CHIL

CSS HTML Integrated Language

Programming Languages and Translators Fall 2013

Authors:

Gil Chen-Zion gc2466
Ami Kumar ak3284
Annania Melaku amm?2324
Isaac White iaw2105

Professor:
Prof. Stephen A. Edwards

Contents

1 Introduction to CHIL
1.1 Background
1.2 Goals of CHIL
2 Language Tutorial
2.1 How To
2.2 First Example
2.3 Compiling and Running
2.4 More Examples
3 Language Reference Manual
3.1. LEXICAL CONVENTIONS
3.1.1 Comments
3.1.2 Primitive Types
3.1.3 Identifiers
3.1.4 Keywords
3.2 EXPRESSIONS
3.2.1 Operators
3.2.2 Increment Operators
3.2.3 Multiplicative Operators
3.2.4 Additive Operators
3.2.5 Inequality Operators
3.2.6 Comparison Operators
3.2.7 Logical Operators
3.2.8 Precedence
3.3 FUNCTIONS
3.3.1 Function Call
3.3.2 Recursion
3.3.3 Builtln Functions
3.4 DECLARATIONS
3.4.1 Variable Declaration
3.4.2 Function Declaration
3.4.3 Scoping
3.5 STATEMENTS
3.5.1 Conditional Statement
3.5.2 For Loop
3.5.3 While Loop
3.5.4 Return Statements
3.6 TYPE CONVERSIONS
3.7 WHITESPACE
3.8 OUTPUT
4 Project Plan
4.1 Team Responsibilities
4.2 Project Timeline
4.3 Software Development Environment
4.5 Project Log

10

19

4.6 Style Guide
5 Architectural Design,
5.1 Architecture
5.2 The Runtime Environment
5.3 Error Recovery
6 Test Plan
6.1 Goals
6.2 Hypothesis
6.3 Methods
6.3.1 Phase |
6.3.2 Phase II
6.3.3 Phase III
6.4 Tools
6.5 Implementation
6.5.1 Phase [
6.5.2 Phase I1
6.5.3 Phase III
7 Lessons Learned
7.1 Ami Kumar
7.2 Gil Chen-Zion
7.3 Annania Melaku
7.4 TIsaac White
8 Appendix
A CHIL Grammar -
B Code Style Conventions
B.1 General Principles
B.2 Documentation Comments
9 New Project
9.1. Example Programs
9.2.Tests
9.3. Language Tutorial
9.4 Language Grammar

21

22

29

31

45
45
46
48
49

Chapter 1

An Introduction to CHIL

The CHIL language is framed to help developers swiftly generate websites. CHIL allows the developer to
create functional, stylistic, and dynamic web pages through the mastery of only one language. This language
will combine both content and styling into a single language.

CHIL is designed to be a simple, efficient, abstracted mark-up language that is specifically aimed toward the
novice developer. The efficient aspect allows developers to simultaneously define structures and styling,
where styling is scoped within the structure. Furthermore, CHIL provides the ability to programmatically loop
through different types of element creation, or define more complex elements made up of basic types

provided by the language.

1.1 Background

Web design and programming are currently severely separated from one another by a divide in both skill set and
interests. Web design methods, particularly HTML and CSS, are only capable of producing custom written pages
according to the current web standards, which constrains programmers that are accustomed to writing extensible
code which can be reused. Though there are some current solutions to solve this problem (php for example) most
solutions don’t really solve the problem of reconciling the duality of css with more standard programming naming
conventions or design patters (ie, css properties use dashes, which wouldn’t be allowed in most programming
languages for variable names).

CHIL was created to try to bridge this gap. CHIL tries to simply model all possible html elements and styles by
defining them in general element objects that can be nested to emulate HTML divs with greater abstraction. CSS
properties can be applied to these abstracted elements either through pure css strings which will be placed into a
style section verbatim, or through user defined properties that have definitions with greater abstraction to benefit the
programmer.

The program aims to be different from PHP in the way that it both allows the programmer to pair and define CSS
styles programmatically, but also to have more abstract control over the rendering of the page. CHIL is designed to
allow for the abstraction away from specific tags that would be used in HTML instead to a single general type,
element, that has properties of type style, to represent applied CSS.

1.2 Goals of CHIL

CHIL allows a programmer with little knowledge of HTML or CSS to create webpages with advanced features the
would otherwise not access. It enables programmers to approach web design from a programming mentality and
create reusable programs to design websites. The language aims to simplify HTML programming by replacing the use
of tags by using general element type. In addition, programs in the language can include functions, types, and

looping, all impossible in HTML.

Chapter 2

Language Tutorial

CHIL essentially consists of el ements with properties defined by the programmer. These e Lements are added to
the global Page object via the add function and rendered to an html file with the built in toHtm1 function, which
can then be displayed on a browser. Other variables and functions can be declared and used to assist in building the
web page.

2.1 How To

2.1.1 Primitve Types
For how to implement primitive types, see Chapter 3 Language Reference Manual
2.2.2 Syntax

2.2.2.1 Type Casting

Datatypes:

int integer
string string
el element
Sfloat Sfloat
style style

All datatypes need to be type casted:

int 1 = 3

string s = “hello”

float £ = 3.0

el e = {

style: ${ @ .. css style properties .. will be ouputed as css

}
}

*See Sample Code

2.2.2.2 Features
Loops

Comments
Whitespace

Loops
While Loops

while (expr)
@ body of while loop
endwhile

*See Chapter 3
For Loops
int 1 = 0;

for (1 = 0; i < 4; i++)
@ body of loop
endfor

Comments

Singleline
@ A singleline comment
Multiline
@> A multiline
comment <@

Whitespace
*See Chapter 3 for more information

2.2.2.3 Built-In Functions
toHTML

stf

sti

fti

its

fts

toHTML
A function automatically utilized during compile which assigns elements their tag type, the CHIL programmer can

override the method to create a Page (tag types) that they want.

stf

float x = stf (“3”)
sti

int x = sti(“8”)
fti

float x = £fti(3.0)
its

string x = its(3)
fts

string x = fts(3.0)
*See Chapter 3 for function definitions

2.2.2.4 Conditionals
If
Else

if (condition)
@ body of if
else

endif

2.2.2.5 Reserved Words
Page.add

Page.add ({
@ body of Page.add
1)

2.2 First Example

The first program we wrote and tested in our language was Hello World. This consisted of adding an element to
the global Page type. Each element has properties contents and style. In this case, the contents property
includes the string “Hello, World!” which is printed out on the webpage. Below is code for the “Hello, World!”
program.

Page.add ({
contents: "Hello, World!"

b

@ Prints some htmlWrapper + <p>Hello, World!</p>

2.2 Compiling and Running

In order to compile this code, you would write:

$ chil test.ch

This creates an html file with the code for the website you want to create. You can view this website by opening the
file in a browser.

