
The Lorax Programming Language

Doug Bienstock, Chris D’Angelo, Zhaarn Maheswaran,
Tim Paine, and Kira Whitehouse

dmb2168, cd2665, zsm2103, tkp2108, kbw2116

Programming Translators and Languages,
Department of Computer Science,

Columbia University, New York, NY 10027, USA

Abstract

Here we propose a language based upon the tree data structure. Whereas a lan-
guage like Java relies on an inheritance structure deviating from the type Object, we
propose a paradigm wherein the tree, which can be used effectively to represent lists,
graphs, queues, stacks, etc, becomes the central object around which the language is
structured. Much like Lisp and lists, our language seeks to naturalize the tree structure
to allow for fast and simple tree based algorithms, while maintaining the flexibility to
code other data structures within tree based constructs.

1 Motivation

The motivation for our language arose out of frustration with implementing trees and tree
based algorithms in other high level programming languages. While languages like C and
Java allow you to implement trees, they are not a native aspect of the language. As such,
you must define and manage the node structure yourself, which can be a tedious and
complicated affair, especially for young programmers, or those who are inexperienced
with tree data structures. Trees are often simply a construct of the language, rather than
something fundamental to its structure, like the object of an object oriented language, or
the function of a functional language. Our language attempts to remedy these problems
by handling a lot of the business logic of implementing trees and their algorithms under
the hood, and allowing the programmer to use trees in a more native and intuitive way.
This simplicity combined with added features of our language allow new and unconven-
tional applications beyond those easily managed by typical object-centric programming
languages. An intuitive application is to easily build and maintain a min-heap or a binary
search tree of strings. A more complex situation could be to create a tree structure used to
manage an organizational hierarchy for a company. A programmer could implement the
tree structure in this language to manage and perform operations on an organization?s
employees easily. Virtually any tree-based algorithm should now be much easier and
more natural to program, and in fewer lines.

1

2 Syntax

2.1 Data Types

Type Description Example
int an integer, typically reflecting a machine’s natural integer size 1972
double double-precision floating point 3.14
string capable of holding multiple characters in the local character set “I love trees”
tuple a grouping of data encapsulated in a single tree node 〈5, “five”〉
tree a collection of data with a parent-child relationship 1[2, 3[4, 5]]

A tree can be initialized a variety of ways. It can be instantiated with null elements,
such that children are not defined with any inherent data. Trees can also be defined to
hold tuples as their data types. Trees have branching factors, i.e. a maximum number of
children. When trees of different branching factors are added together, the larger branch-
ing factor is inherited, so that both trees share the same branching factor. A tree can only
hold one type of data: thus, whether the children hold data of type double or string or
tuples of doubles and strings, all nodes of the tree must be this same type. On the other
hand, tuples may contain data of multiple types. This type ruling will be enforced on
compile time.

2.2 Arithmetic, Relational, and Logical Operators

〉 〉= 〈 〈= == != Compares values within tuples and trees. All compar-
isons return a tree with no children and a sole integer
value, 1 for true, 0 for false.

@ Accesses the data element of a tree node. This opera-
tion is used to access the int, double, and string data
types stored within trees. For instance, given a tree x
whose 0th child is a tuple 〈3, “six”, 9.0〉. We can access
the string “six” with the operation x @ 0 % 0.

+ - These operations induce compile time errors if not
used correctly with types. If both types involved are
doubles or integers, this simply produces the mathe-
matical addition or subtraction of the two numbers. If
both types involved are strings, the + operator simply
concatenates the two strings, one following the other.
If both types involved are trees, the + operator opera-
tion constructs a new tree consisting of both. The two
original trees are glued together into an anonymous
tree, which can be assigned to a variable. Note: the
subtraction - operation cannot be used with strings or
trees; this will induce a compile time error.

2

2.3 Tokens

The following identifiers are reserved for use as keywords, and may not be used otherwise.

root(tree) Returns the root of a tree, without any children, but
does not dereference its value. The original tree passed
in as an argument is unchanged.

children(tree) Returns an ordered set of the children of the input
tree. The set can be operated on but cannot be assigned
using the = operator. This design choice prevents users
from manipulating trees.

print(value) Prints to standard output the value provided as an
argument. Values supported are doubles, ints, and
strings.

