
COLUMBIA UNIVERSITY
The Fu-Foundation School of Engineering and Applied Science

COMS W4115: Programming Languages and Translators
By Professor Stephen Edwards

Simplified Image Processing(sIP)

Language Reference Manual

Vaibhav Jagannathan (vj2192@columbia.edu)

Shubanshu Yadav (sy2511@columbia.edu)

Bhargav Sethuraman (bs2814@columbia.edu)

October 28, 2013



Contents –

 1. Introduction 3
 2. Lexical Conventions 4

 2.1 Comments 4
 2.2 Identifiers 4
 2.3 Keywords 5
 2.4 Constants 5

 3. Data Types 6
 3.1 int 6
 3.2 float 6
 3.3 pix 6
 3.4 img 6
 3.5 string 6
 3.6 User Defined Types 7

 3.6.1 Arrays 7
 3.6.2 Functions 7

 4. Conversion 7
 5. Expression 8

 5.1 Primary expressions 8
 5.2 Unary operators 8
 5.3 Multiplicative operators 8
 5.4 Additive operators 9
 5.5 Logical Operators 9
 5.6 Relational Operators 9

 6. Function Definitions 9
 7. Statements 10

 7.1 Selection Statements 10
 7.2  For Loops 10
 7.3. Break 10
 7.4  Continue Statement 10
 7.5 Compound Statements 10

 8. Scope 11
 8.1 Static Scoping 11
 8.2 Global vs. Local 11
 8.3 Forward Declarations 11
 8.4 Arithmetic Operator Overloading 11
 8.5 Function Name Overloading 11



1. Introduction

In recent times Image processing has become a very popular topic. A number of 
amateurs  and  dilettantes  wish  to  try  their  hand  at  image  processing.  Some 
discouraging factors in the currently available image processing applications are 
the extremely expensive licenses and counter-intuitiveness of the programming 
languages.

Pictures are increasingly being used as an essential part of digital diaries and 
blogs,  thanks  to  the  widely  prevalent  digital  cameras  that  started  gaining 
popularity since the year 2000.

Furthermore, images need to be modified, rotated, tilted, cropped, dimmed as 
a part of computer animation. For certain applications such as remote sensing 
and medical  imaging,  an  image needs to  be sharpened,  needs it's  contrast 
increased,  color  filtered  or  size  modified.  Mobile  cameras  use  perspective 
correction to  correct  human errors  while  capturing  images and to  stabilize 
videos. Image comparison applications are also widely used.

We aim to create a simple, easy to use, language that will provide people with 
the means to process images and videos. This involves modifying images/videos, 
storing, etc. 



2. Lexical Conventions

The members of this group are familiar with the C++ language. Hence, for , we 
propose to use a lexical convention that is similar to that of C++, but adapted 
to suit our needs to modify and process images. The following lexical elements 
are part of our compiler : 
 Tokens
 Comments

Identifiers
Keywords
Punctuators
Operators
Literals

Tokens are the smallest elements of our language that the compiler recognizes. 
They are separated using one or a combination of blank spaces, horizontal tabs, 
new lines or comments. 

Tokens are separated by one or more of the following: comments, spaces, tabs 
or newlines. A token is also the longest sub-string of characters that is accepted 
as legal by our compiler. The different type of tokens in our language are 
mentioned below in a little more detail.

2.1 Comments

Any  comment  needs  to  start  with  “//”  and  end  with  the  same  “//”.  For 
example, this would be considered a comment in our language: 
// example comment //
A comment can also span on multiline. For example, if one of the line has “//” in 
it, it will comment out everything until it encounters the next “//”.
//example
Multiline
Comment
//

2.2  Identifiers
An identifier is a combination of one or more letters and/or digits and 
the underscore character (_). It is used to represent an object of a 
particular data type or is the name of a function. No other special 
character can be a part of the identifier. They must start with a letter 
and are case sensitive.
The following characters are legal as the first character of an identifier, 



or any subsequent character:

_ a b c d e f g h i j k l m
n o p q r s t u v w x y z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z

The following characters are legal as any character in an identifier except 
for the character which has to be one among those listed above above.
0 1 2 3 4 5 6 7 8 9

2.3 Keywords

Keywords are predefined reserved identifiers that have special meanings. 
They cannot be used as identifiers in your program. The following 
keywords are reserved for sIP :-

int float pix img break continue if else for return show

Here, int, float, char, pix, img and color represent data types and the rest 
are keywords that function similar to their counterparts in C++.\

2.4 Constants

sIP allows constants corresponding to any of the data types discussed above.