2.3 More Examples

CHIL also supports arithmetic operations. Programmers can define variables of type int, string, and float and
manipulate them by concatenation and other arithmetic operators. In the following example, an integer
totalValue is declared and set to 42. Then, an element, theAnswer, is defined with contents
totalValue and some style specifications, like having a bold font or a black background.

int totalvalue = 20 + 22

el theAnswer = {
contents: totalValue,
style: ${
css: "font-weight: bold; font-family: arial; font-size: 2rem;
color: white; background-color: black; display: block; box-sizing:
border-box; padding: .5rem; border: lpx dotted white; margin: lrem;"

}

Page.add (theAnswer)

The program produces the following html code:

<html>

<head>

<title>Addition</title>

<style type="text/css">

.theAnswer {font-weight: bold; font-family: arial; font-size: 2rem; color:
white; background-color: black; display: block; box-sizing: border-box;
padding: .5rem; border: lpx dotted white; margin: lrem;}

</style>

</head>

<body>

<p class="theAnswer">42</p>

</body>

</html>

The webpage produced has a “42” on the top left of the screen, surrounded by a black rectangle.

function.ch

This program prints three paragraphs on an HTML page.

fn testFunc(string param)
el someElement = {

contents: param

rtn someElement

endfn

el x testFunc ("element 1")

el y = testFunc("element 2")

el z testFunc ("element 3")
Page.add (x)
Page.add (y)

Page.add(z)

This program produces the following code:

<html>

<head>

<title>Function</title>

</head>

<body>

<p class="someElement">"element 1”</p>
<p class="someElement">"element 2”</p>
<p class="someElement">"element 3”</p>
</body>

</html>

Chapter 3

Language Reference Manual

3.1 LEXICAL CONVENTIONS

3.1.1 Comments

Multi-line comments begin with @> and end with <@. A single-line comment is preceded by @. The nesting of

comments is not allowed.

3.1.2 Primitive Types

Key Word Description

int non-decimal number

string sequence of characters

float decimal number

boolean true or false value

element fundamental container that can contain text or images

10

style characteristics of an element

array list of primitives of a single type

3.1.2.1 Integers

A data type consisting of whole number values.

Examples:
int x =5
int y = 0
int z = =20

3.1.2.2 Strings

A constant representing character strings.

Examples:
string x = “Hello World”

AN ”

string y = “abc

String Concatenation

Strings are combined using + operator.
Examples:

x = “Hello”

y = “World”

z = xty (“Hello World”)

or
7z = “Hello” + “World”

3.1.2.3 Floats

A numeric data type containing a decimal. Examples of floats are:
125.3

3.0
3.

3.1.2.4 Booleans

Booleans are incorporated in the use of boolean operators. The use of a boolean operator in comparison expressions
return one of two predefined constants: true or false.

Boolean operators used in comparisons:

==, !=, =<, =>, <, >

Examples:

x =3

y = 3

z = 1

X ==y (evaluates to true)
X >y (evaluates to false)
X > z (evaluates to true)
z =y (evaluates to true)
y => X (evaluates to true)
3.1.2.5 Elements

Elements are the fundamental container for any object which is intended to eventually be rendered as HTML. An
element's attributes determine which tag will eventually be associated with it.

Example:

someElementName = {
contents: “I'm an element.”,
style: ${
nameDeclaredByProgram: someValue
Hy
children:
@> children not provided here, since it often makes sense to
define them as another variable or add them on to defined

elements later via the someElementName.children[] = operator. <@

3.1.2.6 Styles

All elements have a property called style, which is provided without any allowed values. Page.addStyle() can be used
to add possible values to the list for allowed properties, which will tell the compiler that the keywords are permitted.

Styles are processed by by the Page.toHtml() method, which the programmer is responsible for providing. If no
Page.toHtml() method is set, then the compiler will use a provided fallback that is not accessible to the programmer. If
Page.toHtml() produces invalid output, the compiler will also fallback to the built in, inaccessible method. Style is
defined at the time of Element declaration, but styles may be added by referencing Element.style.someStyleName.
Style elements are declared with ${} syntax, using the equals operator.

Examples:

12

@>In this example, keywords have been previously provided by a standard

library<@

3pxBorderTop = ${
border: “top, 3px,solid”,
innerSpacing: “top, .25”7,
outerSpacing: “top ,.25”

3.1.2.7 Arrays

An array is a list of objects or primitive types. All elements of an array must be of the same type. Arrays can be
concatenated by using the + operator. Any array that is used in an addition operation will take precedence for
returning the output as an array. However, since arrays may contain only a single type, this operation may fail if not

used with matching types. Values can also be added to the end of the array using varName [] = someVal
Examples:

r = [] (initialize an empty array)

x = [“hello”, “world”] (array of Strings)

y = [42,34,42] (array of type int)

r[] = 34 @add 34 to the end of the r array

s = [42] @make a new array called s

z =1r + s

@> z = [34,42] <a

3.1.3 Identifiers

Identifiers consist of uppercase and lowercase letters, numbers, and underscore (_). The first letter cannot be a digit
or an underscore (_). Two different identifiers cannot have the same name.

3.1.4 Keywords

element
style
page
if
endif
else
elseif
for
endfor
rtn

fn
endfn
Page

13

3.2 EXPRESSIONS

3.2.1 Operators

Function Name

Description

assignment operator

increment and decrement

basic arithmetic operators

other arithmetic operations

power

factorial

comparison operators, by value

inequality operators, by value

o

modulus

N7

denotes a string

contains an expression

logical operators

3.2.2 Increment Operators

Increment and decrement are unary operators that work on a single integer. The increment operators follow an integer

value expression, as follows:

expr++

expr--
++ increment
-- decrement

3.2.3 Multiplicative Operators

The multiplicative operators are * and /. Both can be used on integer or float value expressions. Multiplication and

division operators are formatted as follows:

expr * expr
expr *= expr
expr / expr
expr /= expr

* multiplicaton
*— multiplication
/ divison

/= division

3.2.4 Additive Operators

The additive operators are + and -, and are also used on integer or float value expressions. The format of addition

and subtraction is similar to that of multiplication and division.

expr + expr
expr - expr
expr += expr

expr —-= expr
+ addition
+= addition
- subtraction
-= subtraction

3.2.5 Inequality Operators

Inequality operators compare two integer or two float expressions. The inequality operators are <, >,
>=. An expression with an equality has the following format:

expr < expr

< less than

> greater than

<= less than or equal to
>= greater than or equal to

15

3.2.6 Comparison Operators

Two integer or float operands can be compared by the operators == and ! =. For example:
expr == expr
expr != expr

== equal to

1= not equal to

3.2.7 Logical Operators

The two logical operators are && and | | . Two boolean value expressions can be combined by either AND or OR as
follows:
(3 < 4) && (4 < 5) evaluates to true
(3 >5) I (6 !=17) evaluates to false
&& and
|| or
3.2.8 Precedence

The following list shows the precedence of all the operators, from highest to lowest precedence:

Parenthesis

Increment operators
Multiplicative operators
Additive operators
Inequality operators
Comparison operators

Logical operators

3.3 FUNCTIONS

3.3.1 Function Call

Functions will be called by their identifier, with arguments specified in parenthesis and separated by commas.
Member functions will be called after an object and separated by a period. For example, for the function “func”:

16

func (1, 2)
a.func (1, 2)

3.3.2 Recursion

Recursive functions cannot be defined. No function can call itself recursively.

3.3.3 Built-in Functions

toHtml () converts the program into HTML. If no toHtml () is defined, a default toHtml () is used.
Otherwise, the new toHtml () is used for the conversion.

*for functions to convert types see Section 7. Type Conversions

3.4 DECLARATIONS

3.4.1 Variable Declaration

Variables are declared by their type and identifier and assigned values using =. Integers just include digits and floats
contain a single decimal point. Strings are identified by opening and closing quotes and arrays are denoted by
opening and closing square brackets. The following are examples of variable declarations:

string a = “Hello World”

int b = 42

string[] ¢ = [“hello”, “world”]
int[] d = [42,34,42]

string[] e = [al]

3.4.2 Function Declaration

Functions are declared by the keyword £n and an identifier, which is used to refer to the function throughout the
program. Parameters are passed to the function in parenthesis and separated by commas. The body of a function is
closed by the endfn keyword. The format of a function declaration is as follows:

fn identifier (parameter list)

@ body of function
endfn

3.4.3 Scoping

Variables declared within the program scope can be accessed by all functions in the file. Variables declared within a
statement (1 f or for) or function have a scope that lasts within the body of the statement or function, starting at
the variable declaration and ending at endif, endfor, or endfn.

