Slang: A discrete event simulation
language










The Team
Olivia Byer

Maurici?d'staneda
Josh ltwaru
Dina Lamdany

Tony Ling




Motivation

Our goal was to create a language
that would allow the programmer to
simulate one-time and recurring
events. This framework exists for
hardware In languages such as
Verilog, and we wanted to expand
this model to apply to situations
such as queuing problems.




Overview

In Slang, the programmer can schedule
events at discrete times in an event queue
through the use of delay statements.
Additionally, the placement of statements in
Init or always blocks allows for both one-time
and recurring events.

Slang utilizes static scoping and is strongly
typed.

Tutorial
of a Slar

@:Prez



©:Prez

- Program Structure

Tutorial: Feature
of a Slang progre

« All programs must have a main

- User-defined functions can be declared above the main

- init and always blocks exist inside the main - init blocks
run once upon execution, while always blocks run on a

continuous loop

- Data Types and Variables

- Available data types are string, int, float, boolean, and
array. Void can also be returned by functions.

- Variables defined in main are global to init and always
blocks but must be passed into functions as parameters

- Programmatic Features

- for and while loops and if statements are all available
features, in c-like syntax

- Delay statements make program time move forward by
a specified integer amount

- Unary and binary operators are available, see manual

for specifications




functions declared above the main

-

func void helloworld(){
print("hello world");
}

main(){ ‘_ one main function per program

at least one init block
that runs once —> Imt{ . .
upon start up of the print("Welcome to the demo!");
program #2 An optional terminate
Terminate; ‘— statement to end program
execution

Delay statements }

that add time to always{ ‘_ always blocks which run
#1 on a loop until _

the program cloc
terminates

helloworld();




How to Compile and
Run a Slang Program

1) make clean

2) make

3) ./compiler < [path to your .sl file]
4) g++ output.cpp

5) ./a.out



Sample Program 1

func int fib(int n){

/* Base Case */
if(n==0){return 0;}
if(n==1){return 1;}

int prevPrev=0;
int prev=1;

int result=0; )
int i=2; This program accurately
S calculatgs the appropriate
for(i=2; i<=n; i++){ number in the fibonacci

fﬁgﬂﬁg\fﬁeﬂfﬂe‘fi sequence, but does not fully
Ere\,;resa,'f; ’ utilize all of the functionality

} of Slang

return result;

}

main(){
init{

#1
int fib=fib(7);
print(fib);




Sample Program 2

main(){
int prevPrev=0;
int prev=1;

int result=0;

init{ . ) . :
#7 print(result); This version of the same fibonacci
Terminate;

} program better utilizes init and
always blocks and the Terminate
[* Loop to calculate numbers*/ statement.

always{
#1

result=prev+prevPrev;
prevPrev=prev;
prev=result;




0 world", Datatype String))|)]

Compiler Architecture

S
S E C
Slang C Abstract M H
Source A Syntax A E
File Tokens Tree

s

Semantically
Checked Abstract
Syntax Tree

C++ Code Intermediate
Representation



Compiler Architecture

helloworld.sl

l Scanner and Parser

({1, ({1, [Init [Event (O, [Expr (StringLit "hello world™)])]]))

Semantic Check

Prog ([],

({,
[Sinit
[SEvent (0, [SSExpr (SStringLit ("hello world", Datatype String))])]

Compile



Compiler Architecture

Semantically Checked Program

Pretty C

Pretty_c.Pretty_c ([], [,
[Pretty_c.Time_block (Pretty_c.Link "init_0", [],
[Pretty c.Time_struct (Pretty_c.Time_struct_name "init_0_block_0", 0,
Pretty c.Link "init_0",
[SSExpr (SStringLit ("hello world", Datatype String))])],
Pretty _c.Main
([Pretty_c.Time_struct_obj (Pretty _c.Time_struct_name "init_0_block 0",
Pretty c.Link "init_0")],
[Pretty c.Link "init_0"], [1))




Compiler Architecture
Intemediate Representation from Pretty C

Code Generation

138 Lines of C++ Code generated from just 16 lines
of Slang Code




Lessons Learned

1) Communicate and delegate effectively so that no one is
doing duplicate work an so that people don't feel that they are
taking on all the work

2) Make sure you fully understand the basics. Do this by writing
code rather than just reading code

3) Test your code in small sections rather than being stuck with
a really confusing ocaml compiler error message that could
apply to any one of many lines of code

4) Start earlier than you think you should. Bugs in later sections
can lead to changes having to be made in earlier sections, so
you aren't necessarily done with a part even when you think
you are.







