmxa str.cmxa

created to compile

H H oW e

via ocamlopt

boredgame : $(PARSER OBJS)

ocamlopt -o boredgame.out ${COMMON FILES} ${COMPILE FILES} boredgame.ml

testcompile : $(PARSER OBJS)

ocamlopt -o testcompile.out ${COMMON FILES} ${COMPILE FILES} testcompile.ml

scanner.ml : scanner.mll

ocamllex scanner.mll

parser.ml parser.mli : parser.mly

ocamlyacc parser.mly

o

%$.cmo : %.ml
ocamlc -c $<

%$.cmi : %.mli

ocamlc -c $<

.PHONY : clean
clean

rm -f parser.ml parser.mli scanner.ml testall.log \

*.cmo *.cmi *.out *.diff *.c *.o *.cmx

Generated by ocamldep -native *.ml *.mli

ast.cmo:
ast.cmx:
boredgame.cmo: compile.cmx

boredgame.cmx: compile.cmx

NOTE - we need to rely on the OBJs as ocamlyacc and lex need the objects

We then still need to compile from the native sources when compiling

69

codegenerator.cmo: env.cmx common.cmx ast.cmx
codegenerator.cmx: env.cmx common.cmx ast.cmx
common.cmo: ast.cmx

common.cmx: ast.cmx

compile.cmo: scanner.cmx parser.cmi env.cmx ast.cmx
compile.cmx: scanner.cmx parser.cmx env.cmx ast.cmx
env.cmo: common.cmx ast.cmx

env.cmx: common.cmx ast.cmx

parser.cmo: ast.cmx parser.cmi

parser.cmx: ast.cmx parser.cmi

saster.cmo: env.cmx common.cmx ast.cmx

saster.cmx: env.cmx common.cmx ast.cmx

scanner.cmo: parser.cmi

scanner.cCmx: parser.cmx

testcompile.cmo: compile.cmx ast.cmx
testcompile.cmx: compile.cmx ast.cmx

parser.cmi: ast.cmx

khkhkkhkrkhkkrhkkhkkhkkkkkkkxk*k parser mly *********************)

(

{ open Ast %}

%$token SEMI LPAREN RPAREN LBRACE RBRACE COMMA NEWLINE
%token DOT

%$token ARROW MATCH

$token LBRACKET RBRACKET

%$token PLUS MINUS TIMES DIVIDE ASSIGN

%$token EQ NEQ LT LEQ GT GEQ

%token AT

%token AND OR

%$token RETURN IF THEN ELSE ELSEIF FOR WHILE END DO
$token FUNCTION ENUM

%$token <int> LITERAL

$token <string> STRINGLITERAL

Stoken <string> ID

%$token <bool> BOOLEANLITERAL

%token EOF

%nonassoc NOELSE
%nonassoc ELSE
%nonassoc ARROW MATCH
$nonassoc COMMA
Sright ASSIGN

%$left OR AND

$left EQ NEQ

$left LT GT LEQ GEQ
$left AT

%$left LBRACKET
%$left DOT

%left PLUS MINUS
%left TIMES DIVIDE

%$start program
ttype <Ast.program> program
stype <Ast.enum decl> enum decl

o©
oe

/* A general note to the instructor on the coding of the rules below, and specifically on
concatenating lists:

I explicitly am choosing to concatenate lists using the list concatenation @, instead
of a new head to another list

and then reversing the list when setting it to its final home

Though the concatenation is not tail-recursive and so less-efficient processing-wise,
it makes the code

easier to understand and debug, as I don't have to debug potential issues about the
order of the list that

results.

