YOLOP Language Reference Manual

Sasha Mclntosh, Jonathan Liu & Lisa Li
sam2270, jI3516 and 112768

1. Introduction

YOLOP (Your Octothorpean Language for Optical Processing) is an image manipulation language
designed to aid developers in programming applications to process their images and simplify
complicated tasks. This language reference manual details the specific lexical and naming
conventions, syntax notation, declarations and statements, as well as the built-in functions and

standard grammar of YOLOP.

2. Lexical Conventions

2.1 Comments
Comments begin with this symbols @# and terminate with the symbols #@. Only the text inside the

symbols are commented out. There is no separate definition for single-line comments.

2.2 Variable Names

Variable Names are made up of a sequence of letters. Only the first 15 characters are significant.

2.2.1 Keywords

Keywords in the language and cannot be used in any way other than their respective purposes. These

words are:
for if else pixel
int string global while
return break continue function
print read_in

2.2.2. Types

integer string pixel

3. Syntax Notation

Tokens in a program are a series of characters broken up by separators. Spaces are considered
whitespace and a series of spaces is treated as a single whitespace character. Tokens must be

separated by a separator or an operator in order to be valid.

3.1.1 Token Separators

Token separators include whitespace characters and semicolons and are used to distinguish one token
from another.

3.1.2 New Line Separators

A new line separator is used to distinguish the end on one line in the program from another.

3.1.3 Grouping Separators

Grouping separators are used to group sets of tokens. Grouping separators include parenthesis (), tab
spaces, and brackets []. The correct usage of these separators is discussed in depth later in the

manual.

4. Naming
4.1 ldentifiers

Function and variable names are identifiers and can be made up of alphanumeric characters (0-9 and
a-z) as well as underscores. The identifier must begin with either an underscore or a letter and is case
sensitive. While a name can be infinitely long, only the first 15 characters will be used to reference an
identifier.
Example: functiona_1: @# legal #@

function 1_a: @# illegal #@

@# identifier cannot begin with a number #@

int_12345678901234444 @# legal #@
int_12345678901234555 @# illegal #@

@# variable name is already in use #@

5. Expressions

5.1 Primary Expressions

constant
An integer type constant is a primary expression.
string
A string is a primary expression.
pixel
A pixel is a primary expression.
primary-expression[]
Closed brackets following a primary expression indicate an array type of that
primary-expression.
[expr]
Closed brackets around an integer number indicate access to an array element in the position
determined by the contained integer.
(expr1 expr2 expr3)
Parentheses are used only in declaring the pixel primary-type px and its three values.
semicolons (;)
Semicolons are used in for loops and function calls to separate expressions.
colon ()
Colons, used conjunctively with indentation, are used to indicate block statements.
comma (,)

Commas are used exclusively when writing multiple variable declarations that are of the same

type.

5.2 Unary Operators
- expr
This unary operator groups right-to-left, and has a result of the negative of the expression, with

the same type. The expr type must be an integer.

5.3 Mathematical Operators
expr + expr

The operator + groups left-to-right. It computes the sum of two expressions.
expr - expr

The operator - groups left-to-right. It computes the difference of two expressions.

expr * expr

The operator * groups left-to-right. It computes the product of two expressions.
expr / expr

The operator / groups left-to-right. It computes the quotient of two expressions.
expr++

The operator ++ groups left-to-right. It increments an expression by 1.
expr--

The operator ++ groups left-to-right. It decrements an expression by 1.

5.4 Relational/Equality operators

expr < expr
The operator < groups left-to-right. It returns 1 (meaning true) when the value of the left
expression is less than that of the expression on the right, and 0 otherwise.

expr > expr
The operator > groups left-to-right. It returns 1 (meaning true) when the value of the left
expression is greater than that of the expression on the right, and 0 otherwise.

expr == expr
The operator == groups left-to-right. It returns 1 (meaning true) when the left expression is
exactly equal to the value than the expression on the right, and 0 otherwise.

expr ~= expr
The operator ~= groups left-to-right. It returns 1 (meaning true) when the left expression is not

exactly equal to the value than the expression on the right, and returns 0 otherwise.

5.5 Logical Operators

expr1 && expr2
Evaluates to 1 when both expressions evaluate to non-zero values. There is a left-to-right
evaluation. If expr1 evaluates to 0, then expr2 will not be evaluated.

expr || expr
Evaluates to 1 when either expression evaluates to a non-zero value. There is a left-to-right

evaluation. If expr1 evaluates to 1, then expr2 will not be evaluated.