3 Control Flow

3.1 Statements and Blocks
; The semicolon is a statement terminator.

/*Hi I am a comment. */ These are multi-line comments. They are not nestable.
// These are single line comments.

3.2 If-Else and Loops

if(expression)
statement

else
statement

The if-else statement is used to express decisions. Any
expression evaluated will not compile unless it can
evaluate to a valid boolean.

for(expression) For loops contain an assignment, a boolean conditional
expression, and an incrementor.

3

4 Miscellaneous Standard Library Functions

height(tree) Returns a tree with no children and data representing
the height of the input tree.

empty(tree) Returns whether or not a tree is empty. Note this is
the same as checking whether the tree is null, but may
not return the same value as height if applied to a tree
of height 0. This returns a tree with no children and
data representing a boolean 0 or 1. This is helpful
when applied to trees who have been declared with
branching values, but not defined with any internal
data.

type(tree) Returns a tree with no children containing solely a
string representation of the type of data stored in the
parameter tree’s nodes. For instance, a possible return
value might be “int” or “int, string, double, int” .

branchingfactor(tree) Returns a tree with no children and data representing
the branching factor of the input tree.

5 Program Structure

Below we provide a short sample program to demonstrate the syntax and flow of our
language. In short, there is a main function and a user defined depthFirstSearch function.
The interpreter will only run the main function. Thus, if we did not call depthFirstSearch
from within main, that code would never be stepped into during the course of program
execution. We provide sparse comments within the program, and point out some impor-
tant subtleties beneath the complete source code.

1 / ∗ a r e c u r s i v e f u n c t i o n moving d e p t h f i r s t th rough a t r e e p r i n t i n g i t s d a t a ∗ /
depthFi rs tSearch (t r e e) {

3 i f (t r e e == n u l l)
return n u l l ;

5
/ ∗ p r i n t t h e f i r s t v a l u e (t h e d a t a) w i t h i n t h e t u p l e ∗ /

7 print (t r e e @ 0) ;

9 / ∗ use s e c o n d v a l u e o f t u p l e a s key−v a l u e f l a g t o mark node as v i s i t e d ∗ /
t r e e @ 1 = 1 ;

11
/ ∗ i t e r a t e through t h e t r e e r e c u r s i v e l y ∗ /

13 for (c h i l d = 0 ; t r e e % c h i l d != n u l l ; c h i l d += 1) {
/ ∗ c h e c k i f we have v i s i t e d c h i l d b e f o r e making r e c u r s i v e c a l l ∗ /

15 i f ((t r e e % c h i l d) @ 1 == 0) {
depthFi rs tSearch (t r e e % c h i l d) ;

17 }

}

19 }

4

1 / ∗A program must have a main f u n c t i o n , a s t h i s w i l l be t h e on ly c o d e run by
t h e i n t e r p r e t e r . Any command l i n e arguments w i l l be p a s s e d in in a t r e e
d a t a s t r u c t u r e . ∗ /

main (command line arguments) {
3

/ ∗ a i s a mult i− l e v e l t r e e wi th i n t e g e r c h i l d r e n ∗ /
5 a = 1 [2 , 3 [4 , 5]] ;

7 / ∗ b i s a t r e e wi th no c h i l d r e n , whose d a t a i s i n t e g e r 6 ∗ /
b = 6 [] ;

9
/ ∗ c i s a t r e e wi th no data , no c h i l d r e n , and a d e c l a r e d max d e g r e e o f 4 ∗ /

11 c = [] (4) ;

13 / ∗ d i s a t r e e whose c h i l d r e n a r e t u p l e s o f t y p e < i n t , s t r i n g , doub l e > ∗ /
d = <101 , ” h e l l o ” , 3.14>[<102 , ”goodbye” , 2 . 6 1 8 >] ;