We can change this if performance is an issue (but per the notes in class, we don't
have to worry about performance
too much here

*/
program:
/* nothing */ { [], [] }
| program enum decl { (fst $1 @ [$2]), snd $1 }

| program fdecl { fst $1, snd $1 @ [$2] }
| program NEWLINE { $1 }

/*Note - this causes a shift-reduce conflict. We cannot avoid it w/ yacc as per various
commentary

on the web, such as this:
http://stackoverflow.com/questions/17114634/yacc-shift-reduce-conflict-when-parse-c-templ
ate-arguments

*/
type id:

| ID { SimpleTypeId($1) }

| ID LT type id GT { GenericTypeId($1, $3) }

fdecl:
| FUNCTION type_id ID LPAREN vdecl_list RPAREN NEWLINE stmt_list END FUNCTION NEWLINE
{ { rettype = $2; fname = $3; params = $5; body = [Block($8)]} }

71

enum decl:
| ENUM ID NEWLINE formal list NEWLINE END ENUM NEWLINE
{ { ename = $2; ids = $4 } }

vdecl:
| type id ID { { vtype = $1; vname = $2; } }

formal list:
| ID { [$1]
| formal list COMMA ID { $1 @ [$3] }

vdecl list:
/* nothing */ { 1
| vdecl { [$1] }
| vdecl list COMMA vdecl { $1 @ [$3] }

stmt list:
/* nothing */ { [] }
| stmt list stmt { $1 @ [$2] }

stmt:

| expr NEWLINE { Expr ($1) }

| RETURN expr NEWLINE { Return($2) }

| IF expr THEN NEWLINE stmt list elseifs %prec NOELSE END IF NEWLINE { If($2,
Block($5), $6, Block([])) }

| IF expr THEN NEWLINE stmt list elseifs ELSE NEWLINE stmt list END IF ({ If($2,
Block ($5), $6, Block($9)) 1}

| FOR expr SEMI expr SEMI expr DO NEWLINE stmt list END FOR NEWLINE
{ For($2, $4, $6, Block($9)) }
WHILE expr DO NEWLINE stmt list END WHILE NEWLINE ({ While ($2, Block($5)) }
vdecl NEWLINE { VarDecl ($1) }
vdecl ASSIGN expr NEWLINE { VarDeclAndAssign($1, $3) }
NEWLINE { NoOpStmt }

elseifs:
/* nothing */ { [] }
| elseifs ELSEIF expr THEN NEWLINE Stmtilist { $1 @ [($3, Block($6))1 }

id list:
| ID { [s11 }
| id_list ID { s1 @ [$2] }

72

id array:
| id list { [s1] 1}
| id array NEWLINE id list { $1 @ [$3] }

expr
| LITERAL { IntLiteral ($1) }
BOOLEANLITERAL { BooleanLiteral ($1) }
STRINGLITERAL { StringLiteral($1) }
LBRACE NEWLINE id array NEWLINE RBRACE { BoardLiteral ($3) }
D { Id(s1) }

expr LBRACKET expr COMMA expr RBRACKET { MatrixOp ($1, $3, $5) }
expr PLUS expr { Binop($1l, Add, $3)
expr MINUS expr { Binop($1l, Sub, $3)
expr TIMES expr { Binop($1l, Mult, $3)
expr DIVIDE expr { Binop($1l, Div, $3)
expr AND expr { Binop($1l, And, $3) }
expr OR expr { Binop($1, Or, $3) }

()}
expr NEQ expr { Binop($1l, Neq, $3) }
expr LT expr { Binop($1l, Less, $3) }
expr LEQ expr { Binop($1l, Leq, $3) }
expr GT expr { Binop($1l, Greater, $3) }
expr GEQ expr { Binop($1l, Geq, $3) }
expr AT expr { Binop($1l, Concat, $3) }
expr DOT ID { ClassOp($1, $3) }

expr ASSIGN expr { Assign($1l, $3) }
ID LPAREN actuals opt RPAREN { Call($1l, $3) }
LPAREN expr RPAREN { $2 }

|
|
|
|
|
|
|
|
|
|
|
| expr EQ expr { Binop($1l, Equal, $3
|
|
|
|
|
|
|
|
|
|
| expr MATCH expr ARROW vdecl list { RegexpMatcher ($1, $3, $5) }

actuals opt:
/* mothing */ { [] }
| actuals list { S1 }

actuals list:
expr { [$11 }
| actuals list COMMA expr { $1 @ [$3] }

(********************* saster.ml *********************)
open Ast;;

open Printf;;

open Env;;

open Common; ;

