Cn

Edward Garcia (ewg2115), Naveen Revanna (nr2443)
Niket Kandya (nk2531), Sean Yeh (smy2112)

Introduction

C is the lingua franca of the computer world. It is a general purpose programming language and
often used in systems level programming. In this project we will be implementing C ® (Cpi) which
is a subset of the C language. It will be designed to compile to ARM V6 assembly with the target
platform being the Raspberry Pi (RPi) . Cm will use the GNU assembler(as/gas), linker(ld) and
linaro cross toolchain (gcc-linaro-arm-linux-gnueabihf-raspbian) for assembly to binary code
generation on the RPi.

Key Features

Crnwill be an easy language to learn for those familiar with ANSI C. The generated ARM V6
assembly will be completely unoptimized.

Keywords
Cm will contain the following keywords

int char void return else
while goto if scan print
struct

Primitive Data Types

int: 32 bit integers
char: 8 bit character
int*: 32 bit pointer to an integer value
char*: 32 bit pointer to a character value
void*: 32 bit pointer to a castable wvalue

Aggregate Data Types
These will be defined/declared as in C collecting primitive datatypes.



array
structure

Operators
Operator precedence will follow standard orders of operation and will mimic ANSI C.

, For arrays, structure definition, separate expressions
[] Array indexing
* Unary * for pointer dereferencing

For accessing structure members through a structure variable
-> For accessing structure members through a structure pointer
& Returns address of a datatype

== Returns an int (1 if equality holds, 0 otherwise)
= Returns an int (0 if equality holds, 1 otherwise)
Bitwise XOR operator

~ Bitwise NOT operator

Bitwise AND of 2 numbers

Bitwise OR of 2 numbers

- — &

Logical NOT operator

&& Logical AND operator

| ] Logical OR operator

= Assignment operator
greater than operator

< less than operator

>> Shift right operator

<< Shift left operator

+ Addition Operator

- Subtraction Operator

* Multiplication Operator
/ Division Operator

% Modulo Operator
Functions

Function scope will be limited to the section enclosed in braces ({ and }). A main function will
exist where code execution will start. Cm will not support passing command line arguments to a
program. Function arguments will be passed by value. Function arguments and return values will
support passing pointers and functions can be recursive. To communicate to an external
console, print() and scan() function will be built into the language.

Control Flow
Conditional statements such as if, else, and else if will be implemented according to
ANSI C guidelines. Labels and goto statements will be supported as well as while loops.



Variable scoping

Global datatypes will be supported if declared outside of the scope of all functions. Normal C
scoping rules apply in functions and blocks.

Comments

We will be supporting both single line and block comments. Block comments cannot be nested
inside of each other.

// Comment
/* Beginning of Block Comment
*/ End of Block Comment

Syntax Examples

HelloWorld.cpi

int main() {
print(“Hello World”);
return O;

BinarySearch.cpi

int binary_search(int array[], int start, int end, int element) {

if (start > end)
return -1;
else {
int mid = ((start + end)/2);
int temp = array[mid];
if (temp == element) {
return mid;
} else if (temp > element) {
return binary_search(array, start, mid - 1, element);
} else {
return binary_search(array, mid + 1, end, element);
}

}

int bin_search(int array[], int size, int element) {
return binary_search(array, 0, size - 1, element);




}

int main() {
intarr[] ={1, 2, 4, 8, 16, 32, 64, 128, 256, 512},
int size = 10;

int target = scan();

int result = bin_search()

print(“Binary search of “, target, “in arr returns”, bin_search(arr,size,target));
return O;