5.6 Assignment Operator
Ivalue = expr

All assignment operators are right associative. They assign the evaluation of expr to the object

Ivalue.
Ivalue =(op) expr
This is equivalent to
Ivalue = Ivalue (op) expr

where (op) is an operator

6. Declarations

6.1 Variable Declarations
Variable declarations have the form specifier var_name. To declare multiple variables with the same
type, simply separate each var_name with a space. Type specifiers are int for integers, string for strings

and px for pixels. A variable cannot be created without a type specifier.

Examples: intx=6 @# Integer Declaration #@
string y = “why” @# String Declaration #@
px z = (255 255 255) @# Pixel Declaration #@
int[] x = [6 70] @# Integer Array Declaration #@

string[] y = [*why* “me”] @# String Array Declaration #@
px[]z=[(123)(123)] @# Pixel Array Declaration #@
6.2 Function Declarations
Function declarations have the form function var_name [var dec var_dec...]. The contents of the
function include all lines immediately following the function declaration with one or more indents made
with the tab key. The function parameters are contained within a set of brackets, separated by a space
and in the form of a variable declaration.
Examples: globalintx, y, z=6, 10, 4
function add x; y:
returintz=x+y
@# inside the function z = 16 #@
@# outside the function z = 4 #@

7. Statements

Statements are executed in sequence, and consist of either new object/variable declarations, modifying
or assigning declarations, block statements, or control flow statements.

7.1 Conditional Statements

Conditional statements consist of either if or if-else blocks. As our language is based on indentation, this

eliminates the ambiguity present in an if expression if expression else condition.

Examples:
if expression:
if expression:
statement
else:
statement
else:
statement

7.2 Iteration Statements
Iteration statements consist of either for or while blocks.
7.2.1 For Loops
For loops must take in three expressions, separated by semicolons, and it evaluates expression1 first
and only once. expression2 is a boolean expression and upon evaluating true, runs the statement. After
the statement has been executed, expression3 is executed. This continues until expression2 evaluates
false, at which point the for loop is terminated.
Example: for expression1; expression2; expression 3:

statement
7.2.1 While Loops
While loops take in one expression, which is a boolean expression that is evaluated each time before
statement is executed. The while loop executes the statement repeatedly until the expression is
evaluated as false.
Example: while expression:

statement

7.3 Jump Statements
Jump statements consist of return, break, or continue statements.
7.3.1 Return
The return keyword ends the function call by returning the value of an expression to the function’s caller.
Example: while expression:
if expression:

return expression

statement

7.3.2 Break
The break keyword terminates the smallest enclosing while or for loop, and jumps to the code displayed
after that loop.
Example: while expression:
if expression:
break
statement
7.3.3 Continue
The continue statement allows control to pass to the end of the smallest enclosing for or while loop,
essentially skipping over one iteration.
Example: while expression:
if expression:
continue
statement
7.3.4 Print Statement
The print keyword allows only a string to be printed into the console.

Example: print string

8. Built-in Functions/System Functions

8.1 Input/Output (I/0O)

8.1.1 Printing to a stdout

__print[String s] will print the string s to stdout

8.1.2 Reading from stdout

__scan[String s] will read the next line from stdout into the string s
8.1.3 Printing to an Image File

_printf[String s , String f] will print the string s to the file f.jpg

8.1.4 Reading from an Image File

_scanf[String f] will read from a file named f.jpg

9. Scope Rules

9.1.1 Global Scope
Global constants defined outside of any function calls are noted as global constants and contain a global
scope. They can be accessed by any statements or expressions within the file and are noted by the
preceding keyword global.
Example: global int hello = 25
function add x; y:
return x + y + hello @# this is allowed because hello has #@
@# been defined as a global constant #@
9.1.2 Block Scope
Blocks contain a local scope, where variables defined within a block are local and accessible within that

block. Blocks can access previously defined local variables in their parent’s block as well as global

variables.

Example: function add x; y: @# x and y are local variables #@
intz=x+y @# z is a local variable #@
if x == 2:

inta=x+2 @# a and x are accessible local variables #@
return a+2

ifx<2:
return a @# error: a does not exist in this scope #Q@

return z @# z is within the local scope #@

