SMPL - Simple Parallel Language

Language Reference Manual

Andrei Papancea, Ajay S S Reddy Challa, Devashi Tandon
{alp2200, ac3647, dt2450} @columbia.edu

October 19, 2013

Contents

1. Introduction

2. Lexical Conventions
2.1. Identifiers
2.2. Keywords
2.3. Comments

3. Types
3.1. Fundamental Types
3.2. Derived Types
3.3. Storage Classes

4. Expressions
4.1. Operators
4.2. Precedence

5. Syntax
5.1. Statements
5.2. Variable Declaration
5.3. Array Declaration
5.4. Function Declaration
5.5. Parallel Constructs

5.5.1. spawn
5.5.2. barrier
5.53. pfor
554. lock

6. Miscellaneous
7. References

1. Introduction

This document describes Simple Parallel Language (SMPL) which is an approach to parallel
programming that is based on a subset of the C programming language. Its major strength is that it has a
clearer and simpler syntax for doing parallel programming than programs written using OpenMP or
POSIX threads.

With the addition of only four keywords to a subset of the C language, SMPL gives the programmer the
ability to parallelize his code with minimal effort.

2. Lexical Conventions

SMPL introduces four parallel keywords. SMPL supports four types of tokens: identifiers, keywords,
functions, and separators. Tabs, and newlines are ignored, while multiple spaces are contrived to only
one space, which serves as a token separator.

2.1 Identifiers

An identifier consists of a letter followed by one or more alphanumeric and/or underscore characters.
The identifiers are case-sensitive.

2.2 Keywords

The following set of keywords are reserved names and cannot be used as identifiers:

=> int => false => break
=> float => null => main

=> boolean = if => pfor

=> char = else => spawn
=> string = for = lock

=> void => while => barrier
=> true => return

2.3 Comments

Comments are represented in a block as follows:
/* single line comment */
/* multi

line

comment */

SMPL does not support comment nesting.

3. Types

3.1 Fundamental Types
In SMPL the following fundamental data types are supported:

int: integer variable

double: floating-point variable

boolean: boolean variable (true, false)
char: single ASCII character variable

B U °

string: multi ASCII character variable

In addition, SMPL uses void to symbolize that a function has not return value.
3.2 Derived Types

In SMPL the following derived data types are supported:

=> arrays: sequence of fundamental types (an array must have elements of the same type)
=> functions: sequence of code having its own execution context

Refer to section 5.3 and 5.4 on how to use these types.
3.3 Storage Classes
In SMPL the scope of a fundamental type can be either of the following two storage classes:

=> local: scope is limited to the function
=> global: accessible in any part of the program

The scope is derived from where it is defined. If the variable is defined outside the function the scope is
global, whereas if it is defined within a function the scope is local.

4. Expressions
4.1 Operators

The table below lists the operators supported by SMPL:

Operator | Description

ali] element 1 of array a
* multiplication
/ division
% modulus
+ addition
- subtraction
< less than comparison
> greater than comparison
<= less than or equal to comparison
>= greater than or equal to comparison

== equality comparison

= inequality comparison

! boolean NOT operator

&& boolean AND operator

| | boolean OR operator

= assignment

, argument separator

; statement separator

4.2 Precedence

The table below illustrates the precedence for all the operators supported by SMPL.:

Precedence | Expressions/Operators

highest f (arg,arg,...) ali]
'b
n * o n/ o i % 7
n+ o n - o
n < o n > o n <= o n >= o
r == r r !'=r
b && c
b || c
l=r

lowest rl , r2

The table above illustrates how expressions are evaluated. Therefore these rules define implicit grouping,
so the expression 1+2*3 is equivalent to 1+ (2*3) . If a different grouping is desired, such as
(1+2) * 3, then it needs to be explicitly specified using a pair of parentheses.