17

3.5 STATEMENTS

3.5.1 Conditional Statement

An if statement begins with the i f keyword and ends with endi f. If is followed by a condition contained in
parenthesis. The body of the if statement is followed by endif, as follows:

if (condition)
@ body of if
endif

3.5.2 For Loop

A for loop starts with for and ends in endfor. for is followed by three expressions enclosed in parenthesis and
separated by semicolons. The first expression is evaluated before the body of the for loop. The body of the loop is

executed whenever the second expression evaluates to true. The last expression is evaluated after each iteration of

the loop. The format of the for loop is as follows:

for (expr; expr; expr)
@ body of loop
endfor

3.5.3 While Loops

The while loop starts with the reserved word while and ends with endwhile. An expr enclosed in parenthesis
follows the while. This expr is evaluated before the start of the loop and before every iteration of the loop. The
body of the loop is only executed if the expr evaluates to t rue.

while (expr)
@ body of while loop
endwhile

3.5.4 Return Statements

All functions return a data type using the rtn keyword. If the keyword is not included the function will return
undefined.

fn identifier (parameter list)
@ body of function
@ optional return statement
rtn type

endfn

18

3.6 TYPE CONVERSIONS

The following functions take one argument of the type they are converting from and return a value of the type they
are converting to:

stf string to float

itf int to float

fti float to int

sti string to int

its int to string

fts float to string
3.7 WHITESPACE

Whitespace in CHIL includes tabs, spaces, and comments.

Chapter 4

Project Plan

4.1 Team Responsibilities

All members of the team helped with coding and debugging. Annania and Ami also worked on the report, while Gil
and Isaac took care of testing.

Annania coding, debugging, report, powerpoint
Ami coding, debugging, report
Gil coding, debugging, testing, powerpoint
Isaac coding, debugging, testing

4.2 Project Timeline

9-16 Preliminary idea and basic functionality of language decided

9-20 Code conventions and language properties defined

9-25 Complete proposal

10-28 | Complete Language Reference Manual

11-17 | Complete Scanner & Parser

12-1 Complete Ast, Interpreter

12-9 Complete Bytecode, Makefile

12-13 | Write Test Cases

12-18 | Complete Final Report

4.3 Software Development Environment

Different team members used different software environments to develop this project. Some of us used sublime for
text editing, while others used vim. Similarly, we ran our programs either in Unix or Ubuntu. Also, we used the git
version control system to share our files and keep track of modifications.

4.4 Project Log

9-16 Preliminary idea and basic functionality of language decided

9-20 Code conventions and language properties defined

9-25 Project Proposal completed

10-28 | Language Reference Manual completed

11-3 Project initiated, syntax & types

11-10 | Parser & Scanner & understanding microc

11-17 | Ast, Interpreter, started

11-24 | sample Test Cases written

12-1 Execute, Compile, Bytecode started

12-10 | Testing & type casting

12-17 | Final Report, Parser, Interpreter, Ast, Execute, Compile, Bytecode

12-18 | Final Report, Parser, Interpreter, Ast, Execute, Compile, Bytecode

12-19

Final Report, Parser, Interpreter, Ast, Execute, Compile, Bytecode

12-20

PowerPoint, Final Report, Parser, Interpreter, Ast, Execute, Compile, Bytecode

4.6 Style Guide

Guidelines followed as closely as possible while programming our compiler:

+ Formatting and indents: tabs were used for scoping, methods were spaced out, within files names were defined

before use

* Comments and documentation: We preceded each method ofwith Ocaml comments describing

the code below.

Chapter 5

Architectural Design

5.1 Architecture

The architecture of our compiler includes a scanner, parser, abstract syntax tree, symbol table, interpreter,

intermediate bytecode, and final output. The scanner is a OCamllex file, the parser is a OCamlyacc file, and the rest of

the files are OCaml files. The scanner is in charge of lexical analysis of the file and separates the input stream from

the program into tokens. The parser then looks for semantic meaning in the tokens. Meanwhile, it continually updates

the symbol table. The abstract syntax tree contains the grammar of the language, which is unambiguous. The

interpreter defines how to evaluate statements and keeps track of the environment and side-effects while doing so.
The bytecode file takes the code and puts it in an intermediate bytecode. This bytecode eventually leads to the final

output of our compiler: an html file.

21

Abstract - _
Symbol Final

G -
Scanner *arser Zyntax e C
Scanne Parse : Table Interpreter Bytecode Output
ree

5.2 The Runtime Environment

Once the a CHL program is written and set to compile, the file is initially loaded. The compiler starts form the first
available statements and traverses the file sequentially rendering to a global Page state every time the add method
is called. The Page is finally output as an html file that can be viewed via a web browser.

5.3 Error Recovery

Error recovery in CHIL involves basic syntactical error handling. If a programmer’s code has any semantic or
syntactic inconsistencies with our language definitions, the compiler will throw an error and give the programmer a
brief insight on where the error could be or logically what type of error it is. For example, if a function is called but not
defined, our compiler gives a message saying, “undefined function,” followed by the name of the function. This not
only tells the programmer the nature of the problem but also the exact location of the mistake.

Chapter 6

Test Plan

6.1 Goals

22

Our testing plan, after having a code that compiled in OCaml, was to test as many aspects of our language as
possible in the smallest units we could in order to isolate what worked and what did not. By testing one thing at a
time, we could isolate errors and pinpoint specific incorrect parts in our program. Our goal was to have as much
properly working functionality as we could in our language in order to achieve its specific purpose.

6.2 Hypothesis

We hypothesized the most difficult part of the project would be parsing the st rings passed to the style
properties and types and converting them to html tags for our final output. However, most of our difficulties came
from adding types, other than ints, to our compiler.

6.3 Methods

Our first phase of testing occurred concurrent to our coding phase. After implementing each additional functionality
in our code, we ran test cases specific to that aspect of our language. At first, we focused on getting our test cases to
compile.

6.3.1 Phase 1

We first implemented our style of variable and function declaration, in addition to a basic integer type and basic
arithmetic operators. Our tests consisted of basic variable declarations within a function, then calling the function
after.

6.3.2 Phase 11

Then, we added more operators, in addition to the basic four: add, subtract, multiply, and divide. We first defined an
increment and decrement, and then included a modulus. We implemented conditionals and loops according to our
syntax. We tested increment in a for loop and tested the basic arithmetic operators within variable assignment.

6.3.3 Phase 111

In phase III, we attempted to implement additional types in our language, like strings, floats, booleans, and elements.

6.4 Tools

In order to run our tests, we had a testall file. We also individually ran tests when we were checking for specific
functionality.

6.5 Implementation

23

Our implementation phase consisted of our html code generating phase.

6.5.1 Phase 1

Our first goal with testing was to get “Hello, World!” to compile and send to an html file to be viewed on a browser.

Getting a basic program running would mean our functionality to generate html files was coded properly.
6.5.2 Phase 11

Phase II consisted of displaying other variable types on a webpage, in addition to adding style elements, like
background color and font.

6.5.3 Phase 111

Our final development phase was to create more complicated test cases incorporating all of the elements described
above.

6.5 Sample Program
*See Chapter 2

6.6 Automation

We used a Makefile and a testall.sh that allowed us to simulanteously test all cases based on microc but adapted for
CHIL testing.