let op expected type = function
Add -> int type
Sub -> int type
Mult -> int type
Div -> int type
Equal -> boolean type
Neq -> boolean type

|

|

|

|

|

|

| Less -> boolean type

| Leg -> boolean type
| Greater -> boolean type
| Geg -> boolean type
| Or -> boolean type

| And -> boolean type
|

Concat -> string type

(*
Convert the incoming expression to a semantically-analyzed expression.
Tack on the autogenerated symbol reference if needed
*)
let rec to sast expr env expr = match expr with
| IntLiteral (l) ->
(* Note - this can be represented as a direct literal in C; hence, no need for the
get next tmp id *)
{e = SastIntLiteral(l); etype = int type; eref = string of int 1};
| BooleanLiteral (1) ->
(* Note - this can be represented as a direct literal in C; hence, no need for the
get next tmp id *)
{e = SastBooleanlLiteral (l); etype = boolean type; eref = string of bool 1};
| StringLiteral(l) ->
(* Note - this can be represented as a direct literal in C; hence, no need for the
get next tmp id *)
{e = SastStringLiteral(l); etype = string type; eref = sprintf "\"%s\"" 1};
| Id(id) ->
let idref = (Env.lookup symbol env id) in
{e = SastId(id); etype = idref.ref type; eref = idref.code name};
| BoardLiteral (array) ->
let numrows = List.length array in
if numrows = 0 then raise(CompileException ("Board must have >0 rows defined"));
let numcols = List.length (List.hd array) in
if numcols = 0 then raise(CompileException ("Board must have >0 columns defined"));
let idref = Env.lookup symbol env (List.hd (List.hd array)) in
let boardtype = idref.ref type in
if List.for all (fun 1 -> List.length 1 = numcols) array <> true then

raise (CompileException ("All rows of a board must have the same number of columns"));

let board elems =

74

(List.map (fun elems -> List.map
(fun id ->
let valexpr = to_sast expr env (Id(id)) in
if not(type is of type "enum" valexpr.etype) then raise(CompileException ("Only
enum types are allowed in a board"));
valexpr
) elems) array) in
(* The board literal is too complex to represent as a standalone literal in C, as we
did for int, boolean, string
Hence, we will use get next tmp id here for this *)
{e = SastBoardLiteral (numrows, numcols, board elems); etype = GenericTypeld ("board",
boardtype); eref = get next tmp id () };
| Assign (expr, e) ->
let exprtype, exprref =
(match expr with
| Id(id) -> let idref = Env.lookup symbol env id in (idref.ref type,
idref.code name)
| MatrixOp (boardexp, rowexp, colexp) -> let sast expr = to_sast expr env expr in
(sast _expr.etype, sast expr.eref)
| -> raise(CompileException("not yet ipmlemented for others"))
)
in
let rhs = to sast expr env e in
if rhs.etype = exprtype
then {e = SastAssign(rhs); etype = rhs.etype; eref = exprref}
else raise (CompileException(sprintf "args do not have matching types: LHS[%s] vs.
RHS[%s]" (type id to string exprtype) (type id to string rhs.etype)));
| MatrixOp (boardexp, rowexp, colexp) ->
let board = to_sast expr env boardexp in
let row = to sast expr env rowexp in
let col = to sast expr env colexp in
if not (type is of type "board" board.etype) then raise(CompileException("lhs in
matrix operation must be of type board; instead it was " * (type id to string
board.etype)));
if not (type is of type "int" row.etype) then raise(CompileException ("index operands

~

in matrix operation must be of type int; instead it was " (type id to string
row.etype)));

if not (type is of type "int" col.etype) then raise(CompileException("index operands

in matrix operation must be of type int; instead it was " * (type id to string
col.etype))):
let arrayref = calc matrix to array index for c code board row col in

{e = SastMatrixOp (board, row, col); etype = type to generic subtype board.etype; eref

= arrayref}
| ClassOp (expr, memberName) ->
let sexpr = to_sast expr env expr in

if not(type is of type "board" sexpr.etype) then raise(CompileException ("Dot operator
can only be used on classes (e.g. board)"));
let return type = match memberName with
| "rowlength" -> int type
| "collength" -> int type