2.4.1 Integer(int)
Integer constants consist of decimal integers as a signed 
sequence of one or more digits. 

2.4.2 Float(float)
Float constants consist of signed decimal real numbers with one 
and only one decimal point, which separates the integer and 
fractional parts. The integral part is optional but the fractional 
part is not.

2.4.3 Pixel(pix)
We have decided to extend the concept of constant to all of our 
data types. A constant pix is associated with a particular color and 
a  format  which  is  one  among  YUV420  or  RGB888.  Hence  a 
constant pixel has a particular color and format defined. 

2.4.4 Image(img)
A constant image follows the same concept. An image is associated 
with a file and is group of pixels. 



3 Data Types

As mentioned earlier, the identifiers are either function names or related to 
one of the data types defined in sIP. The interpretation of an identifier by the 
compiler is thus dependent on the data type. The following types are 
supported:-

3.1 int
Any integer within the range – (2^31) to ((2^31)--1) or 2147483648 to 
2147483647 can be stored in an int type. The size associated with an int 
attribute is 2^32. If not initialized, the default value considered is 0.

3.2 float
64-bit signed decimal point numbers are denoted by type float. Default 
value is 0.0.

3.3 pix
This data type is the basic unit of an image – a pixel. It consists of four 
components - C1, C2, C3 and format. The first three the values (between 
0  and  255)  that  would  be  sufficient  to  discern  the  color.  The  final 
component  can  be  either  0  or  1.  A  value  of  '0'  indicates  RGB888 
format(C1, C2  and C3 represent the R, G and B components of color in 
this case) while a '1' indicates YUV420 format(and C1, C2 and C3 would 
represent Y, U and V components respectively).

The functions getC1(), getC2(), getC3() and getF() return the values of the 
four components. The components and functions can be accessed by the 
name of the operator followed by a '.'(dot) followed by the component 
or function. All values are instantiated to 0 by default.

3.4 img
This is essentially a 2-dimensional matrix pixels. This data type makes it 
easy to perform functions such as adding a pixel or group of pixels to a 
pre-existing image.
It has two components : w(width) and h(height) and four functions 
associated with an attribute of this data type : load, display, getWidth() 
and getHeight(). Individual pixels by: image_name[horizontal_value, 
vertical_value]. The components and functions can be accessed by the 
name of the operator followed by a '.'(dot) followed by the component 
or function. By default all values are 0.

3.5 string
This is essentially the same as an array of characters in c++. It consists of 
characters enclosed between two double quotations.



Example : “#Example String 1” is a string.

3.6 User defined
Besides the basic types the user can also define the following: 
structs, arrays, functions.

3.6.1 Arrays
Users can define a collection of elements of the same type by declaring 
arrays. Arrays ensure contiguous memory allocation for the elements 
within the array. The general syntax for declaring arrays is given below: 

 type variablename[size].
This statement allocates memory of size equal to n times the size 
of data_type name[n].
This statement allocates memory of size equal to n times the size of 
'data_type' and uses 'name' to refer to that memory location.

3.6.2 Functions
Functions in sIP have the following syntax for definition:
returntype functionname (args-list) {statements;}
Here, returntype is a valid sIP data type, functionname is a valid 
identifier according to the sIP identifier rules, and args-list should be 
a valid comma separated list of identifiers. The args-list may be left 
empty. The function body may be empty or can contain sIP 
statements and expressions.

4. Conversions
Lower numerical types can be expanded into higher ones. Example: A type 
int  can  be  assigned  to  a  type  float  but  not  vice-versa.  When  the  int  is 
assigned to float, the int is converted to float data format.

Similarly a pix attribute can be assigned to one of type img. Here, the pix(pixel) 
is converted to image specific format with which it is associated.



5. Expressions
5.1 Primary expressions
A primary expression can be an identifier, any of the constants defined 
above, an expression contained in parentheses.

5.2 Unary operators
sIP supports one unary operator for negation. It is denoted by a „-‟ sign before 
an expression which negates the expression. Only int and float, image and pix 
values can be negated. Negation of numeric values means multiplying the value 
by -1. Negation of an image means replacing the value of each pixel of the image 
with max(ColorSpace value) - pixel value. Negation of a pix would be similar to 
negation of an image.