Makefile

OBJS = ast.cmo parser.cmo scanner.cmo interpret.cmo bytecode.cmo compile.cmo
execute.cmo chil.cmo

TESTS = \
arithl
arith?
arith3
arith4
cool \
cooler \
fib \
forl \
funcl \
func2 \
func3 \
func4d \
mod \

gcd \
globall \
hello \
ifl \

~

24

incdec \
if2 \
if3 \
if4 \
opsl \
varl \
var2 \
var3 \
stmtsl \
whilel

TARFILES = Makefile testall.sh scanner.mll parser.mly \
ast.ml bytecode.ml interpret.ml compile.ml execute.ml chil.ml \
S(TESTS:%=tests/test-%.mc) \

S (TESTS:%=tests/test-%.out)

chil : $(OBJS)
ocamlc -o chil $(OBJS)

.PHONY : test
test : chil testall.sh
./testall.sh

scanner.ml : scanner.mll
ocamllex scanner.mll

parser.ml parser.mli : parser.mly
ocamlyacc parser.mly

%$.cmo : %$.ml
ocamlc -c $<

$.cmi : $.mli
ocamlc -c $<

chil.tar.gz : $(TARFILES)
cd .. && tar czf chil/chil.tar.gz $(TARFILES:%=chil/%)

.PHONY : clean

clean
rm —-f chil parser.ml parser.mli scanner.ml testall.log \
*.cmo *.cmi *.out *.diff

Generated by ocamldep *.ml *.mli
ast.cmo:

ast.cmx:

bytecode.cmo: ast.cmo
bytecode.cmx: ast.cmx

compile.cmo: bytecode.cmo ast.cmo
compile.cmx: bytecode.cmx ast.cmx
execute.cmo: bytecode.cmo ast.cmo
execute.cmx: bytecode.cmx ast.cmx
interpret.cmo: ast.cmo

25

interpret.cmx: ast.cmx

chil.cmo: scanner.cmo parser.cmi interpret.cmo execute.cmo compile.cmo \
bytecode.cmo ast.cmo

chil.cmx: scanner.cmx parser.cmx interpret.cmx execute.cmx compile.cmx \
bytecode.cmx ast.cmx

parser.cmo: ast.cmo parser.cmi

parser.cmx: ast.cmx parser.cmi

scanner.cmo: parser.cmi

scanner.cmx: parser.cmx

parser.cmi: ast.cmo

To run make:

make

or

make test

testall.sh

#!/bin/sh
CHIL="./chil"

Set time limit for all operations
ulimit -t 30

globallog=testall.log
rm -f $globallog
error=0

globalerror=0

keep=0
Usage () {
echo "Usage: testall.sh [options] [.mc files]"
echo "-k Keep intermediate files"
echo "-h Print this help"
exit 1
}
SignalError () {

if [Serror -eq 0] ; then
echo "FAILED"

26

error=1
fi
echo " S1"

Compare <outfile> <reffile> <difffile>
Compares the outfile with reffile. Differences, if any, written to
difffile
Compare () {
generatedfiles="S$generatedfiles $3"
echo diff -b $1 $2 ">" $3 1>&2
diff -b "$1™ "$2"™ > "S3" 2>&1 || {
SignalError "$1 differs"
echo "FAILED $1 differs from $2" 1>&2

Run <args>
Report the command, run it, and report any errors

Run () {
echo $* 1>&2
eval $* || {
SignalError "$1 failed on $*"
return 1
}
}
Check () {
error=0
basename="echo $1 | sed 's/.*\\///
s/.ch//""

reffile="echo $1 | sed 's/.ch$//'"
basedir=""echo $1 | sed 's/\/["\/]1*$//' /."

echo -n "$basename..."

echo 1>&2
echo "###### Testing S$basename" 1>&2

generatedfiles=""

generatedfiles="S$generatedfiles ${basename}.i.out" &&

Run "SCHIL"™ "—-4i" "<" $1 ">" ${basename}.i.out &&

Compare ${basename}.i.out ${reffile}.out ${basename}.i.diff
generatedfiles="S$generatedfiles ${basename}.c.out" &&

Run "SCHIL" "-c" "<" $1 ">" ${basename}.c.out &&

Compare ${basename}.c.out ${reffile}.out ${basename}.c.diff

Report the status and clean up the generated files

if [Serror -eq 0] ; then
if [Skeep -eq 0] ; then

27

rm -f Sgeneratedfiles

fi

echo "OK"

echo "###### SUCCESS" 1>&2
else

echo "###### FAILED" 1>&2
globalerror=$error
fi

while getopts kdpsh c; do
case $c in
k) # Keep intermediate files
keep=1
h) # Help
Usage
esac
done

shift “expr S$OPTIND - 1°

if [$% -ge 1]
then
files=3%@
else
files="tests/fail-*.ch tests/test-*.ch"
fi

for file in S$files
do
case S$file in
test-)
Check S$file 2>> S$Sgloballog
fail-x)
CheckFail $file 2>> $globallog
*)
echo "unknown file type $file"
globalerror=1
esac
done

exit S$globalerror

Chapter 7

28

Lessons Learned

7.1 Ami Kumar

By working on this project for the semester, I learned many helpful lessons. In terms of the coding aspect, I learned
the difficulty of seemingly simple tasks in terms of creating a compiler, such as adding types. In addition, I learned
the strengths and weaknesses of certain languages for different implementations. OCaml was difficult to pick up but
is much more concise than other languages in which I have coded, such as Java and C++.

For groups taking this course in the future, I would tell them to start as early as possible, and get help whenever they
spend too long trying to figure out one aspect of their compilers. The earlier they start, the earlier they will run into
problems and be able to ask someone for assistance instead of trying to figure everything out themselves. Over the
course of writing the program, I would suggest to test as often possible. Groups should tackle one function at a time
and test as soon as they are finished to see if they have implemented it correctly. Finally, if something is not working
in their code and they have spent much time and energy trying to fix it already, move on to something else and either
edit the vision for your language or come back to the error later.

7.2 Gil Chen-Zion

As I reflect on the work I have done for this assignment I really that I have learned a lot about language design as
well as group project organization. First, one concrete thing that I learned that I did not know before this project was
how to use a Makefile in order to compile my code. That process allowed for quicker speed when running and testing
the program. Furthermore, I learned how the greater process of language design all works into each other. The
process for making even a single change within the language requires edits within each and every file. One wrong
edit or change can cause errors. This sensitivity was difficult to troubleshoot because it wasn’t always easy to
pinpoint the problem and the hints were not always effective. Although we did not accomplish all that we had hoped,
we were still able to get a grasp and enhance the language to add key functionalities. The learning curve for Ocaml
was especially high. Consequently, we do understand that time management in this process was a crucial error that
we had. Not only was it time consuming to get an understanding of the larger picture of the language we wanted to
create but the actual code generation caused many more issues. This necessity for better understanding of the depth
of a project is crucial for me to utilize going forward at Columbia. Furthermore, as the group leader, learning how to
delegate tasks and build a language through a decisive “dictorship” is a crucial take away for me from this project.

7.3 Annania Melaku

Although we did not accomplish all that we set out to accomplish, there were several lessons that I will take away
from this experience. First and foremost, I realized that the most essential task is fully realizing what the project is in
terms of requirements and implementation. By that I mean that it is important that every member is on the same page
in how the language should work. Scheduling and time management are also necessary processes for the execution
of the project to be smooth and efficient. I learned it is better to allocate more time to each task than to underestimate
the amount of time needed for each step. For example, our biggest issue was type declarations which we assumed

29

would be a simple task and therefore did not foresee the intricacies of implementation. In relation to that, it is also
beneficial to find dependencies, meaning: which part of the project needs to be completed before another part can be
started. Finally, I learned that Ocaml, although powerful, as a language is an acquired taste.

For future projects the necessary steps:

e Figure out what the project is
e sct realistic goals and deadlines
o figure out dependencies
e test & debug as you go along, it is difficult to debug later, especially in Ocaml
e keep track of everything that is going on

7.4 Isaac White

I can't even begin to cover all the lessons I learned from working on this project, but the most important one was the
importance of starting early and not underestimating the complexity of the task of building the language. Specifically,
every group mentions in their lessons learned that you should start early, but I think that should be expanded upon

to discuss not just when to start but how to start.