75

| -> raise(CompileException("No other args than rowlength and collength are

supported"))
in
{e = SastClassOp (sexpr, memberName); etype = return type; eref = get next tmp id ()}
| RegexpMatcher (inputstr, regexpstr, vars) ->
let input = to sast expr env inputstr in

let regexp = to sast expr env regexpstr in
if input.etype <> string type then raise (CompileException("Input to regexp matching
operation must be a string"));
if regexp.etype <> string type then raise(CompileException ("Regexp in regexp matching
operation must be a string"));
(* the actual symbols (i.e. the 4th arg to SastRegexpMatcher) will be fixed later in
the If logic inside to sast stmt *)
{e = SastRegexpMatcher (input, regexp, vars, []); etype = boolean type; eref =
get_next_tmp_id ()}
| Binop(el, op, e2) ->
let sexpl = to_sast expr env el in
let tmpid = get next tmp id () in
let sexp2 = to_sast expr env e2 in
(match op with
| Concat ->
if sexpl.etype <> string type && sexp2.etype <> string type
then raise(CompileException("One of the types in a concatenation must be a

string"));
[=
if sexpl.etype <> sexp2.etype
then raise (CompileException ("Both sides of Binop need to evaluate to the same
type"));

)
{e = SastBinop (sexpl, op, sexp2); etype = op expected type op; eref = tmpid}
| Call (id, exprs) ->

let idref = Env.lookup symbol env id in

if idref.ref type <> function type

then raise (CompileException ("Attempting to make a function call on a non-function "
id));

let sexprs = List.map (fun expr -> to_sast expr env expr) exprs in

A

let func = Env.lookup function env id in
let numfuncargs = List.length func.params in
let numcallargs = List.length sexprs in
if numcallargs <> numfuncargs
then raise (CompileException(sprintf "Function mismatch in terms of # params passed
in. Func [%s] expects %d args, only received %d" func.fname numfuncargs numcallargs));
List.iter2
(fun fparam cexpr ->
let ftype = type id to string fparam.vtype in
let ctype = type id to string cexpr.etype in
if ftype <> ctype then raise(CompileException (sprintf "Mismatch in function types
to call of %$s for var %s [func-%s vs. call-%s]" func.fname fparam.vname ftype ctype));
)

func.params sexprs;

76

{e = SastCall(id, sexprs); etype = func.rettype; eref = get_next_tmp_id)}

let rec to _sast stmt env = function
| NoOpStmt -> SastNoOpStmt, env
| Block(stmts) ->
(* Note - for the statements in a block, we do want the environment changes from one
statement to carry
over to the next. Hence, we use fold left here ¥*)
let sast _stmts, env = List.fold left
(fun (sast stmts, env) stmt ->
let new sast stmt, new env = to sast stmt env stmt in
sast stmts @ [new sast stmt], new env
) ([1, env) stmts in
SastBlock (sast stmts), env;
| VarDecl (v) ->
let env = Env.add var decl env v in
let idref = Env.lookup symbol env v.vname in
SastVarDecl (v.vname, idref), env;
| VarDeclAndAssign (v, expr) ->
let env = Env.add var decl env v in
let idref = Env.lookup symbol env v.vname in
let sexpr = to sast expr env expr in
SastVarDeclAndAssign (v.vname, idref, sexpr), env;
| Expr(e) ->
(
let sexpr = to_sast expr env e in
match e with
| Assign(id, e) -> SastExpr (sexpr), env;
| Call (id, exprs) -> SastExpr(sexpr), env;
| -> raise(CompileException("No other expression type is allowed as a
statement")) ;
)
| Return(e) ->
let sexpr = to_sast expr env e in
let func = Env.lookup function env env.cur func name in
if sexpr.etype = func.rettype
then SastReturn (sexpr), env
else raise (CompileException(sprintf "Return statement value [%s] in function [%s]
does not match the return type of the function [%s]" (type id to string sexpr.etype)
func.fname (type id to string func.rettype)))
| If(e, sl, elseifs, s2) ->
let conds = (e, sl) :: elseifs in
let sast conds = List.fold left
(fun list (expr, stmt) ->
let sexpr = to sast expr env expr in
if sexpr.etype <> boolean type then raise (CompileException ("Clause of the
if-statement must have a boolean value"));
let sexpr, newenv = match sexpr.e with

