
File and Directory Manipulation
Language (FDL)

Rupayan Basu rb3034@columbia.edu
Pranav Bhalla pb2538@columbia.edu
Cara Borenstein cjb2182@columbia.edu
Daniel Garzon dg2796@columbia.edu
Daniel Newman dln2111@columbia.edu

December 20, 2013

mailto:rb3034@columbia.edu
mailto:pb2538@columbia.edu
mailto:cjb2182@columbia.edu
mailto:dg2796@columbia.edu
mailto:dln2111@columbia.edu

Motivation

FDL
● File and Directory Manipulation Language (FDL,

pronounced “fiddle”) provides a simple and intuitive
syntax for managing file systems.

● Simple to code, simple to understand

Language Overview
● “path” datatype allows users to create variables using the

relative/absolute paths of files/directories
● “path” has built-in attributes: kind, name, type
● Special operators to copy/move files from one directory to another
● Users can iterate through files/subdirectories in a directory with a

unique for loop
● The built-in list data structure allows users to conveniently store

and access groups of files/directories.

Introduction to FDL
The following program copies a file from one specified location to a destination directory:

def int main()
path src = "./sample_dir/sample_file.pdf"

 path dest = "./test"
 dest <- src
 return 0
end

Within the main method, the path variable, ‘src’, is initialized to the file path of a file that we wish to copy. The file path of the
directory into which we wish to copy ‘src’ is stored in the path variable ‘dest’. The copy operator, ‘<-’ is then called, and a copy of
the src file will now exist in both the src location of the file system, as well as in the dest location.

Example
If we wish to do more than copy just one file, we can place the copy operation into a loop that iterates through a full directory,
moving all files in the source directory to a target directory, as follows:

def int main()
path src = "./sample_dir"
path dest = "./test"
path f
for (f in dir)

 print "file path "
 print f
 if (f.kind == 0) then
 print f
 dest <- f
 end

end
return 1

end

Architecture

Implementation
● Language features discussed and finalized

(Lists, Paths, For loops, No punctuation ;{)
● Basic Skeleton first, Scanner, Parser, AST and Code

Generator for “Hello World”
● Divided up features, kept code integrated by using Git

branches
● Kept adding test cases as we added features

Lessons Learned
● Learning Curve
● Typechecking
● TESTING!

○ testing the work of others
○ capturing all possible situations (copy, preprocessor..)

● Version Control (git), Coding with a Team
● Consistency system-system
● Design Decisions

Thank you