The most helpful thing to do first is probably to get a thorough understanding of MicroC, the simplified language
provided by Professor Edwards. Not only will understanding this language help you understand how the general
pieces of the OCaml build system work, but it will also impress upon you how much functionality is left for you to
build since MicroC is so limited. Here I think it's important to note that MicroC is probably unlike the language you
want to build in one very important way: it only allows for one user defined variable type, Int, and the code provided
for it is written accordingly. Figuring out the handling for multiple types effectively was our greatest challenge (other
simple interfaces like custom functions, syntax, etc. were deceptively easy to implement), and early on fooled us into
believing that we were closer to completion than we actually were.

To avoid this, it is imperative that as soon as the language ideas are defined (when the language reference manual is
submitted should be fine), the group should work together to articulate all the steps that need to be taken to create

the final deliverable and divide up tasks. Although the files are highly interrelated, a testing architecture must be
defined so that members can verify the code they are adding works as they commit it for later use. Otherwise, they are
likely to run into the problem that we had where members wrote code without running tests on it as it was being
developed, which resulted in overly complex resolutions to get to a final project which we didn't have time for.

In short, I hope future groups will use our lessons as a warning when planning the development of their language.
It's not just about your intentions or how much time you think you'll be able to complete the assignment in; you need
to write out a plan to determine how much needs to be done each week with a buffer time left at the end so you can
evaluate every week if the group is on track. The project is simply too involved when done correctly to recover from
failing to plan in this way.

Appendix

30

A CHIL Grammar

* is 0 or more

+ is one or more

?1is 0 or 1 (at most one)
NEWLINE is “\n”

program — declaration | program declaration

declaration — fdecl | vdecl
stmt-list — stmt-list stmt | stmt-list

fdecl - NEWLINE £n ID (formals-list) NEWLINE expr-list endfn NEWLINE

expr-list — expr-list expr | expr
expr — dataType
| ID
| expr + expr
| expr ™ expr
| expr - expr
| expr * expr
| expr /| expr
| expr == expr
| expr = expr
| expr < expr
| expr <= expr
| expr > expr
| expr >= expr
| expr && expr
| expr || expr
| expr % expr
| ID = expr
| ID (actuals-list)
| ID ++
|ID --

| Cexpr)

formals-list — dataType | formals-list, dataType

vdecl — dataType 1D = value newline

actuals-list — expr | actuals-list, expr

dataType — boolean | int |
variable — 1D
value — true-or-false
| integer
| number
| string
| element
| style
true-or-false — true | false

integer — [0 - 9]+

float

string

element

style

31

float — [0 - 9]**.°[0-9]+ | [0 - 9]+°.[0-9]* | O

string — [a - zA - Z0 - 9]*

element — contents: string NEWLINE style: $ { css: string }
style — css: string

B. Code Style Conventions

B.1 General Principles

In general, CHIL code should be neat, easy to read, consistent, and well-commented. Programmers should always
adhere to all conventions of the language. CHIL does not end lines with semicolons, and uses newlines to denote the
end of a line instead. Every block, including functions, if/else statements, and loops, start with their keyword
identifier and end with the reserved word prefixed by “end.” For example, any code within a for loop must be between
the for and endfor. In addition, there must be a newline before and after each function declaration and after every
line of code. This is not just for clean code but is a convention of the language and necessary for proper program
compilation.

B.2 Documentation Comments

Programmers should comment often to explain code that is ambiguous and to keep their files readable and easy to
understand. There is no set documentation pattern, though frequent commenting is suggested. New lines are
required after all comments, and is enforced by the compiler in order to ensure a standard format for CHIL programs.

C. Code documentation of final submission

all files heavily based on Professor Edwards’ MicroC
ast.ml

(* Language interpretation rules *)

(* Operation keys *)

type op = Add | Sub | Mult | Div | Mod | Equal | Neq | Less | Leg | Greater
| Geq | Pow | Fact

(* Possibly types of expressions *)
type expr =

Literal of int

Id of string

Binop of expr * op * expr

|
|
| Assign of string * expr
| Call of string * expr list
| Noexpr
(* Possible types of statments *)
type stmt =

Block of stmt list

32

Expr of expr

Return of expr

If of expr * stmt * stmt

For of expr * expr * expr * stmt
While of expr * stmt

(* Function declaration types *)
type func decl = {

fname : string;
formals : string list;
locals : string list;

body : stmt list;

type program = string list * func decl list

let rec string of expr = function

let rec string of stmt = function
Block (stmts) ->
"{\n" ~ String.concat "" (List.map string of stmt stmts) *~ "}\n"
| Expr(expr) -> string of expr expr ~ "\n";
| Return(expr) -> "return " * string of expr expr * "\n";
| If(e, s, Block([])) -> "if (" ~ string of expr e * "y \n" *
string of stmt s
| If(e, sl, s2) -> "if (" ” string of expr e " "y \n" *
string of stmt sl ~ "else\n" ” string of stmt s2
| For(el, e2, e3, s) ->
"for (" ”~ string of expr el ~ " ; " ~ string of expr e2 ~ " ; "
string of expr e3 ~ ") " ~ string of stmt s
| While(e, s) -> "while (" ” string of expr e ~ ") " ” string of stmt s
let string of vdecl id = "int " ~ id ~ "\n"
let string of fdecl fdecl =
fdecl.fname ~ " (" »~ String.concat ", " fdecl.formals ~ ") {\n" *
String.concat "" (List.map string of vdecl fdecl.locals) *
String.concat "" (List.map string of stmt fdecl.body) *
"}\n"

Literal (l) -> string of int 1
Id(s) -> s
Binop(el, o, e2) ->
string of expr el ~ " " %
(match o with
Add -> "+" | Sub -> "-" | Mult -> "*" | Div -> "/" | Mod -> "%"
| Equal -> "==" | Neq -> "!="

| Less -> "<" | Leqg -> "<=" | Greater -> ">" | Geq -> ">=" | Pow ->

| Fact => "tm) ~ m m~
string of expr e2
Assign(v, e) -> v ~ " =" "~ string of expr e
Call(f, el) ->
£~ "(" * String.concat ", " (List.map string of expr el) ~ ")"
Noexpr -> ""

33

let string of program (vars, funcs) =

Hlt

String.concat "" (List.map string of vdecl vars) ~ "\n" *
String.concat "\n" (List.map string of fdecl funcs)
bytecode.ml
type bstmt =
Lit of int (* Push a literal ¥*)
| Drp (* Discard a value *)
| Bin of Ast.op (* Perform arithmetic on top of stack *)
| Lod of int (* Fetch global variable *)
| Str of int (* Store global variable *)
| Lfp of int (* Load frame pointer relative *)
| Sfp of int (* Store frame pointer relative *)
| Jsr of int (* Call function by absolute address *)
| Ent of int (* Push FP, FP -> SP, SP += i ¥*)
| Rts of int (* Restore FP, SP, consume formals, push result ¥*)
| Beg of int (* Branch relative if top-of-stack is zero *)
| Bne of int (* Branch relative if top-of-stack is non-zero *)
| Bra of int (* Branch relative *)
| (*

Terminate *)

type prog = {

num_globals : int; (* Number of global variables *)
text : bstmt array; (* Code for all the functions *)
}
let string of stmt = function

Lit (i) -> "Lit " ~ string of int 1
Drp -> "Drp"

Bin (Ast.Add) -> "Add"
Ast.Sub) -> "Sub"
Ast.Mult) -> "Mul"
Ast.Div) =-> "Div"
Ast.Equal) -> "Egl"
Ast.Neq) -> "Neqg"
Ast.Less) -> "Lt"
Ast.Mod) -> "Mod"
Bin (Ast.Leq) -> "Leqg"