15
/ ∗ a c c e s s t h e 0 th d a t a e l e m e n t w i t h i n t r e e d , r e t u r n i n g i n t e g e r 101 ∗ /

17 d @ 0 ;
/ ∗ a c c e s s t h e 0 th d a t a e l e m e n t w i t h i n t r e e a , r e t u r n i n g i n t e g e r 1 ∗ /

19 a @ 0 ;

21 / ∗ a c c e s s t h e 0 th c h i l d o f t r e e a , r e t u r n i n g a t r e e whose d a t a i t em i s 2 ∗ /
a % 0 ;

23 / ∗ a c c e s s t h e 0 th d a t a e l e m e n t in t h e 0 th c h i l d o f a , r e t u r n i n g i n t e g e r 2 ∗ /
a % 0 @ 0 ;

25
t r e e t o p r i n t = <1 , 0>[<2 , 0> , <3 , 0>[<4 , 0> , <5 , 0 >]] ;

27 / ∗ t h i s f u n c t i o n c a l l w i l l p r i n t 1 2 3 4 5 ∗ /
depthFi rs tSearch (t r e e t o p r i n t) ;

29 }

A couple important notes to make about the program above, before we dive more explic-
itly into the code. In the creation of all of these trees the compiler will be sure to keep the
integrity of the tree data structure. Some rules that it will obey:

1. A tree can only have at most one parent
2. A tree cannot be parent to his own parent
3. A tree cannot be parent to his brother

Note, as a result of these rules, that our language does not support internal loops, or
any form of graphs. In the beginning lines of the main function above, we defined trees a
and b. The definition a = 1[2, 3[4, 5]]; is displayed below in a visual sense:

1

2 3

4 5

5

Each leaf node, i.e. the nodes without any children, points to null. The compiler will
conclude that this tree contains data type int and degree 2. Initializing a tree with im-
proper combinations of data types would result in a compile time error. The definition of
tree b = 6[]; is a little more difficult to explain with diagrams. This tree has no children,
but has the integer 6 in its data field. There are a couple of other ways in which we could
have defined this tree. For instance, we could have defined b as b = 〈6〉[];. Here we use
the explicit tuple bracket operators.

Importantly, every data item in a tree is actually a tuple. Tuples are very much related to
trees. They contain collections of items. However, unlike trees, tuples can contain data of
different types. Trees cannot mix data types. It would have also been possible to define b
simply as b = 6. This reveals the inherent tree-ness of our language. Even primitive data
types are initialized and stored in tree data structures.

Here we will look at the two more obscure operators in the program above, the @ operator
and the % operator. The % operator allows us to access the internals of a tree’s structure;
that is, its children. Because children are kept in an ordered listing we can refer to them
with indexing. Note that the % operator returns a pointer to a single child, not an array
or list of multiple children. We use the % operator to traverse through a tree in the depth-
FirstSearch function. The @ operator allows us to access data within a tree node. We can
combine the % and @ operators to access the data within a child tree.

With the functionality of these operators in mind, let’s take one last look at the main
loop within the depthFirstSearch function.

1 for (c h i l d = 0 ; t r e e % c h i l d != n u l l ; c h i l d += 1) {
/ ∗ c h e c k i f we have v i s i t e d t h i s c h i l d ∗ /

3 i f ((t r e e % c h i l d) @ 1 == 0) {
/ ∗ e x t r a c t t h e i n t e g e r d a t a from t h e c h i l d t r e e and c a l l DFS

r e c u r s i v e l y ∗ /
5 depthFi rs tSearch (t r e e % c h i l d) ;

}

7 }

Above, child = 0 is defining a tree whose data is a tuple containing a single integer 0. This
initialization syntax is creating a childless tree, and is syntactic sugar in some regards. It
is the shortened form of declaring child = 0[]. The condition and afterthought of the for
loop, tree % child != null and child += 1 respectively, are also syntactic sugar. In both of
these expressions child is short for child @ 0. This shortened form makes it easy for the
programmer to iterate through all the children of a given tree.

6