5.3 Multiplicative operators
The multiplicative operators *, /, and % group left to right.

5.3.1 Multiplication expression* 
The binary * operator indicates multiplication. An int can be multiplied 
with an int or a float. A float can be multiplied with a float or an int. A int 
and float multiplication results in a float value. With respect to images, 
multiplication comes in two forms. The first form takes two input images 
and produces an output image in which the pixel values are just those of 
the first image, multiplied by the values of the corresponding values in 
the second image. The second form takes a single input image and 
produces output in which each pixel value is multiplied by a specified 
constant. This latter form is probably the more widely used and is 
generally called scaling.
5.3.2 Division
The binary / operator indicates division. The same type 
considerations as for multiplication apply. The image division 
normally takes two images as input and produces a third whose pixel 
values are just the pixel values of the first image divided by the 
corresponding pixel values of the second image. Many 
implementations can also be used with just a single input image, in 
which case every pixel value in that image is divided by a specified 
constant. One of the most important uses of division is in change 
detection.
5.3.3 Modulus
The binary % operator yields the remainder from the division of the 
first expression by the second. Both operands must be an int and the 
result is int. The remainder has the same sign as the dividend.



5.4 Additive operators
The additive operators + and - group left to right.
5.4.1 Addition/Subtraction
 An int can be added to an int or float. A float can be added to a float and 
int.  The  result  of  addition/subtraction  involving  float  and  int  is  a  float. 
Additionally, we can also perform addition operations on the image along 
with the pixels. So either we can do image+image or image+pixel or pixel+ 
pixel. Additionally, image subtraction can also be done. Image subtractionor 
subtractionis a process whereby the digital numeric value of one pixel or 
whole image is subtracted from another image. This is primarily done for 
one of two reasons – leveling uneven sections of an image such as half an 
image having a shadow on it, or detecting changes between two images

5.5 Logical Operators
“&&” corresponds to logical AND. „||‟ corresponds to logical OR. ‟!‟ 
corresponds to logical NOT.  „&&‟ and „||‟ are binary operators whereas “!” 
is a unary operator. None of the logical operators are short circuiting.

5.6 Relational Operators
==, !=, < , <= , >, >=  are all binary operators.

6. Function Definitions
A function in sIP can be defined as: RETURNTYPE ID (args list){ statement }. 
The args list can be optionally empty.



7. Statements
Expressions followed by semi colons are statements in sIP. They are 
executed in sequence.

7.1 Selection Statements
Selection statements evaluate conditions and direct control flow appropriately.
if ( expression ) statement-blockif ( expression ) statement-block else statement-block

7.2 For Loops
A valid for statement form is:
for ( expression-statement; expression-
statement;expression- statement ) statement-block
The first statement is evaluated before the loop begins, the second expression 
is evaluated at the beginning of each iteration and, if false, ends loop execution. 
The third statement is evaluated at the end of each iteration. Each expression 
can be multiple expressions separated by commas.

7.3. Break
The break statement allows the termination of the current for loop and 
takes execution to the statement immediately after the for loop.

7.4 Continue Statement
The continue statement can be used only within a for loop. When 
encountered, the remaining part of the for loop is ignored and the iteration 
execution goes to the condition evaluation of the for loop, possibly for the next 
iteration.

7.5 Compound Statements
Nested statements are permitted, such that selection and iteration 
statements can appear inside of a statement block. All statement blocks 
must begin with an open bracket and end with a close bracket.



8. Scope

8.1 Static Scoping
sIP uses static scoping. That is, the scope of a variable is a function of the 
program text and is unrelated to the runtime call stack. In sIP, the scope of a 
variable is the most immediately enclosing block, excluding any enclosed blocks 
where the variable has been re-declared.

8.2 Global vs. Local
Global  variable:  The  variables  declared  outside  of  the  function  are  global 
variables, which will be applied in the whole program except the function where 
there  is  a  local  variable  with  the same name as  that  of  the  global  variable. 
Global variables will exist until the program terminates.
Local variable: The variables declared inside of the function are local variables, 
which will exist and be applied only inside that function.
Scope conflicts: If there is a global variable whose name is the same with that of 
the local variable, then the value of the local variable will be applied inside the 
function while the value of the global variable will be applied in all the other part of 
the program except that function.

8.3 Forward Declarations
sIP requires forward declarations for variables and functions. That is, a variable 
needs to be declared before it can be referenced, and any function needs to be 
defined before it can be invoked.
For example, sIP generally prohibits the following and will throw an error:
float a; float b; float 
mean;
mean = func(a, b);
...
In this case, the function func() needs to be defined before it is called.

8.4 Arithmetic Operator Overloading
Arithmetic operators (+, -, *, /) are overloaded in sIP. They can be used in 
expressions where integers and floats are mixed, and where an image/filter is 
mixed with a scalar value.

8.5 Function Name Overloading
sIP does not allow function name overloading. That is, each function should have 
a unique function name, or sIP compiler will complain.