(
Bin (
(
(
(
(
(
(
(
Bin (Ast.Greater) -> "Gt"
(
(
(A
(
(
(
(
(
(

Bin
Bin
Bin
Bin
Bin
Bin

Bin (Ast.Geq) -> "Geqg"

Bin Ast.Pow) -> "Pow"

Bin t.Fact) -> "Fact"

Lod l) -> "Lod " ~ string of int i
Str(i) -> "Str " ” string of int i
Lfp(i) -> "Lfp " * string of int 1
Sfp(i) -> "sSfp " ” string of int i
Jsr (i) —-> "Jsr " ” string of int i
Ent (i) -> "Ent " ~ string of int 1

| Rts(i) -> "Rts " ” string of int i
| Bne(i) -> "Bne " ” string of int i
| Beq(i) -> "Beqg " ” string of int i
| Bra(i) -> "Bra " ” string of int i
| H1t -> "H1t"

let string of prog p =
string of int p.num globals
let funca = Array.mapi
(fun 1 s -> string of int 1 ~ " " ~ string of stmt s) p.text
in String.concat "\n" (Array.to_list funca)

A

" global variables\n" *

chil.ml

(* Rules for final output file *)
type action = Ast | Interpret | Bytecode | Compile

let =
let action = if Array.length Sys.argv > 1 then
List.assoc Sys.argv.(l) [("-a", Ast);
("-1i", Interpret);
("-b", Bytecode);
("-c", Compile)]
else Compile in
let lexbuf = Lexing.from channel stdin in
let program = Parser.program Scanner.token lexbuf in
match action with
Ast -> let listing = Ast.string of program program
in print string listing
| Interpret -> ignore (Interpret.run program)
| Bytecode -> let listing =
Bytecode.string of prog (Compile.translate program)
in print endline listing
| Compile -> Execute.execute prog (Compile.translate program)

compile.ml

(* Rules for compiling code into executable *)
open Ast
open Bytecode

module StringMap = Map.Make (String)

(* Symbol table: Information about all the names in scope *)
type env = {

35

function index : int StringMap.t; (* Index for each function *)

global index : int StringMap.t; (* "Address" for global variables ¥*)
local_Index : int StringMap.t; (* FP offset for args, locals *)
}
(* val enum : int -> 'a list -> (int * 'a) list ¥*)
let rec enum stride n = function
(1 -> 11
| hd::tl -> (n, hd) :: enum stride (n+stride) tl

(* val string map pairs StringMap 'a -> (int * 'a) list -> StringMap 'a ¥*)
let string map pairs map pairs =
List.fold left (fun m (i, n) -> StringMap.add n i m) map pairs

(** Translate a program in AST form into a bytecode program. Throw an
exception if something is wrong, e.g., a reference to an unknown
variable or function *)

let translate (globals, functions) =

(* Allocate "addresses" for each global variable *)
let global indexes = string map pairs StringMap.empty (enum 1 0 globals)

in

(* Assign indexes to function names; built-in "print" is special *)

let built in functions = StringMap.add "max" (-1) StringMap.empty in
let built in functions = StringMap.add "print" (-1) built in functions in
let function indexes = string map pairs built in functions

(enum 1 1 (List.map (fun f -> f.fname) functions)) in

(* Translate a function in AST form into a list of bytecode statements *)
let translate env fdecl =

(* Bookkeeping: FP offsets for locals and arguments ¥*)

let num formals = List.length fdecl.formals

and num_ locals = List.length fdecl.locals

and local offsets = enum 1 1 fdecl.locals

and formal offsets = enum (-1) (-2) fdecl.formals in

let env = { env with local index = string map pairs

StringMap.empty (local offsets @ formal offsets) } in

let rec expr = function
Literal i -> [Lit 1i]
| Id s ->

(try [Lfp (StringMap.find s env.local index)]
with Not found -> try [Lod (StringMap.find s env.global index)]

with Not found -> raise (Failure ("undeclared variable " ~ s)))
| Binop (el, op, e2) -> expr el @ expr e2 @ [Bin op]
| Assign (s, e) —-> expr e @

(try [Sfp (StringMap.find s env.local index)]

with Not found -> try [Str (StringMap.find s env.global index)]

with Not found -> raise (Failure ("undeclared variable " ~ s)))
| Call (fname, actuals) -> (try

(List.concat (List.map expr (List.rev actuals))) @

[Jsr (StringMap.find fname env.function index)]

36

with Not found -> raise (Failure ("undefined function " * fname)))
| Noexpr -> []

in let rec stmt = function
Block sl -> List.concat (List.map stmt sl)
| Expr e -> expr e @ [Drp]
| Return e -> expr e @ [Rts num formals]
| If (p, t, £f) -> let t' = stmt t and f' = stmt f in
expr p @ [Beq(2 + List.length t')] @
t' @ [Bra(l + List.length f')] @ f'

| For (el, e2, e3, b) ->
stmt (Block ([Expr(el); While(e2, Block([b; Expr(e3)1))1]))
| While (e, b) ->

let b' = stmt b and e' = expr e in
[Bra (1+ List.length b')] @ b' @ e' @
[Bne (-(List.length b' + List.length e'))]
in [Ent num locals] @ (* Entry: allocate space for locals *)
stmt (Block fdecl.body) @ (* Body *)
[Lit O0; Rts num formals] (* Default = return 0 *)
in let env = { function index = function_ indexes;

global index = global indexes;
local index = StringMap.empty } in

(* Code executed to start the program: Jsr main; halt *)

let entry function = try

[Jsr (StringMap.find "build" function_ indexes); HIlt]
with Not found -> raise (Failure ("no \"build\" function"))
in

(* Compile the functions *)
let func bodies = entry function :: List.map (translate env) functions in

(* Calculate function entry points by adding their lengths ¥*)
let (fun offset list,) = List.fold left

(fun (1,i) £ -> (14 :: 1, (i + List.length f))) ([],0) func bodies in
let func offset = Array.of list (List.rev fun offset list) in

{ num globals = List.length globals;
(* Concatenate the compiled functions and replace the function
indexes in Jsr statements with PC values *)

text = Array.of list (List.map (function
Jsr 1 when i > 0 -> Jsr func_ offset. (1)
| as s -> s) (List.concat func bodies))
}
execute.ml

open Ast

open Bytecode
(* Stack layout just after "Ent":

<-- SP
Local n
Local O
Saved FP <-- FP

Saved PC
Arg 0

Arg n *)
let execute prog prog =
let stack = Array.make 1024 0

and globals = Array.make prog.num globals 0 in

let rec exec fp sp pc = match prog.text. (pc) with
Lit 1 -> stack. (sp) <- i ; exec fp (sptl) (pc+l)

| Drp -> exec fp (sp-1l) (pctl)
| Bin op -> let opl = stack. (sp-2) and op2 = stack. (sp-1) in

stack. (sp-2) <- (let boolean i = if i then 1 else 0 in

match op with

Add -> opl + op2

| Sub -> opl - op2

| Mult -> opl * op2

| Div -> opl / op2

| Equal -> boolean (opl = op2)

| Mod -> opl mod op2

| Pow -> (*New operation definition for power*)

let rec powerfun vl v2 =

if v2 = 0 then 1
else vl * (powerfun vl (v2 - 1)) in
(fun vl v2 ->

if v2 = 0 then 1

else vl * (powerfun vl (v2 - 1))) opl op2

| Fact ->

let rec factfun vl = (*New operation definition for factorial¥)
if vl = 0 then 1

else vl * (factfun (vl - 1)) in

(fun vl ->
if vl = 0 then 1

else vl * (factfun (vl - 1))) opl

| Neqg -> boolean (opl !'= op2)