5. Syntax

5.1 Statements

A statement can have any of the following formats:

expression;

{ statement-list }

if (expression) statement e 1 se statement

while (expression) statement

for (‘expression ; expression ; expression) statement

pfor (literal ; expression ; expression ; expression) statement
lock statement

Spawn statement

barrier;

break;

N T RN T RN OO N T I °

return expression;

5.2 Variable Declaration

The syntax for variable declaration in SMPL has the following format:

type identifier; /* the identifier will be initialized to a default value */
type identifier = wvalue; /* the identifier will be initialized to the specified value */

The default value for different data types is as follows:

Data Type | Default Value

int 0

double 0.0

boolean false

char 0 (null character)

string W (empty string)

5.3 Array Declaration

The syntax for array declaration in SMPL has the following format:

type identifier[size];

type identifier([size] = {v,,V,, «.., Vg, }7

The indexing of the array starts at 0 (zero).

5.4 Function Declaration

The syntax for function declaration in SMPL has the following format:
return-type identifier (arg-type argl, arg-type arg2, ...){

declaration-1list
statement-list

The return-type of a function can be any of the fundamental types, including void. The
arg-type can be any of the fundamental types, excluding void.
5.5 Parallel Constructs

5.5.1 spawn

The spawn statement creates a thread for the given statement. Its syntax looks as follows:
spawn function call;

5.5.2 barrier

The barrier statement prevents execution of code following it until all the threads spawned prior
to it finish executing. Its syntax looks as follows:

barrier;

Here is a code example of when you would need barrier:

spawn threadl () ;
spawn thread2();

print (“Done!”);

Note that in the example above, threadl and/or thread?2 could finish after the printing is done,
which is probably an undesired result. Subsequently, using a barrier above the print statement,
would prevent the program execution to reach the latter before all the spawned threads have

completed. The fix would look like this:

spawn threadl () ;
spawn thread2();

barrier;
print (“Done!”);

5.5.3 pfor

The pfor statement defines a for loop that splits up the work in its body into multiple threads. Its
syntax has the following format:

pfor (k; expression; expression; expression; expression)

statement

In the example above, k represents the number of threads that pfor will break its body into. For
instance, if k=4 then the work of the statements in the body of pfor will be broken into 4 separate
threads. The pfor construct uses an implicit barrier in order to ensure that all the threads have
finished before proceeding to the next statement.

Note that you should not spawn other threads inside pfor since that would entail spawning threads
inside other threads and create unexpected concurrency problems.

5.5.4 lock

The 1ock statement prevents other threads from accessing or modifying the contents of the statement
that it precedes until the latter’s computation finishes. Its syntax looks as follows:

10

lock statement
Once the computation finishes, the lock will be automatically removed.
Here is a code example of when you would need a 1ock:
int sum=0;
pfor(4;int i=0;1<1000000;i++) {

sum += 1i;
print (sum) ;
Note that in the example above, each of the four threads that pfor creates will attempt to modify sum at
the same time, creating concurrency problems and therefore outputting a different result every time the
program runs. Subsequently, using a 1ock around the sum += 1 statement, would prevent a thread
from modifying the variable while another is already trying to change it. The fix would look like this:
int sum=0;
pfor (4;int i=0;i<1000000; i++) {

lock {
sum += 1i;

print (sum) ;

11

6. Miscellaneous

We will implement the following language features if time permits:

1
2
3.
4
5

nested comments

static variables

type casting

continue statement

comma-separated variable declaration (ex. int a, b,

c;)

12

7. References

We have modeled our Language Reference Manual after the following two documents:
1. http://www.cs.columbia.edu/~sedwards/classes/2013/w4115-fall/clrm.pdf

2. http://www.cs.columbia.edu/~sedwards/classes/2013/w4115-summer2/lrms/CLIP.pdf

13

http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2013%2Fw4115-fall%2Fclrm.pdf&sa=D&sntz=1&usg=AFQjCNGhPIpGaKsTdCNdvUfexLezfsuESg
http://www.google.com/url?q=http%3A%2F%2Fwww.cs.columbia.edu%2F~sedwards%2Fclasses%2F2013%2Fw4115-summer2%2Flrms%2FCLIP.pdf&sa=D&sntz=1&usg=AFQjCNHvAB-6qhO3-_dJHQr8DGdOBuEUMg