7

| SastRegexpMatcher (input, regexp, vars,) ->
let newenv = List.fold left (fun env var -> Env.add var decl env var) env

vars in
let newrefs = List.map (fun var -> Env.lookup symbol newenv var.vname) vars
in
let newsexpr = { e = SastRegexpMatcher (input, regexp, vars, newrefs); etype =
sexpr.etype; eref = sexpr.eref } in

newsexpr, newenv;
| _ -> sexpr, env
(* no need to carry the environment over, as it will be in a block and any

newly-created variables would lose scope *)

in
let sast stmt, = to sast stmt newenv stmt in
list @ [(sexpr, sast stmt)];

) [] conds in
let sast stmt2, newenv = to sast stmt env s2 in
(SastIf (sast conds, sast_stmt2), env)
| While (expr, stmt) ->
let sexpr = to_sast expr env expr in
(* no need to carry the environment over, as it will be in a block and any
newly-created variables would lose scope *)
let sast stmt, = to sast stmt env stmt in

SastWhile (sexpr, sast stmt), env

| For(el, e2, e3, s) —>
let sexprl = to _sast expr env el in
let sexpr2 = to_sast expr env e2 in

let sexpr3 = to_sast expr env e3 in

let sast _stmt, @ = to sast stmt env s in

if sexpr2.etype <> boolean type then raise (CompileException ("2nd clause of the
for-loop declaration must return a boolean"));

SastFor (sexprl, sexpr2, sexpr3, sast stmt), env;

(********************* scanner mll *‘k*‘k*‘k*‘k*‘k*‘k*‘k*******)

{ open Parser }

rule token = parse

[[" " "\t'] { token lexbuf } (* Whitespace *)

| "\r'?'\n' { NEWLINE } (* Note - newlines are NOT just whitespace in the boredgame
language *)
| "/*ll
/"
[
!
[{!
|
|
|

comment lexbuf } (* Comments ¥*)
comment singleline lexbuf } (* Comments *)
LPAREN }
RPAREN }
LBRACE }
RBRACE }
DOT }

LBRACKET }

'}'

v

S P s P i

v[v

78

RBRACKET }

{

! { SEMI }
! { COMMA }
Tt { PLUS }
=1 { MINUS }
vxt { TIMES }
v/ { DIVIDE }
'@’ { AT }
=" { ASSIGN }
"=t { EQ }
m=n { NEQ }
r< { LT }
= { LEQ }
"> { GT }
n>=n { GEQ }
"and" { AND }
"or" { OR }
n>n { ARROW }
M=t { MATCH }
"if" { IF }
"then" { THEN }
"else" { ELSE }
"elseif" { ELSEIF }
"for" { FOR }

"do" { DO }
"while" { WHILE }
"return" { RETURN }

"end" { END }

"function" { FUNCTION }

"enum" { ENUM }

"true" { BOOLEANLITERAL (true) }
"false" { BOOLEANLITERAL (false) }

['0'-"9"]+ as 1lxm { LITERAL(int of string lxm) }
A" [ATATT]FAI\"" as 1xm { STRINGLITERAL (String.sub lxm 1 ((String.length 1xm)
['a'='z" '"A'-'Z']['a'-"z" 'A'-'Z'" '0'-'9" ' '1* as lxm { ID(lxm) }
eof { EOF }
__as char { raise (Failure(Printf.sprintf "illegal character %s at %d near %s"
(Char.escaped char)
lexbuf.Lexing.lex start pos
(String.sub lexbuf.Lexing.lex buffer

(lexbuf.Lexing.lex start pos - 5) 10)

)) 1}

and comment = parse

"k /" { token lexbuf }
{ comment lexbuf }

and comment singleline = parse

'"\r'?'\n' { token lexbuf }

{ comment singleline lexbuf }

- 2))

79

}

80