| Less -> boolean (opl < op2)

| Leqg -> boolean (opl <= op2)

| Greater -> boolean (opl > op2)

| Geqg -> boolean (opl >= op2)) ;

exec fp (sp-1) (pc+l)
| Lod i -> stack. (sp) <- globals. (1) ; exec fp (sp+l) (pc+l)
| Str i -> globals. (1) <- stack. (sp-1) ; exec fp sp (pc+1)

| Lfp 1 -> stack. (sp) <- stack. (fp+i) ; exec fp (sp+l) (pc+l)

| Sfp i -> stack. (fp+i) <- stack. (sp-1l) ; exec fp sp (pctl)

| Jsr(-1) -> print endline (string of int stack. (sp-1)) ; exec fp sp
(pc+l)

| Jsr 1 -> stack. (sp) <- pc + 1 ; exec fp (sp+l) 1

| Ent 1 -> stack. (sp) <- fp ; exec sp (sp+i+l) (pc+l)

| Rts 1 -> let new fp = stack. (fp) and new pc = stack. (fp-1) in

stack. (fp-i-1) <- stack. (sp-1) ; exec new fp (fp-i) new pc

| Beqg i -> exec fp (sp-1) (pc + if stack.(sp-1) = 0 then i else 1)

| Bne 1 -> exec fp (sp-1) (pc + if stack. (sp-1l) !'= 0 then i else 1)

| Bra i -> exec fp sp (pc+i)

| H1t -> ()

in exec 0 0 O

interpret.ml

open Ast

module NameMap = Map.Make (struct

type t = string

let compare x y = Pervasives.compare x y
end)

exception ReturnException of int * int NameMap.t
(* Main entry point: run a program *)

let run (vars, funcs) =
(* Put function declarations in a symbol table *)
let func decls = List.fold left
(fun funcs fdecl -> NameMap.add fdecl.fname fdecl funcs)
NameMap.empty funcs
in

(* Invoke a function and return an updated global symbol table *)
let rec call fdecl actuals globals =

(* Evaluate an expression and return (value, updated environment) *)
let rec eval env = function
Literal (i) -> i, env
| Noexpr -> 1, env (* must be non-zero for the for loop predicate *)
| Id(var) ->
let locals, globals = env in
if NameMap.mem var locals then
(NameMap.find var locals), env
else if NameMap.mem var globals then
(NameMap.find var globals), env
else raise (Failure ("undeclared identifier " * wvar))

39

| Binop(el, op, e2) ->

let vl, env = eval env el in
let v2, env = eval env e2 in
let boolean i = if i then 1 else 0 in

(match op with
Add -> vl + v2
Sub -> vl - v2
Mult -> vl * v2
Div -> vl / v2
Pow ->
let rec powerfun vl v2 =
if v2 = 0 then 1
else vl * (powerfun vl (v2 - 1)) in
(fun vl v2 ->
if v2 = 0 then 1

else vl * (powerfun vl (v2 - 1))) vl v2
(* define power function *)
| Fact ->

let rec factfun vl =
if vl = 0 then 1
else vl * (factfun (vl - 1)) in
(fun vl ->
if vl = 0 then 1
else vl * (factfun (vl - 1))) vl
| Equal -> boolean (vl
| Mod -> vl mod v2
| Neg -> boolean (vl != v2)
| Less -> boolean (vl < v2)
|
|
|

Il
<
N

Leg -> boolean (vl <= v2)

Greater -> boolean (vl > v2)

Geg -> boolean (vl >= v2)), env

| Assign(var, e) ->

let v, (locals, globals) = eval env e in
if NameMap.mem var locals then

v, (NameMap.add var v locals, globals)
else if NameMap.mem var globals then

v, (locals, NameMap.add var v globals)

else raise (Failure ("undeclared identifier " *~ wvar))
| Call ("print", [e]) ->
let v, env = eval env e in
print endline (string of int v);
0, env
(* | Call ("max", [e]) —->
let v, env = eval env e in

v, env ¥*)
| Call(f, actuals) ->

let fdecl =

try NameMap.find f func decls

with Not found -> raise (Failure ("undefined function " * f))
in

let actuals, env = List.fold left
(fun (actuals, env) actual ->
let v, env = eval env actual in v :: actuals, env)

([]1, env) (List.rev actuals)
in
let
try
let globals =
in 0, (locals,

with ReturnException (v,

(locals, globals) = env in

globals)
globals) -> v,

in

(* Execute a statement and return an updated
let rec exec env =
Block (stmts)

function

(locals,

call fdecl actuals globals

globals)

environment *)

-> List.fold left exec env stmts

| Expr(e) -> let , env = eval env e in env
| If(e, sl1l, s2) ->
let v, env = eval env e in
exec env (if v != 0 then sl else s2)
| While(e, s) ->
let rec loop env =
let v, env = eval env e in
if v != 0 then loop (exec env s) else env
in loop env
| For(el, e2, e3, s) —->
let , env = eval env el in
let rec loop env =
let v, env = eval env e2 in
if v !'= 0 then
let , env = eval (exec env s) e3 in
loop env
else
env
in loop env
| Return(e) ->
let v, (locals, globals) = eval env e in
raise (ReturnException (v, globals))

in
(* Enter the function: bind actual values to
let locals =
try List.fold left2
(fun locals formal actual -> NameMap.add
NameMap.empty fdecl.formals actuals
with Invalid argument() ->
raise (Failure ("wrong number of arguments
in
(* Initialize local variables to 0 *)
let locals = List.fold left

(fun locals local -> NameMap.add local 0 locals)

in

(* Execute each statement in sequence,
table *)

snd (List.fold left exec

(locals, globals)

formal arguments *)

formal actual locals)

passed to " © fdecl.fname))

locals fdecl.locals

return updated global symbol

fdecl.body)

41

in 1
in t

ca
with

(* Run a program: initialize global variables to 0, find and run "main" *)

et globals = List.fold left

(fun globals vdecl -> NameMap.add vdecl 0 globals) NameMap.empty vars
ry

11 (NameMap.find "build" func decls) [] globals

Not found -> raise (Failure ("did not find the build() function"))

parser.mly

%{ ope
/*Toke
%token
%token
POWER
%token
%token
%token
%token
%token
%token

%nonas
%nonas
%right
%right
%right
%right
%right
%left
%left
%left
%left
%left
%left

$start
Stype

o©
oe

fdecl:

n Ast %}
n keys as defined in the AST*/

SEMI LPAR RPAR LBRACE RBRACE COMMA NEWLINE

ADD SUB MULT DIV ADDASSN MINUSASSN MULTASSN DIVASSN ASSIGN SQUARE
FACTORIAL MODULUS INCREMENT DECREMENT

EQ NEQ LT LEQ GT GEQ

RETURN IF ELSE FOR INT ENDIF ENDFOR ENDWHILE WHILE
FN ENDFEN

<int> LITERAL

<string> ID

EOF

soc NOELSE
soc ELSE

ASSIGN

ADDASSN
MINUSASSN
DIVASSN
MULTASSN
EQ NEQ
LT GT LEQ GEQ
ADD SUB
MULT DIV MODULUS
SQUARE

POWER FACTORIAL

program
<Ast.program> program

program:
/* nothing */ { [1, [] }

| program vdecl { ($2 :: fst $1), snd $1 }

| program fdecl { fst $1, ($2 :: snd $1) }

NEWLINE FN ID LPAR formals opt RPAR NEWLINE vdecl list stmt list ENDFEN
NEWLINE

42

{ { fname = $3;
formals = $5;
locals = List.rev $8;
body = List.rev $9 } }

formals opt:
/* nothing */ { [] }
| formal list { List.rev $1 }

formal list:
D { [$1] 3}
| formal list COMMA ID { $3 :: S1 }

vdecl list:

/* nothing */ { [1 1}
| vdecl list vdecl { $2 :: $S1 }
vdecl:

INT ID NEWLINE { $2 }

stmt list:
/* nothing */ { [] }
| stmt list stmt { $2 :: S1 }
stmt:

expr NEWLINE { Expr ($1) }

| RETURN expr NEWLINE { Return($2) }

| IF LPAR expr RPAR NEWLINE Stmt_list $prec NOELSE ENDIF NEWLINE { If($3,
Block(List.rev $6), Block([])) }

| IF LPAR expr RPAR NEWLINE Stmt_list ELSE NEWLINE Stmt_list ENDIF NEWLINE
{ If£f($3, Block(List.rev $6), Block(List.rev $9)) }

| FOR LPAR expr SEMI expr SEMI expr RPAR NEWLINE Stmt_list ENDFOR NEWLINE

{ For($3, $5, $7, Block(List.rev $10)) }

| WHILE LPAR expr RPAR NEWLINE Stmt_list ENDWHILE NEWLINE { While (S$3,

Block (List.rev $6)) }

/*MATCHING RULES FOR EXPRESSIONS*/
expr:

LITERAL { Literal($1l) }
ID { Id(s1) }

expr ADD expr { Binop($1l, Add, $3) }
expr SUB expr { Binop($1l, Sub, $3) }
expr MULT expr { Binop($1l, Mult, $3

|

|

|

|)

| expr DIV expr { Binop($1, Div, $3) }

| expr EQ expr { Binop($1, Equal, $3) }

| expr NEQ expr { Binop($1l, Neq, $3) 1}

| expr LT expr { Binop($1l, Less, $3) }

| expr LEQ expr { Binop($1l, Leq, $3) 1}

| expr GT expr { Binop($1l, Greater, $3) }
| expr GEQ expr { Binop($1l, Geq, $3) 1}

| expr MODULUS expr {Binop($1, Mod, $3)}

| expr SQUARE { Binop($1, Mult, $1) }

| expr FACTORIAL { Binop($1, Fact, Literal(l)) }

43

expr POWER expr { Binop($1, Pow, $3) }

ID INCREMENT { Assign($1, Binop(Id($1), Add, Literal(l))) }
ID DECREMENT { Assign($1, Binop(Id($1), Sub, Literal(l))) }
ID ADDASSN expr { Assign($1, Binop (Id($1), Add, $3))}

ID MINUSASSN expr { Assign($1, Binop(Id($1), Sub, $3))}

ID MULTASSN expr { Assign($1l, Binop(Id($1), Mult, $3))}

ID DIVASSN expr { Assign($1, Binop (Id($1l), Div, $3))}

ID ASSIGN expr { Assign($1, $3) 1}

ID LPAR actuals opt RPAR { Call($1l, $3) }

LPAR expr RPAR { $2 }

actuals opt:
/* nothing */ { [] }

| actuals list { List.rev $1 }

actuals_ list:

expr { [$1]
| actuals list COMMA expr { $3 :: S1 }
scanner.mll

{ open Parser }
(* TOKEN RULE MAPPING FOR STRINGS *)
rule token = parse
[" " "\t" '"\r'] { token lexbuf } (* Whitespace *)

["@>" { comment lexbuf }
A { singcomment lexbuf } (* Comments *)
[{ LPAR }

") { RPAR }

[{ { LBRACE }

["} { RBRACE }

["\n' { NEWLINE }

[;! { SEMI }

[, { COMMA }

[v { MULT }

| T4 { ADD }

| "4=" { ADDASSN }

["-=" { MINUSASSN }
[/=" { DIVASSN }

[A= { MULTASSN }
| "4+ { INCREMENT }
["==" { DECREMENT}
[=1 { SUB }

[/ { DIV }

(AR { SQUARE }

['~ { POWER }

[v { FACTORIAL }

[=" { ASSIGN }

|

n__mn { EQ }

{

NEQ }

eof { EOF }
__as char { raise

|

| <! { LT }

| %! { MODULUS }

| "<=" { LEQ }

["> { GT }

[">=" { GEQ }

["if" { IF }

| "else" { ELSE }

| "for" { FOR }

| "endfor"™ { ENDFOR }

| "endif" { ENDIF }

| "return" { RETURN }

["int" { INT }

| "while" { WHILE }

| "endwhile" { ENDWHILE}
| "fn" { FN }

| "endfn" { ENDFN }

[['0'-'9']+ as 1lxm { LITERAL(int of string lxm) }
| [ta'='z'" '"A'-'Z']['a'=-"z" '"A'-'z2'" '0'-'9" ' '"]* as lxm { ID(lxm) }
|

|

(Failure("illegal character " ~ Char.escaped char))

and comment = parse
"<@\n" { token lexbuf }
I { comment lexbuf }

and singcomment = parse
"\n" {token lexbuf}
| _ { singcomment lexbuf }

}

Chapter 9

New Project

9.1 Example Program

fn fib(x)
1if (x < 2)
return 1

45

endfn

fn bu

endif

return fib(x - 1)

11d9)

print (fib
print (fib
print (fib
print (fib
print (fib
print (fib

+ fib(x - 2)

9.2 Tests

fn build()
int b
b += 10
print (b)

print (b)

b = 3!

print (b)
endfn

This program prints:

46

Example 2:

fn space()
int a
a = 10000 ~*
a *= 10
return a
endfn

fn eyes|()
int b
b = space()
b += 11001100
return b
endfn

fn build()
print (space ()
print (space ()
print (eyes())
print (eyes())
print (eyes())
print (space ()
print (space ()
print (space ()
print (space ()
@>
1100000010
1110000110
1001111100
<@
print (space())
endfn

+ o+ o+ o+

1)
100000010)
110000110)
1111100)

This program outputs:

1000000000
1000000000
1011001100
1011001100
1011001100
1000000001
1100000010
1110000110
1001111100

47

1000000000

9.3 Tutorial

Build
All code to be run during program execution must be placed into a function with the name “build.” The compiler
finds this function during processing of the source and uses it to begin execution.

fn build()

@>Code to get run during program execution goes here<@@

endfn

Syntax

Primitive Types
*See Chapter 3

Type Declarations
Integer

intx=3;
Features

Loops

Comments
Whitespace

Conditionals

*See Chapter 2.2.2.2

A CHIL Grammar

48

* is 0 or more

+ is one or more

?1is 0 or 1 (at most one)
NEWLINE is “\n”

program — declaration | program declaration
declaration — fdecl | vdecl
stmt-list — stmt-list stmt | stmt-list

fdecl - NEWLINE £n ID (formals-list) NEWLINE expr-list endfn NEWLINE

expr-list — expr-list expr | expr
expr — dataType
| ID
| expr + expr
| expr ™ expr
| expr - expr
| expr * expr
| expr/ expr
| expr == expr
| expr = expr
| expr < expr
| expr <= expr
| expr > expr
| expr >= expr
| expr && expr
| expr|| expr
| expr % expr
| ID = expr
| ID (actuals-list)
| ID ++
|ID --
| Cexpr)
formals-list — dataType | formals-list, dataType
vdecl — dataType 1D = value newline
actuals-list — expr | actuals-list, expr
dataType — boolean | int | float | string |
variable — 1D
value — true-or-false
| integer
| number
| string
| element
| style
true-or-false — true | false
integer — [0 - 9]+
float — [0 - 91%°.°[0-9]+ | [0 - 9]+°.°[0-9]* | O
string — [a - zA - Z0 - 9]*

element

style

49

50

